SlideShare a Scribd company logo
9/16/2016 Print Automated Chromatographic Solid­Phase Extraction Using an Autosampler | American Laboratory
1/7
Automated Chromatographic Solid­Phase Extraction
Using an Autosampler
Thursday, September 1, 2016
Print
Mark Hayward
Jonathan Ho
Rick Youngblood
Matthew T. Hardison
Tom Moran
Kim Gamble
Solid­phase extraction (SPE) is a preferred tool for isolating target analytes from complex matrices because the
availability of a diverse range of chromatographic sorbents enables targeted approaches based on the specific
chemistry of the analytes and matrices. Also, SPE offers the ability to enrich or preconcentrate analytes in samples.
Enrichment is valuable because it allows one to match the analyte concentrations to the approach used to measure
them. Given these unique capabilities, SPE is considered the “gold standard” in analytical sample preparation.
SPE using a cartridge on a vacuum (or pneumatic pressure) manifold requires proper training, as care must be taken
to maintain appropriate liquid flow in real time. As a result, the number of samples that can be processed is limited to
30 per day per technician. If enrichment is needed, a sample dry­down step is required, which reduces throughput.
A parallel approach with tubes, pipet tips, cartridges or 96­well plates increases the number of samples, but at a cost.
Parallel liquid flow is highly variable from tube to tube or well to well. Increased variability in parallel flow results in
additional variability in analyte recovery, requiring the use of internal standards and acceptance of lower quality,
specifically, higher LLOQs (lower limits of quantification) and inconsistent assay results. Also, this approach only
addresses sample/solvent flow over the SPE sorbent—not pipetting sample/solvents to each well. Thus, going parallel
only modestly increases sample throughput, but also the probability of human error due to the greater number of
pipetting steps.
To increase SPE throughput, a parallel approach can be coupled with robots to perform the pipetting (robotic SPE,
then LC/MS/MS or GC/MS/MS measurement); however, results are lower in quality (for variable parallel flow reasons
given above) in this two­workflow process. Another drawback is the additional cost for robots ($200–500k),
programming/integration and technicians with robotic experience. From a results point of view, this seems to mirror the
“speed, cost, quality triangle,” where gains in any one of the three take away from the other two. Breaking through the
9/16/2016 Print Automated Chromatographic Solid­Phase Extraction Using an Autosampler | American Laboratory
2/7
“speed, cost, quality triangle” requires fundamental change in the SPE device to enable both automation and higher
quality using only existing analytical instrumentation instead of high cost robots.
Introduction of precision­controlled micro­SPE using the autosampler
Central to automated, rapid, and higher­quality SPE is a patented, single­use micro cartridge (ITSP, Hartwell, Ga.)1­5
(Figure 1) containing user­defined, packed chromatographic media. The crimped­on septum and needle guide (upper
80% of cartridge) enable automation by facilitating accurate cartridge transport on a syringe needle. Automated SPE
begins by using the autosampler syringe for cartridge conditioning, sample loading and sample washing over a waste
receptacle. The syringe is used to perform elution over a clean vial or well, and the used cartridge is discarded in a
different waste receptacle. Automation is complete after the syringe mixes the freshly eluted sample and then injects it
into the LC/MS/MS or GC/MS/MS that will be used to measure the sample (see the CTC/PAL autosampler in Figure 2).
9/16/2016 Print Automated Chromatographic Solid­Phase Extraction Using an Autosampler | American Laboratory
3/7
Figure 1 – Internal view of an ITSP SPE single­use cartridge and how it interfaces with the PAL autosampler
syringe and needle support. This facilitates all SPE cartridge transport and delivery of sample and solvents.
9/16/2016 Print Automated Chromatographic Solid­Phase Extraction Using an Autosampler | American Laboratory
4/7
Figure 2 – PAL RTC autosampler (CTC Analytics, Lake Elmo, Minn.) equipped for online SPE­LC/MS/MS.
Hoses connect the SPE cartridge tray and syringe wash station to a laboratory solvent waste container.
Used cartridges are typically discarded by the PAL into a box under the wash station and LC valve.
This simple, automated, single­workflow process integrates SPE directly into the LC/MS/MS or GC/MS/MS software as
an on­line workflow, and does not require additional skills beyond those needed to operate the LC/MS/MS or
GC/MS/MS. It is simply a different method selection in the MS software already in use with any LC/MS/MS or
GC/MS/MS equipped with a PAL autosampler.
Figure 3 – Execution timeline for SPE in parallel with LC/MS/MS for the
9/16/2016 Print Automated Chromatographic Solid­Phase Extraction Using an Autosampler | American Laboratory
5/7
analysis of 71 drugs in urine. In this process, overnight measurement of
two 96­well plates of samples per LC/MS/MS is routine and results are
ready for review when the lab opens in the morning.
In the single­workflow procedure, SPE and LC/MS/MS (or GC/MS/MS) are performed serially, but in parallel with each
other (see Figure 3). As shown, cycle time is frequently a function of the LC/MS/MS (or GC/MS/MS) measurement and
not the SPE. With this form of parallelism, the only cost in time is SPE of the first sample. By combining the processes it
is considerably faster than the two­workflow process and requires nothing more than a good initial choice in
autosampler in order to achieve complete automation.
The top of the ITSP micro­SPE cartridge enables precise automation, while the bottom of the cartridge performs
chromatographic SPE, cleaning and enriching the sample to produce high­quality results and maintaining the
LC/MS/MS or GC/MS/MS to ensure long­term, robust operation. As shown in Figure 1, the syringe needle is placed at
the frit containing the packed chromatographic sorbent to transfer sample, without significant dispersion, directly to the
packed sorbent. Flow of the sample and solvents is positive liquid pressure, syringe pump­driven (flow adjustable at a
resolution of ±10 nL/sec) and is precise and accurate. The extra­column volume of the cartridge (Figure 1, below
sorbent) is just 16 μL.
Elution volumes of 50–100 μL facilitate control of the analyte concentrations delivered for measurement. As a result,
sample volume can be adjusted to match the capability (sensitivity) of the measurement instrumentation and the
necessary cutoffs (LLOQs, S/N ≥20) for proper interpretation of test results. This is achieved without the customary dry­
down step used with vacuum or pneumatically driven flow forms of SPE, which tend to require ≥5× larger elution
volumes.
This concept is best illustrated with common, in­use assays. For broad­panel drug measurement in urine samples
using a mid­range LC/MS/MS, 225 μL of sample is loaded onto the SPE cartridge and is then eluted with 75 μL. This
3× analyte enrichment achieves the necessary 1­ng/mL cutoffs for low­dose drugs and produces LC peaks for all
drugs—sufficiently intense for automatic integration across the concentration ranges observed in real samples. For
measurement of the same broad­panel drug assay in oral fluid samples, 1 mL of sample is loaded onto the SPE
cartridge and is then eluted with 75 μL. This 13× enrichment provides the 0.2­ng/mL cutoffs for low­dose drugs. For
measurement of priority pollutants in drinking water, 10 mL of water sample is loaded onto the SPE cartridge, followed
by 50 μL elution to achieve a 200× analyte enrichment and LLOQs at or near single­digit parts­per­trillion levels. In all
of these examples, the analytes are ready to measure immediately after SPE without performing dry­down of the
eluent.
The ITSP micro­SPE cartridge provides accurate syringe pump flow control over the packed sorbent bed, allowing
SPE separations to be performed at their van Deemter optimum velocity6
 (see Figure 4). This finding was
unanticipated, because with single­use SPE devices it is expected that lower flow7
 yields higher recovery. The data
clearly shows that accurate flow control and optimization are equally important for SPE and LC. With method
optimization experiments performed in the same ways as LC, SPE recoveries are systematically high and precise (not
common with other forms of SPE, particularly for ion exchange and chelation mechanisms). The accuracy and
variance in the final test results depend most on the LC/MS/MS or GC/MS/MS measurement (results CV = 3–5%)
rather than the recovery of SPE sample preparation performed by the CTC PAL autosampler (Figure 2).
9/16/2016 Print Automated Chromatographic Solid­Phase Extraction Using an Autosampler | American Laboratory
6/7
Figure 4 – van Deemter curves for reversed­phase (C18 endcapped) SPE using two different particle
diameters (10 and 50 μm). The image also shows the source of variable recovery with vacuum or
pneumatically driven flow, because as flow drifts away from the optimum, recovery suffers. Δ%Recovery
squared (relative variance, σ2, in the amount of sample recovered) is the dimension plotted on the y­axis; the
numbers indicated on the y­axis are absolute %recovery (not adjusted based on IS) as an aid to the reader.
This is analogous to the %RSD approach to determining plate height described by Neue,6 but is used here
only for flow optimization.
Additional capabilities
Automated method development/optimization experiments can be carried out for multiple sorbents and solvents as a
series of 5–6 run lists (Design of Experiments [DOE]), where each list provides optima fed into the next list. The sum of
these lists (including measurement/elimination of breakthrough of all condition, load and wash steps; flow
optimization; and a sample loading study) can be measured in three days to result in a highly optimized SPE method.
ITSP SPE achieves precise chromatographic separations, preconcentration of sample (without dry­down), robust
operation and total automation.
PAL­based SPE does not limit one to a single dimension of SPE. For lipid profiling, uncharged oils can be isolated
from fatty acids and phospholipids using anion­exchange SPE. The phospholipids can then be isolated from the fatty
acids using chelation in a second SPE step (easily achieved with a PAL autosampler). Finally, each of the three
isolated samples (oils, fatty acids and phospholipids) can be directed to the LC/MS/MS or GC/MS/MS measurement
approach best suited for that lipid class. Similarly, for proteomics, reversed­phase SPE can be used for desalting,
9/16/2016 Print Automated Chromatographic Solid­Phase Extraction Using an Autosampler | American Laboratory
7/7
followed by a second chelation SPE to isolate peptides from phosphopeptides for separate LC/MS/MS measurement
of the large numbers of peptides. In these examples of 2­D SPE, the PAL is often operated as a standalone sample
preparation device; multiple instrument types and/or methods can process the different compound classes for the
same samples in parallel. This is also useful in applications in which the analytical measurement time significantly
exceeds the SPE time. For example, in the GC/MS/MS measurement of large pesticide panels in food, one standalone
PAL autosampler can use SPE to clean up enough QuEChERS extracts for continuous, around­the­clock
measurement by five GC/MS/MS systems.8
Conclusion
A novel micro­SPE device offers highly effective automation using only existing analytical instrumentation while
simultaneously improving SPE performance.
References
1. Gamble, K. U.S. Patent 6969615; 11/1/2005.
2. Gamble, K. and Martin, W. EU Patent 1174701; 09/11/2007.
3. Gamble, K. CDN Patent 2316648; 7/4/2004.
4. Gamble, K. and Martin, W. U.S. Patent 7001774; 2/21/2006.
5. Gamble, K., Fitzgerald, R. U.S. Patent 7798021, 9/21/2010.
6. Neue, U.D. HPLC Columns: Theory, Technology, and Practice; Wiley VCH: Weinheim, 1997, p 13.
7. Jordan, L. Automating a solid phase extraction method. LC·GC 1993, 11, 634–8.
8. Lehotay, S.J.; Han, L. et al. Automated mini­column solid­phase extraction cleanup for high­throughput analysis of chemical
contaminants in foods by low­pressure gas chromatography—tandem mass spectrometry. Chromatographia  2016, 79, 1113–30.
Mark Hayward, Rick Youngblood and Kim Gamble are with ITSP Solutions Inc. (ITSP), 10 South Carolina St., Hartwell,
Ga. 30643, U.S.A.; tel.: 706­395­8300; e­mail: mark.hayward@itspsolutions.com; www.itspsolutions.com. Jonathan Ho
and Tom Moran are with Shimadzu Scientific Instruments, Somerset, N.J., U.S.A. Matthew T. Hardison is with
Assurance Scientific Laboratories, Bessemer, Ala., U.S.A.
Related Products
Solid Phase Extraction Equipment (SPE Equipment) »
LC MS Instrument »
GC MS Instrument »

More Related Content

PDF
SPE Benchtip Article Biocompare
PDF
Analsys Sciences - Introduction to HPLC
PPTX
Vishal khamgaonkar
PPTX
Theory of high performance liquid chromatography ppt
PPTX
Introduction to High Performance Liquid Chromatography (HPLC)
PPTX
Sample preparation for Chromatography
PPTX
PDF
HPTLC MS=
SPE Benchtip Article Biocompare
Analsys Sciences - Introduction to HPLC
Vishal khamgaonkar
Theory of high performance liquid chromatography ppt
Introduction to High Performance Liquid Chromatography (HPLC)
Sample preparation for Chromatography
HPTLC MS=

What's hot (20)

PPTX
Phytochemical Finger printing
PPTX
HPLC method development
PDF
Prabhakar singh ii sem-paper v-hplc, fplc, uplc, rrlc
PPTX
Seminar on elemental impurities by prakash
PPTX
PPTX
Uplc&nano
PPT
PPTX
Hplc presentation final
PPTX
Bioanalytical ppt
PPTX
Chromatographic Separation Tools Advantages and Disadvantages
PPTX
Polymerase Chain Reaction
PPT
High performance-liquid-chromatography-hplc
PPTX
High performance liquid chromatography(HPLC)
PDF
Introduction to analytical instrumentation.
PPTX
Modern Analytical System-Bioanalysis
PPTX
Triple Quadrupole Gas Chromatography-Mass Spectrometry/Mass Spectrometry Re-i...
PPTX
PPTX
UPLC - ULTRA PERFORMANCE LIQUID CHROMATOGRAPHY
PPTX
HPLC- high performance liquid chromatography
PDF
Phytochemical Finger printing
HPLC method development
Prabhakar singh ii sem-paper v-hplc, fplc, uplc, rrlc
Seminar on elemental impurities by prakash
Uplc&nano
Hplc presentation final
Bioanalytical ppt
Chromatographic Separation Tools Advantages and Disadvantages
Polymerase Chain Reaction
High performance-liquid-chromatography-hplc
High performance liquid chromatography(HPLC)
Introduction to analytical instrumentation.
Modern Analytical System-Bioanalysis
Triple Quadrupole Gas Chromatography-Mass Spectrometry/Mass Spectrometry Re-i...
UPLC - ULTRA PERFORMANCE LIQUID CHROMATOGRAPHY
HPLC- high performance liquid chromatography
Ad

Similar to Automated Chromatographic Solid-Phase Extraction Using an Autosampler _ American Laboratory (20)

PDF
Chromatography
PDF
Rapid LC-MS/MS Analysis of PFCs in Non-drinking Water Matrices
PPTX
Biomedical Instrumentation auto analyser.pptx
PPTX
Sampling, extraction, cleanup and estimation of insecticide residue by variou...
PPTX
Phytochemical fingerprinting by hptlc and gc ms
PPTX
Green analytical chemistry
PPSX
Nova Analytica
PPTX
JOURNAL CLUB PRESENTATION (20L81S0714-PA )
PDF
Determination of Total Sulfur in Fertilizers by High Temperature Combustion
PPTX
RP-HPLC Method Development and Validation of Ketoconazole in Bulk and Pharmac...
PDF
Chapter 5_Chromatography PPoT (2024).pdf
PPTX
High Performance Thin Layer Chromatography
PPTX
Chromatography
PPTX
Analytical method development,validation by uv spectroscopy
PPTX
High performance thin layer chromatography
PPTX
HPLC Method Development & Method Validation (mr.s)
PDF
Dui d in urine poster itsp
PDF
DUI-D in Urine Poster
PPTX
High performance liquid chromato graphy
PPTX
Analytical method development
Chromatography
Rapid LC-MS/MS Analysis of PFCs in Non-drinking Water Matrices
Biomedical Instrumentation auto analyser.pptx
Sampling, extraction, cleanup and estimation of insecticide residue by variou...
Phytochemical fingerprinting by hptlc and gc ms
Green analytical chemistry
Nova Analytica
JOURNAL CLUB PRESENTATION (20L81S0714-PA )
Determination of Total Sulfur in Fertilizers by High Temperature Combustion
RP-HPLC Method Development and Validation of Ketoconazole in Bulk and Pharmac...
Chapter 5_Chromatography PPoT (2024).pdf
High Performance Thin Layer Chromatography
Chromatography
Analytical method development,validation by uv spectroscopy
High performance thin layer chromatography
HPLC Method Development & Method Validation (mr.s)
Dui d in urine poster itsp
DUI-D in Urine Poster
High performance liquid chromato graphy
Analytical method development
Ad

More from Rick Youngblood (20)

PPSX
ITSP PAL Training - Intermediate
PPSX
ITSP PAL Training - Advanced
PPSX
ITSP PAL Training - Basic
PPSX
ITSP Dual Rail Project
PPSX
ITSP New Stuff
PPSX
Optimization of Automated Online SPE-LC-MS
PPSX
Unified-Drug-Analysis-PittCon-2016
PPSX
ITSP Setup on PAL-xt
PPSX
ITSP Introduction
PDF
Barbiturates and THCA in Urine at OpAns
PDF
Androstenedione and Testosterone in Serum
PDF
Drugs of Abuse in Post Mortem Blood Poster
PDF
Manual Single Cartridge Holder Flyer
PDF
Streptomycin in Honey Poster
PDF
Automated SPE for Capillary Microsampling Poster
PDF
PDF
QuEChERS Pittcon 2014 Poster
PDF
Drugs_of_Abuse_Application_Note
PDF
Go Green Brochure-MicroLiter
PDF
Forensic Market Brochure-MircoLiter
ITSP PAL Training - Intermediate
ITSP PAL Training - Advanced
ITSP PAL Training - Basic
ITSP Dual Rail Project
ITSP New Stuff
Optimization of Automated Online SPE-LC-MS
Unified-Drug-Analysis-PittCon-2016
ITSP Setup on PAL-xt
ITSP Introduction
Barbiturates and THCA in Urine at OpAns
Androstenedione and Testosterone in Serum
Drugs of Abuse in Post Mortem Blood Poster
Manual Single Cartridge Holder Flyer
Streptomycin in Honey Poster
Automated SPE for Capillary Microsampling Poster
QuEChERS Pittcon 2014 Poster
Drugs_of_Abuse_Application_Note
Go Green Brochure-MicroLiter
Forensic Market Brochure-MircoLiter

Automated Chromatographic Solid-Phase Extraction Using an Autosampler _ American Laboratory