SlideShare a Scribd company logo
© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.
2018
n and ff Predictable peaksWASTE
O L S E L
( , ) , , T G
1. https://aws.amazon.com/ko/solutions/case-studies/novartis/
2. https://aws.amazon.com/blogs/aws/experiment-that-discovered-the-higgs-boson-uses-aws-to-probe-nature/
3. https://www.slideshare.net/AmazonWebServices/bdt311-megarun-behind-the-156000-core-hpc-run-on-aws-and-experience-of-
ondemand-clusters-for-manufacturing-production-workloads-aws-reinvent-2014
1 ,, N8D
6 7E ED R C2
1 6 H E
D R 7E R C2
1 0 5 3 9 D D
9 3 7 R C2
• S3/EC2/Spot Fleet
• Auto-Scaling
• SNS/SQS/CloudWatch
• S3/ECS
• SQS/CloudWatch
AWS Batch를 통한 손쉬운 일괄 처리 작업 관리하기 - 윤석찬 (AWS 테크에반젤리스트)
t 12
a eW
v Dm A
So E m
1 6357 ,
r C
B
A -
53 76 SnS
187: SnSI p
eW C
B 21 06 6:
B
B
g P m
,
(
o h
) u
d MW C
A m
s
, /
c il
s
il
( C
l l a
m S l
t E
e
e
C U v
n
L I E
2/ z )
L g P
E
21
) )Batch Queue (2)
Batch Queue (1)
Batch Queue (0)
priority
(
Container Property
Compute
Resources
DependsOn
Container Property
Container Property
( ) )
( )
( )
( )
…(
Define the
Batch Job
Create
Compute
Environment(s)
Create Job
Queue Submit Job Job Scheduling
Monitor Job and
Outputs
IAM Role for
Batch Job
Input Files
Queue of
Runnable Jobs
S3 Events Trigger
Lambda Function
Submits Batch Job
Compute
Environments (ECS)
Job Definition
Batch Execution
Application
Image (ECR)
Batch Scheduler
Batch Job
Input
Batch Job
Output
Output Files
AWS Batch를 통한 손쉬운 일괄 처리 작업 관리하기 - 윤석찬 (AWS 테크에반젤리스트)
(
• B 2 CEA
A 2 B
aws batch submit-job --cli-input-json file://submit_job.json
( )
SUBMITTED
PENDING
RUNNABLE
STARTING
RUNNING
SUCCEEDED
FAILED
()( ( )
• - C A ,
A
aws batch register-job-definition --cli-input-json file://jdef.json
) ( (
• ,
aws batch create-job-queue --cli-input-json file://job_queue.json
) ( )( (
• . "
" , O
aws batch create-compute-environment --cli-input-json file://job_env.json
,
!
AWS Batch를 통한 손쉬운 일괄 처리 작업 관리하기 - 윤석찬 (AWS 테크에반젤리스트)
https://aws.amazon.com/blogs/compute/using-aws-cloudformation-to-create-and-manage-aws-batch-resources/
2
2
AWS Batch를 통한 손쉬운 일괄 처리 작업 관리하기 - 윤석찬 (AWS 테크에반젤리스트)
$ aws batch create-compute-environment --compute-environment-name c4Spot50 --type MANAGED
--state ENABLED --compute-resources
type=SPOT,instanceTypes=c4,minvCpus=0,maxvCpus=10000,desiredvCpus=2500,bidpercentage=50,s
ubnets=subnet-220c0e0a,subnet-1a95556d,subnet-978f6dce,instanceRole=ecsInstanceRole,
securityGroupIds=secGrp01,secGrp02,secGrp03,spotIamFleetRole=arn:aws:iam::012345678910:ro
le/aws-ec2-spot-fleet-role,serviceRole=arn:aws:iam::012345678910:role/AWSBatchServiceRole
$ aws batch create-compute-environment --compute-environment-name C4-RI --type MANAGED --
state ENABLED --compute-resources
type=EC2,instanceTypes=c4.2xlarge,minvCpus=0,maxvCpus=6000,desiredvCpus=1000,subnets=subn
et-220c0e0a,instanceRole=ecsInstanceRole,
securityGroupIds=secGrp01,spotIamFleetRole=arn:aws:iam::012345678910:role/aws-ec2-spot-
fleet-role, serviceRole=arn:aws:iam::012345678910:role/AWSBatchServiceRole
.2 12
1 12
2 .
F A
{
...
"SubmitJob": {
"Type": "Task",
"Resource": ”arn…",
"Next": "GetJobStatus"
},
...
}
AWS Batch를 통한 손쉬운 일괄 처리 작업 관리하기 - 윤석찬 (AWS 테크에반젤리스트)
Annotation
Variant
Calling
QC
Alignment
• https://aws.amazon.com/ko/blogs/compute/building-high-throughput-
genomics-batch-workflows-on-aws-introduction-part-1-of-4/
• https://github.com/aws-samples/aws-batch-genomics
3 .
• M
•
• 1
• M
• C
•
Job A Job C
Job B:0
Job B:1
Job B:n
…
$ aws batch submit-job --job-name BigBatch --job-
queue ProdQueue --job-definition monte-carlo:8 --
array-properties “size=10000” ...
{
"jobName": ”BigBatch", "jobId": "350f4655-
5d61-40f0-aa0b-03ad787db329”
}
Job Name: BigBatch
Job ID: 350f4655-5d61-40f0-aa0b-03ad787db329
Job Name: BigBatch
Job ID: 350f4655-5d61-40f0-aa0b-03ad787db329:0
Job Name: BigBatch
Job ID: 350f4655-5d61-40f0-aa0b-03ad787db329:1
Job Name: BigBatch
Job ID: 350f4655-5d61-40f0-aa0b-03ad787db329:9999
…
Job Depends on Array Job
“Job-B”
B:0
…
B:1
B:99
“Job-A”
$ aws batch submit-job –cli-input-json file://./Job-A.json
<Job-A.json>
{
"jobName": ”Job-A",
"jobQueue": "ProdQueue",
"jobDefinition": ”job-s3-list-validate:1",
}
$ aws batch submit-job –cli-input-json file://./Job-B.json
<Job-B.json>
{
"jobName": ”Job-B",
"jobQueue": "ProdQueue",
"jobDefinition": ”job-s3-CPU-intensive:1",
”containerOverride": { ”vcpus”: 32, “memory”: 4096 }
”arrayProperties": { “size”: 100 }
"dependsOn": [
{"jobId": "<job ID for Job A>" }
]
}
)3 ( ,
J
A
S B
Two Equally-Sized Array Jobs,
a.k.a. “N-to-N”
“Job-A”
A:0
…
A:1
A:2
A:3
A:9999
B:0
B:1
B:2
B:3
B:n
“Job-B”
“Job-A”
“Job-C”
C:0
…
C:1
C:2
C:3
C:9999
D:0
D:1
D:2
D:3
D:9999
“Job-D”
“Job-B”
C is dependent on A and B
D has an N_TO_N dependency on C
“Job-A”
“Job-C”
C:0
…
C:1
C:2
C:3
C:9999
D:0
D:1
D:2
D:3
D:9999
“Job-D”“Job-B”
B:0
…
B:1
B:9
B:2
“Job-E”
Heavy
Network I/O
CPU
Intensive
Large
Memory
Setup Cleanup
• E n
• 1 - E u n
• / E , 2 ,-2 n 13 -1 St
• Mm a n
• G E
• P , 2 u
• P h l UI W oi W ,
U C
• zu d
• r p 2 : A - 5 n
• c r p 5B : A 5 t F
AWS Batch를 통한 손쉬운 일괄 처리 작업 관리하기 - 윤석찬 (AWS 테크에반젤리스트)
N A D
https://aws.amazon.com/ko/batch/use-cases/
9
2 E9CG9 89
, E B 9E
0- 9 8
4-
Deletion
E 6
96
.15E
.15 G E
99
8 99
68
.15E
.15 G E
99
8 99
9
9
9
8 9
8 9
8 9
9
9
9
.15E
.15 G E
.15E
0- -3
.15 G E
9
AWS re:Invent 2017: AWS Batch: Easy and Efficient Batch Computing on AWS (CMP323) https://www.youtube.com/watch?v=8dApnlJLY54
API Server
(ECS)
SWF
Workflow
Job Manager
(ECS)
Generate Variants
Solve Variants
start
Workflow
poll
for
Decision
submit Batch Job
poll for Activity
submit Batch Job
poll for Activity
task Completed
task Completed
§ :
§ 2 ) A: :
§ ( 2 ) A: : B )
AWS re:Invent 2017: AWS Batch: Easy and Efficient Batch Computing on AWS (CMP323) https://www.youtube.com/watch?v=8dApnlJLY54
Deploy an 8K HEVC pipeline using Amazon EC2 P3 instances with AWS Batch
https://aws.amazon.com/ko/blogs/compute/deploy-an-8k-hevc-pipeline-using-amazon-ec2-p3-
instances-with-aws-batch/
1.2 MILLION JOBS
SUBMITTED
300K INSTANCES
CHURNED
2 TEAMS USE IN
PRODUCTION
• 5 D
• , 0 2 c
• 6 0 c
600 CPU YEARS
SPENT
) ( 7 2 1
AWS re:Invent 2017: AWS Batch: Easy and Efficient Batch Computing on AWS (CMP323) https://www.youtube.com/watch?v=8dApnlJLY54
비용 최적화 (Cost-optimized)
• 인프라 설정 및 관리 운영 부담 최소화
• 언제나 원하는 시간에 따라 다양한 작업 실행 가능
• 별도 SW 구매 없이도 다양한 배치 작업에 맞는 작업 구성 관리 가능
비지니스 현장에서 발생하는 다양한 요구 사항에 대해 민첩하게 대응 가능한 배치
작업 아키텍처 제공 가능
자원 최적화 (Resource-optimized)
• 예산이 한정되어 있는 경우
• 다중 업무에 따른 사내 작업 순위와 컴퓨팅 환경을 공유해야 하는 경우
• 기존 구매 자원 (Reserved Instance) 등의 활용을 못하고 있는 경우
RI
시간 최적화(Time-optimized)
• 작업에 데드라인이 있는 경우, 작업 전체 시간을 줄이고 싶을 때
• 다양한 컴퓨팅 인스턴스와 지불 방식을 조합하여 빠르게 끝낼 수 있음
• / P
( T o S - a no r
• A: . SL T w
/ A dr P s r fc
• A: / W f
He T h o S
• / / : / / fc W
b lt P u Ws g k
• m
.) / P p i
CC B :C D EB B DBC A
F G B R !
/ D
FMS P RC EF
• FFB H IA A F F
• FFB H IA A A F C
• : FFB H IA A F : FF : F DF
•
FFB A H IA A A D F F F G D:G H F F F
•
• B A AD F F B G F A - F :D F A
FFB : F G A H H F : A
• A BGF A: /A F D : AH FA F /+
FFB H IA A A: A BGF D F : BD A F
• B . D : A F
FFB H IA A A: A BGF B D : A H F
:
:
- / .! .

More Related Content

PDF
Aws glue를 통한 손쉬운 데이터 전처리 작업하기
PDF
20190522 AWS Black Belt Online Seminar AWS Step Functions
PDF
AWS Direct Connect 및 VPN을 이용한 클라우드 아키텍쳐 설계:: Steve Seymour :: AWS Summit Seou...
PDF
202202 AWS Black Belt Online Seminar AWS Managed Rules for AWS WAF の活用
PDF
AWS 기반 클라우드 아키텍처 모범사례 - 삼성전자 개발자 포털/개발자 워크스페이스 - 정영준 솔루션즈 아키텍트, AWS / 유현성 수석,...
PDF
효율적인 빅데이터 분석 및 처리를 위한 Glue, EMR 활용 - 김태현 솔루션즈 아키텍트, AWS :: AWS Summit Seoul 2019
PDF
AWS Fargate on EKS 실전 사용하기
PDF
20180425 AWS Black Belt Online Seminar Amazon Relational Database Service (Am...
Aws glue를 통한 손쉬운 데이터 전처리 작업하기
20190522 AWS Black Belt Online Seminar AWS Step Functions
AWS Direct Connect 및 VPN을 이용한 클라우드 아키텍쳐 설계:: Steve Seymour :: AWS Summit Seou...
202202 AWS Black Belt Online Seminar AWS Managed Rules for AWS WAF の活用
AWS 기반 클라우드 아키텍처 모범사례 - 삼성전자 개발자 포털/개발자 워크스페이스 - 정영준 솔루션즈 아키텍트, AWS / 유현성 수석,...
효율적인 빅데이터 분석 및 처리를 위한 Glue, EMR 활용 - 김태현 솔루션즈 아키텍트, AWS :: AWS Summit Seoul 2019
AWS Fargate on EKS 실전 사용하기
20180425 AWS Black Belt Online Seminar Amazon Relational Database Service (Am...

What's hot (20)

PDF
Amazon RDS Proxy 집중 탐구 - 윤석찬 :: AWS Unboxing 온라인 세미나
PDF
AWS初心者向けWebinar AWSからのEメール送信
PDF
20190730 AWS Black Belt Online Seminar Amazon CloudFrontの概要
PDF
20190911 AWS Black Belt Online Seminar AWS Batch
PDF
대용량 데이터베이스의 클라우드 네이티브 DB로 전환 시 확인해야 하는 체크 포인트-김지훈, AWS Database Specialist SA...
PDF
Container, Container, Container -유재석 (AWS 솔루션즈 아키텍트)
PDF
20200526 AWS Black Belt Online Seminar AWS X-Ray
PDF
20210126 AWS Black Belt Online Seminar AWS CodeDeploy
PDF
Black Belt Online Seminar Amazon CloudWatch
PDF
AWS 기반의 마이크로 서비스 아키텍쳐 구현 방안 :: 김필중 :: AWS Summit Seoul 20
PDF
AWS Elastic Beanstalk 활용하여 수 분만에 코드 배포하기 (최원근, AWS 솔루션즈 아키텍트) :: AWS DevDay2018
PDF
AWS Summit Seoul 2023 | AWS에서 최소한의 비용으로 구현하는 멀티리전 DR 자동화 구성
PDF
Amazon Aurora Deep Dive (김기완) - AWS DB Day
PDF
20191023 AWS Black Belt Online Seminar Amazon EMR
PDF
Amazon OpenSearch Deep dive - 내부구조, 성능최적화 그리고 스케일링
PDF
[AWS Builders] AWS와 함께하는 클라우드 컴퓨팅
PDF
20180322 AWS Black Belt Online Seminar AWS Snowball Edge
PDF
Amazon DocumentDB - Architecture 및 Best Practice (Level 200) - 발표자: 장동훈, Sr. ...
PDF
AWS Black Belt Online Seminar 2017 Amazon ElastiCache
PDF
AWS Black Belt Online Seminar AWS CloudFormation アップデート
Amazon RDS Proxy 집중 탐구 - 윤석찬 :: AWS Unboxing 온라인 세미나
AWS初心者向けWebinar AWSからのEメール送信
20190730 AWS Black Belt Online Seminar Amazon CloudFrontの概要
20190911 AWS Black Belt Online Seminar AWS Batch
대용량 데이터베이스의 클라우드 네이티브 DB로 전환 시 확인해야 하는 체크 포인트-김지훈, AWS Database Specialist SA...
Container, Container, Container -유재석 (AWS 솔루션즈 아키텍트)
20200526 AWS Black Belt Online Seminar AWS X-Ray
20210126 AWS Black Belt Online Seminar AWS CodeDeploy
Black Belt Online Seminar Amazon CloudWatch
AWS 기반의 마이크로 서비스 아키텍쳐 구현 방안 :: 김필중 :: AWS Summit Seoul 20
AWS Elastic Beanstalk 활용하여 수 분만에 코드 배포하기 (최원근, AWS 솔루션즈 아키텍트) :: AWS DevDay2018
AWS Summit Seoul 2023 | AWS에서 최소한의 비용으로 구현하는 멀티리전 DR 자동화 구성
Amazon Aurora Deep Dive (김기완) - AWS DB Day
20191023 AWS Black Belt Online Seminar Amazon EMR
Amazon OpenSearch Deep dive - 내부구조, 성능최적화 그리고 스케일링
[AWS Builders] AWS와 함께하는 클라우드 컴퓨팅
20180322 AWS Black Belt Online Seminar AWS Snowball Edge
Amazon DocumentDB - Architecture 및 Best Practice (Level 200) - 발표자: 장동훈, Sr. ...
AWS Black Belt Online Seminar 2017 Amazon ElastiCache
AWS Black Belt Online Seminar AWS CloudFormation アップデート
Ad

Similar to AWS Batch를 통한 손쉬운 일괄 처리 작업 관리하기 - 윤석찬 (AWS 테크에반젤리스트) (20)

ODP
AutoScaling and Drupal
PDF
EVOLVE'15 | Enhance | Norberto Leite | Effectively Scale and Operate AEM with...
PDF
클라우드 기반 데이터 분석 및 인공 지능을 위한 비지니스 혁신 - 윤석찬 (AWS 테크에반젤리스트)
PDF
DW on AWS
PPTX
AWS Batch: Simplifying batch computing in the cloud
PPTX
AWS SSA Webinar 30 - Getting Started with AWS - Infrastructure as Code - Terr...
PPT
Richard Cole of Amazon Gives Lightning Tallk at BigDataCamp
PDF
Applied Machine learning using H2O, python and R Workshop
PPTX
Azure Day Reloaded 2019 - ARM Template workshop
PPTX
Azure cosmosdb
PDF
Data Analytics Service Company and Its Ruby Usage
PDF
Saving Money by Optimizing Your Cloud Add-On Infrastructure
PDF
Buildingsocialanalyticstoolwithmongodb
PDF
Hotsos 2011: Mining the AWR repository for Capacity Planning, Visualization, ...
PPTX
Quick trip around the Cosmos - Things every astronaut supposed to know
PDF
AWS Serverless Workshop
PDF
Creating PostgreSQL-as-a-Service at Scale
PDF
Building a Sustainable Data Platform on AWS
PPTX
Analytics Metrics delivery and ML Feature visualization: Evolution of Data Pl...
PPTX
비동기 회고 발표자료
AutoScaling and Drupal
EVOLVE'15 | Enhance | Norberto Leite | Effectively Scale and Operate AEM with...
클라우드 기반 데이터 분석 및 인공 지능을 위한 비지니스 혁신 - 윤석찬 (AWS 테크에반젤리스트)
DW on AWS
AWS Batch: Simplifying batch computing in the cloud
AWS SSA Webinar 30 - Getting Started with AWS - Infrastructure as Code - Terr...
Richard Cole of Amazon Gives Lightning Tallk at BigDataCamp
Applied Machine learning using H2O, python and R Workshop
Azure Day Reloaded 2019 - ARM Template workshop
Azure cosmosdb
Data Analytics Service Company and Its Ruby Usage
Saving Money by Optimizing Your Cloud Add-On Infrastructure
Buildingsocialanalyticstoolwithmongodb
Hotsos 2011: Mining the AWR repository for Capacity Planning, Visualization, ...
Quick trip around the Cosmos - Things every astronaut supposed to know
AWS Serverless Workshop
Creating PostgreSQL-as-a-Service at Scale
Building a Sustainable Data Platform on AWS
Analytics Metrics delivery and ML Feature visualization: Evolution of Data Pl...
비동기 회고 발표자료
Ad

More from Amazon Web Services Korea (20)

PDF
[D3T1S01] Gen AI를 위한 Amazon Aurora 활용 사례 방법
PDF
[D3T1S06] Neptune Analytics with Vector Similarity Search
PDF
[D3T1S03] Amazon DynamoDB design puzzlers
PDF
[D3T1S04] Aurora PostgreSQL performance monitoring and troubleshooting by use...
PDF
[D3T1S07] AWS S3 - 클라우드 환경에서 데이터베이스 보호하기
PDF
[D3T1S05] Aurora 혼합 구성 아키텍처를 사용하여 예상치 못한 트래픽 급증 대응하기
PDF
[D3T1S02] Aurora Limitless Database Introduction
PDF
[D3T2S01] Amazon Aurora MySQL 메이저 버전 업그레이드 및 Amazon B/G Deployments 실습
PDF
[D3T2S03] Data&AI Roadshow 2024 - Amazon DocumentDB 실습
PDF
AWS Modern Infra with Storage Roadshow 2023 - Day 2
PDF
AWS Modern Infra with Storage Roadshow 2023 - Day 1
PDF
사례로 알아보는 Database Migration Service : 데이터베이스 및 데이터 이관, 통합, 분리, 분석의 도구 - 발표자: ...
PDF
Amazon Elasticache - Fully managed, Redis & Memcached Compatible Service (Lev...
PDF
Internal Architecture of Amazon Aurora (Level 400) - 발표자: 정달영, APAC RDS Speci...
PDF
[Keynote] 슬기로운 AWS 데이터베이스 선택하기 - 발표자: 강민석, Korea Database SA Manager, WWSO, A...
PDF
Demystify Streaming on AWS - 발표자: 이종혁, Sr Analytics Specialist, WWSO, AWS :::...
PDF
Amazon EMR - Enhancements on Cost/Performance, Serverless - 발표자: 김기영, Sr Anal...
PDF
Amazon OpenSearch - Use Cases, Security/Observability, Serverless and Enhance...
PDF
Enabling Agility with Data Governance - 발표자: 김성연, Analytics Specialist, WWSO,...
PDF
Amazon Redshift Deep Dive - Serverless, Streaming, ML, Auto Copy (New feature...
[D3T1S01] Gen AI를 위한 Amazon Aurora 활용 사례 방법
[D3T1S06] Neptune Analytics with Vector Similarity Search
[D3T1S03] Amazon DynamoDB design puzzlers
[D3T1S04] Aurora PostgreSQL performance monitoring and troubleshooting by use...
[D3T1S07] AWS S3 - 클라우드 환경에서 데이터베이스 보호하기
[D3T1S05] Aurora 혼합 구성 아키텍처를 사용하여 예상치 못한 트래픽 급증 대응하기
[D3T1S02] Aurora Limitless Database Introduction
[D3T2S01] Amazon Aurora MySQL 메이저 버전 업그레이드 및 Amazon B/G Deployments 실습
[D3T2S03] Data&AI Roadshow 2024 - Amazon DocumentDB 실습
AWS Modern Infra with Storage Roadshow 2023 - Day 2
AWS Modern Infra with Storage Roadshow 2023 - Day 1
사례로 알아보는 Database Migration Service : 데이터베이스 및 데이터 이관, 통합, 분리, 분석의 도구 - 발표자: ...
Amazon Elasticache - Fully managed, Redis & Memcached Compatible Service (Lev...
Internal Architecture of Amazon Aurora (Level 400) - 발표자: 정달영, APAC RDS Speci...
[Keynote] 슬기로운 AWS 데이터베이스 선택하기 - 발표자: 강민석, Korea Database SA Manager, WWSO, A...
Demystify Streaming on AWS - 발표자: 이종혁, Sr Analytics Specialist, WWSO, AWS :::...
Amazon EMR - Enhancements on Cost/Performance, Serverless - 발표자: 김기영, Sr Anal...
Amazon OpenSearch - Use Cases, Security/Observability, Serverless and Enhance...
Enabling Agility with Data Governance - 발표자: 김성연, Analytics Specialist, WWSO,...
Amazon Redshift Deep Dive - Serverless, Streaming, ML, Auto Copy (New feature...

Recently uploaded (20)

PDF
The Rise and Fall of 3GPP – Time for a Sabbatical?
PPTX
PA Analog/Digital System: The Backbone of Modern Surveillance and Communication
PDF
Approach and Philosophy of On baking technology
PDF
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
PDF
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
PDF
Shreyas Phanse Resume: Experienced Backend Engineer | Java • Spring Boot • Ka...
PDF
Modernizing your data center with Dell and AMD
PPTX
Big Data Technologies - Introduction.pptx
PDF
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
PPTX
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
PDF
Agricultural_Statistics_at_a_Glance_2022_0.pdf
PDF
KodekX | Application Modernization Development
PDF
Spectral efficient network and resource selection model in 5G networks
PPTX
MYSQL Presentation for SQL database connectivity
PPTX
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy
PDF
Empathic Computing: Creating Shared Understanding
PPT
“AI and Expert System Decision Support & Business Intelligence Systems”
PDF
Per capita expenditure prediction using model stacking based on satellite ima...
PDF
Reach Out and Touch Someone: Haptics and Empathic Computing
PDF
Network Security Unit 5.pdf for BCA BBA.
The Rise and Fall of 3GPP – Time for a Sabbatical?
PA Analog/Digital System: The Backbone of Modern Surveillance and Communication
Approach and Philosophy of On baking technology
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
Shreyas Phanse Resume: Experienced Backend Engineer | Java • Spring Boot • Ka...
Modernizing your data center with Dell and AMD
Big Data Technologies - Introduction.pptx
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
Agricultural_Statistics_at_a_Glance_2022_0.pdf
KodekX | Application Modernization Development
Spectral efficient network and resource selection model in 5G networks
MYSQL Presentation for SQL database connectivity
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy
Empathic Computing: Creating Shared Understanding
“AI and Expert System Decision Support & Business Intelligence Systems”
Per capita expenditure prediction using model stacking based on satellite ima...
Reach Out and Touch Someone: Haptics and Empathic Computing
Network Security Unit 5.pdf for BCA BBA.

AWS Batch를 통한 손쉬운 일괄 처리 작업 관리하기 - 윤석찬 (AWS 테크에반젤리스트)

  • 1. © 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved. 2018
  • 2. n and ff Predictable peaksWASTE O L S E L ( , ) , , T G
  • 3. 1. https://aws.amazon.com/ko/solutions/case-studies/novartis/ 2. https://aws.amazon.com/blogs/aws/experiment-that-discovered-the-higgs-boson-uses-aws-to-probe-nature/ 3. https://www.slideshare.net/AmazonWebServices/bdt311-megarun-behind-the-156000-core-hpc-run-on-aws-and-experience-of- ondemand-clusters-for-manufacturing-production-workloads-aws-reinvent-2014 1 ,, N8D 6 7E ED R C2 1 6 H E D R 7E R C2 1 0 5 3 9 D D 9 3 7 R C2
  • 4. • S3/EC2/Spot Fleet • Auto-Scaling • SNS/SQS/CloudWatch • S3/ECS • SQS/CloudWatch
  • 6. t 12 a eW v Dm A So E m 1 6357 , r C B A - 53 76 SnS 187: SnSI p eW C B 21 06 6: B B
  • 7. g P m , ( o h ) u d MW C A m s , / c il s il ( C l l a m S l t E e e C U v n L I E 2/ z ) L g P E
  • 8. 21 ) )Batch Queue (2) Batch Queue (1) Batch Queue (0) priority ( Container Property Compute Resources DependsOn Container Property Container Property ( ) ) ( ) ( ) ( ) …( Define the Batch Job Create Compute Environment(s) Create Job Queue Submit Job Job Scheduling Monitor Job and Outputs
  • 9. IAM Role for Batch Job Input Files Queue of Runnable Jobs S3 Events Trigger Lambda Function Submits Batch Job Compute Environments (ECS) Job Definition Batch Execution Application Image (ECR) Batch Scheduler Batch Job Input Batch Job Output Output Files
  • 11. ( • B 2 CEA A 2 B aws batch submit-job --cli-input-json file://submit_job.json ( ) SUBMITTED PENDING RUNNABLE STARTING RUNNING SUCCEEDED FAILED
  • 12. ()( ( ) • - C A , A aws batch register-job-definition --cli-input-json file://jdef.json
  • 13. ) ( ( • , aws batch create-job-queue --cli-input-json file://job_queue.json
  • 14. ) ( )( ( • . " " , O aws batch create-compute-environment --cli-input-json file://job_env.json
  • 15. , !
  • 18. 2
  • 19. 2
  • 21. $ aws batch create-compute-environment --compute-environment-name c4Spot50 --type MANAGED --state ENABLED --compute-resources type=SPOT,instanceTypes=c4,minvCpus=0,maxvCpus=10000,desiredvCpus=2500,bidpercentage=50,s ubnets=subnet-220c0e0a,subnet-1a95556d,subnet-978f6dce,instanceRole=ecsInstanceRole, securityGroupIds=secGrp01,secGrp02,secGrp03,spotIamFleetRole=arn:aws:iam::012345678910:ro le/aws-ec2-spot-fleet-role,serviceRole=arn:aws:iam::012345678910:role/AWSBatchServiceRole $ aws batch create-compute-environment --compute-environment-name C4-RI --type MANAGED -- state ENABLED --compute-resources type=EC2,instanceTypes=c4.2xlarge,minvCpus=0,maxvCpus=6000,desiredvCpus=1000,subnets=subn et-220c0e0a,instanceRole=ecsInstanceRole, securityGroupIds=secGrp01,spotIamFleetRole=arn:aws:iam::012345678910:role/aws-ec2-spot- fleet-role, serviceRole=arn:aws:iam::012345678910:role/AWSBatchServiceRole .2 12 1 12
  • 22. 2 .
  • 23. F A { ... "SubmitJob": { "Type": "Task", "Resource": ”arn…", "Next": "GetJobStatus" }, ... }
  • 26. 3 . • M • • 1 • M • C • Job A Job C Job B:0 Job B:1 Job B:n … $ aws batch submit-job --job-name BigBatch --job- queue ProdQueue --job-definition monte-carlo:8 -- array-properties “size=10000” ... { "jobName": ”BigBatch", "jobId": "350f4655- 5d61-40f0-aa0b-03ad787db329” } Job Name: BigBatch Job ID: 350f4655-5d61-40f0-aa0b-03ad787db329 Job Name: BigBatch Job ID: 350f4655-5d61-40f0-aa0b-03ad787db329:0 Job Name: BigBatch Job ID: 350f4655-5d61-40f0-aa0b-03ad787db329:1 Job Name: BigBatch Job ID: 350f4655-5d61-40f0-aa0b-03ad787db329:9999 …
  • 27. Job Depends on Array Job “Job-B” B:0 … B:1 B:99 “Job-A” $ aws batch submit-job –cli-input-json file://./Job-A.json <Job-A.json> { "jobName": ”Job-A", "jobQueue": "ProdQueue", "jobDefinition": ”job-s3-list-validate:1", } $ aws batch submit-job –cli-input-json file://./Job-B.json <Job-B.json> { "jobName": ”Job-B", "jobQueue": "ProdQueue", "jobDefinition": ”job-s3-CPU-intensive:1", ”containerOverride": { ”vcpus”: 32, “memory”: 4096 } ”arrayProperties": { “size”: 100 } "dependsOn": [ {"jobId": "<job ID for Job A>" } ] } )3 ( , J A S B
  • 28. Two Equally-Sized Array Jobs, a.k.a. “N-to-N” “Job-A” A:0 … A:1 A:2 A:3 A:9999 B:0 B:1 B:2 B:3 B:n “Job-B” “Job-A” “Job-C” C:0 … C:1 C:2 C:3 C:9999 D:0 D:1 D:2 D:3 D:9999 “Job-D” “Job-B” C is dependent on A and B D has an N_TO_N dependency on C
  • 30. • E n • 1 - E u n • / E , 2 ,-2 n 13 -1 St • Mm a n • G E • P , 2 u • P h l UI W oi W , U C • zu d • r p 2 : A - 5 n • c r p 5B : A 5 t F
  • 33. 9 2 E9CG9 89 , E B 9E 0- 9 8 4- Deletion E 6 96 .15E .15 G E 99 8 99 68 .15E .15 G E 99 8 99 9 9 9 8 9 8 9 8 9 9 9 9 .15E .15 G E .15E 0- -3 .15 G E 9 AWS re:Invent 2017: AWS Batch: Easy and Efficient Batch Computing on AWS (CMP323) https://www.youtube.com/watch?v=8dApnlJLY54
  • 34. API Server (ECS) SWF Workflow Job Manager (ECS) Generate Variants Solve Variants start Workflow poll for Decision submit Batch Job poll for Activity submit Batch Job poll for Activity task Completed task Completed § : § 2 ) A: : § ( 2 ) A: : B ) AWS re:Invent 2017: AWS Batch: Easy and Efficient Batch Computing on AWS (CMP323) https://www.youtube.com/watch?v=8dApnlJLY54
  • 35. Deploy an 8K HEVC pipeline using Amazon EC2 P3 instances with AWS Batch https://aws.amazon.com/ko/blogs/compute/deploy-an-8k-hevc-pipeline-using-amazon-ec2-p3- instances-with-aws-batch/
  • 36. 1.2 MILLION JOBS SUBMITTED 300K INSTANCES CHURNED 2 TEAMS USE IN PRODUCTION • 5 D • , 0 2 c • 6 0 c 600 CPU YEARS SPENT ) ( 7 2 1 AWS re:Invent 2017: AWS Batch: Easy and Efficient Batch Computing on AWS (CMP323) https://www.youtube.com/watch?v=8dApnlJLY54
  • 37. 비용 최적화 (Cost-optimized) • 인프라 설정 및 관리 운영 부담 최소화 • 언제나 원하는 시간에 따라 다양한 작업 실행 가능 • 별도 SW 구매 없이도 다양한 배치 작업에 맞는 작업 구성 관리 가능 비지니스 현장에서 발생하는 다양한 요구 사항에 대해 민첩하게 대응 가능한 배치 작업 아키텍처 제공 가능 자원 최적화 (Resource-optimized) • 예산이 한정되어 있는 경우 • 다중 업무에 따른 사내 작업 순위와 컴퓨팅 환경을 공유해야 하는 경우 • 기존 구매 자원 (Reserved Instance) 등의 활용을 못하고 있는 경우 RI 시간 최적화(Time-optimized) • 작업에 데드라인이 있는 경우, 작업 전체 시간을 줄이고 싶을 때 • 다양한 컴퓨팅 인스턴스와 지불 방식을 조합하여 빠르게 끝낼 수 있음
  • 38. • / P ( T o S - a no r • A: . SL T w / A dr P s r fc • A: / W f He T h o S • / / : / / fc W b lt P u Ws g k • m .) / P p i CC B :C D EB B DBC A F G B R ! / D FMS P RC EF
  • 39. • FFB H IA A F F • FFB H IA A A F C • : FFB H IA A F : FF : F DF • FFB A H IA A A D F F F G D:G H F F F • • B A AD F F B G F A - F :D F A FFB : F G A H H F : A • A BGF A: /A F D : AH FA F /+ FFB H IA A A: A BGF D F : BD A F • B . D : A F FFB H IA A A: A BGF B D : A H F