This document describes an automatic Bayesian method for numerical integration. It begins by introducing the problem of multivariate integration and current approaches like Monte Carlo integration that have limitations. It then presents the Bayesian cubature algorithm which chooses sample points and weights to minimize the error in approximating an integral. This is done by modeling the integrand as a Gaussian process, deriving identities relating the error to properties of the covariance kernel, and estimating its hyperparameters. The kernel used is shift-invariant, allowing fast matrix computations. Simulation results show Bayesian cubature achieves high accuracy with fewer samples compared to other methods.