This document discusses the average polynomial time complexity of some NP-complete problems. Specifically:
- It proves that when N(n) = [n^e] for 0 < e < 2, the CLIQUEN(n) problem (finding a clique of size k in a graph with n vertices and at most N(n) edges) is NP-complete, yet can be solved in average and almost everywhere polynomial time.
- It considers the CLIQUE problem under different non-uniform distributions on the input graphs, showing the problem can be solved in average polynomial time for certain values of the distribution parameter p.
- The main result shows that a family of subproblems of CLIQUE that remain