This document presents an iterative procedure for finding a common fixed point of a finite family of self-maps on a nonempty closed convex subset of a normed linear space. Specifically:
1. It defines an m-step iterative process that generates a sequence from an initial point by applying m self-maps from the family sequentially at each step.
2. It proves that if one of the maps is uniformly continuous and hemicontractive, with bounded range, and the family has a nonempty common fixed point set, then the iterative sequence converges strongly to a common fixed point.
3. It extends previous results by allowing some maps in the family to satisfy only asymptotic conditions, rather than uniform continuity. The conditions