SlideShare a Scribd company logo
Backtracking:
Technique & Examples
By,
Fahim Ferdous
Back
Track
Yes Solution
No Solution
Backtracking
History
• ‘Backtrack’ the Word was first introduced by Dr. D.H.
Lehmer in 1950s.
• R.J Walker Was the First man who gave algorithmic
description in 1960.
• Later developed by S. Golamb and L. Baumert.
Backtracking
• What is Backtracking?
----- Backtracking is nothing but the modified process of the brute
force approach. where the technique systematically searches for a
solution to a problem among all available options. It does so by
assuming that the solutions are represented by vectors (v1, ..., in) of
values and by traversing through the domains of the vectors until
the solutions is found.
Backtracking
• The Algorithmic Approach
– Backtracking systematically try and search possibilities to find the
solution. Also it is an important process for solving constraint
satisfaction problem like crossword, Sudoku and many other puzzles. It
can be more continent technique for parsing other combinatorial
optimization problem.
– Basically the process is used when the problem has a number of option
and just one solution have to be selected. After having a new option set
means recursion, the procedure is repeated over and over until final
stage.
Backtracking
Algorithm Backtrack (v1,Vi)
If (V1,……., Vi) is a Solution Then
Return (V1,…, Vi)
For each v DO
If (V1,…….,Vi) is acceptable vector THEN
Sol = try (V1,…,Vi, V)
If sol != () Then
RETURN sol
End
End
Return ( )
Backtracking
• Advantages
– Comparison with the Dynamic Programming, Backtracking Approach is more effective in some cases.
– Backtracking Algorithm is the best option for solving tactical problem.
– Also Backtracking is effective for constraint satisfaction problem.
– In greedy Algorithm, getting the Global Optimal Solution is a long procedure and depends on user
statements but in Backtracking It Can Easily getable.
– Backtracking technique is simple to implement and easy to code.
– Different states are stored into stack so that the data or Info can be usable anytime.
– The accuracy is granted.
Backtracking
• Disadvantages
– Backtracking Approach is not efficient for solving strategic Problem.
– The overall runtime of Backtracking Algorithm is normally slow
– To solve Large Problem Sometime it needs to take the help of other
techniques like Branch and bound.
– Need Large amount of memory space for storing different state function
in the stack for big problem.
– Thrashing is one of the main problem of Backtracking.
– The Basic Approach Detects the conflicts too late.
Backtracking
• Application of Backtracking
• Optimization and tactical problems
• Constraints Satisfaction Problem
• Electrical Engineering
• Robotics
• Artificial Intelligence
• Genetic and bioinformatics Algorithm
• Materials Engineering
• Network Communication
• Solving puzzles and path
Backtracking
• Some Problem Solved with Backtracking Technique
– N- Queens Problem
– Sum of Subset
– Sudoku Puzzle
– Maze Generation
– Hamiltonian Cycle
N-Queens Problem
• History:
First Introduced in 1848 which was known as 8- queens Puzzle. Surprisingly,
The First Solution was created in 1950 by Franz Nauck. Nauck made an 8X8
Chessboard to find the first Feasible Solution.
N-Queens Problem
• Problem Description
In a NxN square board N – number of queens need to be
placed considering three Condition ---
• No two Queens can be placed in same row.
• No two Queens Can be places in same Column
• No two queens Can be placed in same Diagonal.
N-Queens Problem
• Backtracking approach for solution
- - The Algorithm will check each position [i , j] for each queens . If any Suitable places found , It will
place a queen on that position. If not Algorithm will try same approach for next position.
Algorithm Nqueen(K,n){
For i= 1 to n {
If Place(K,i){
X[k] = I;
If(k = n) then
Write x[1:n];
Else
Nqueen(k+1, n) ;
}
}
}
Place(k,i){
For j=1 to k-1{
If((x[j] = i) or abs(x[j] – 1 = abs(j-k)))
Return false;
}
Return true;
}
N-Queens Problem
Maze Generation
Problem Description
A N X N board is made in a way So that 1 or 0 can be placed in
each box where 1 is for valid path for moving towards exit and 0 is
the Closed path. Now, by using Backtracking Algorithm The path to
the exit need to be find.
Maze Generation
• -- Algorithm will try to follow the box which has the value 1 and
generate a path. Again, it will check for 1 at the next box. If not
found it will go through next box. If entire row is complete, then it will
move to the next row and look for 1.
Maze Generation
• Solution Using Backtracking Technique
Algorithm Maze_Gen(graph){
If(Maze_operator(graph, x,y, canvas)
== false)
Write (“No result”);
Return false;
Print_Result(canvas);
Return true;
}
Algorithm Maze_operator(graph, x,y, canvas){
If(x ==N-1 && y == N-1){
Canvas[x][y] = 1;
Return true;
}
If(IsSafe(graph, x,y) == true){
Canvas[x][y] = 1;
If(Maze_operator(graph, x+1,y, canvas))
Return true;
If(Maze_operator(graph, x,y+1, canvas))
Return true;
Canvas [x][y] = 0;
Return true;
}
Return false;
}
Maze Generation
Hamiltonian Cycle
Hamiltonian Cycle is a graph theory problem where the graph cycle
through a graph can visit each node only once. The puzzle was first
devised by Sir William Rowan Hamilton and the Problem is named after
Him.
Condition: The Cycle Started with a Starting Node, and visit all the Nodes in the Graph
(Not necessary to visit in sequential Order and not creating edge that is not given) And
Stop at The Starting Point/Node.
Hamiltonian Cycle
• The Backtracking Approach
The Algorithm First Check the Starting Node, if there is any edge to the next node. If
yes, then the Algorithm will check that node for the edge to the next Node. It will Also
Check If any Node is visited twice by the previous Node. If there is any then the
Algorithm Will Ignore One and Choose the Optimal One for the Solution.
 The Important thing is the tour must finish at the starting point.
Hamiltonian Cycle
Algorithm Hamilton_Cycle(k){
Repeat{
NextVal(k);
If(x[k]==0) then
Return;
If (k ==n) then
Write (x[1:n]);
Else
Hamilton_Cycle(k+1);
}
Until (false);
}
AlgortihmNextVal(k){
Repeat{
X[k] = (x[k]+1) mod (n+1);
If(x[k]=0) then return;
If (G[x[k-1],x[k]] != 0 ) then{
For j = 1 to k-1 do
If(x[j]=x[k]) then
Break;
If(j = k) then
If ((k<n or k=n) && G[x[n],x[1]] != 0)
Then return;
}
}
Until (false);
}
Hamiltonian Cycle
Sudoku Puzzle
• The Word ‘Sudoku’ is a Japanese Word. But The Sudoku Puzzle Was First
Invented in Switzerland
• In a N X N Square Board, The Numbers 1 to N to be Placed in a way that:
– All the Number from 1 to N can be Placed in each row.
– All the Number from 1 to N can be Placed in each Column.
– All The Number from 1 to N Can be Placed in Sub Square boxes of the given box.
Sudoku Puzzle
• Backtracking Approach
The Algorithm Will Check Each Box’s value if the value is in the same
row, or same column or same sub-square box. If not,then it placed the value
in the box. And go to the next box for the next value, and check the Above
Condition. If there is any duplicate value, then The Algorithm check for the
next value.
Sudoku Puzzle
Algorithm Sudoku_Solver(canvas, row,
col){
If(anyEmptyLocation(canvas, row, col))
Return true;
For I = 1 to n do, {
If (find_location(canvas, row,col, i))
{
Canvas[row][col] = i;
If (Sudoku_Solver(canvas))
Return true;
Canvas [row][col] = -1;
}
}
Return false;
}
Sum of Subset
• The Sum of Subset Problem is, there will be a set of distinct positive
Numbers X and a given Number N. Now, we have to find all the
combination of numbers from X that sum up to N. Make a Set of
those Number.
W = {4,5,6,3}
M = 13
Sum of Subset
Sum of Subset
• Backtracking Approach
First, organize the numbers in non decreasing order. Then generating a tree, we
can find the solution by adding the weight of the nodes. Note that, here more than
necessary nodes can be generated. The algorithm will search for the weighted amount
of the nodes. If it goes beyond given Number N, then it stops generating nodes and
move to other parent nodes for finding solution.
Algorithm SumOfSubset(s,k,y){
X[k] = 1;
If(s+w[k] = m)
Write (x[1:n]);
Else if((s+w[k] + w[k+1]) <= m)
SumOfSubset(s+w[k], k+1, y-w[k]);
If ((s+ y-w[k]>=m) &&(s =w[k+1] <=m)) {
X[k] =0;
SumOfSubset(s,k+1,y-w[k]);
}
}
Sum of Subset
Here M = 53
W = {8,9,14,15,16,22}
References
• Chapter 6, Backtracking, Design and Analysis of Algorithms – V.V. Muniswami
• Chapter – 4, Non- Chronological Backtracking, Handbook on Constraint Programming – F.
Rossi, Van Beek
• web.cse.ohio-state.edu/~gurari/course/cis680/cis680Ch19.html
• www.classle.net/faq/comparisons-divide-and-conquergreedy-methoddynamic-
programmingbacktracking-and-branch-and-bound-
• Backtracking algorithms for constraint satisfaction problems; a survey
R. Dechter, D. Frost, in Constraints, International Journal, 1998.
• Bessiere C., Maestre A., Meseguer P., Distributed dynamic backtracking, in M.C. Silaghi, editor,
Proceedings of the IJCAI’01 workshop on Distributed Constraint Reasoning, Seattle WA,
2001, pp. 9–16.
• A First Look at Graph Theory – Jhon Clark, Allan Holton
• Principles and Practice of Constraint Programming- CP 2001: 7th International Conference,
CP 2001, Paphos, Cyprus, November 26 - December 1, 2001
Thank you!!

More Related Content

PPT
Backtracking Algorithm.ppt
PPTX
Backtracking
PPTX
The n Queen Problem
PPTX
N queen problem
PPT
Backtracking
PPTX
Greedy Algorithm - Knapsack Problem
PDF
N Queens problem
PPTX
Greedy algorithms
Backtracking Algorithm.ppt
Backtracking
The n Queen Problem
N queen problem
Backtracking
Greedy Algorithm - Knapsack Problem
N Queens problem
Greedy algorithms

What's hot (20)

PPTX
Sum of subset problem.pptx
PDF
A* Search Algorithm
PPTX
daa-unit-3-greedy method
PPT
Graph coloring problem
PPTX
Concurrency Control in Distributed Database.
PPTX
0 1 knapsack using branch and bound
PDF
I.BEST FIRST SEARCH IN AI
PPTX
Constraint satisfaction problems (csp)
PPTX
Graph coloring using backtracking
PPTX
Asymptotic Notation
PDF
Vc dimension in Machine Learning
PPTX
Resolution method in AI.pptx
PPTX
Knowledge representation In Artificial Intelligence
PPT
Flow & Error Control
PPTX
Problem solving agents
PPTX
Brute force method
PPTX
Predicate logic
PPT
Np cooks theorem
PPTX
sum of subset problem using Backtracking
PPTX
N queens using backtracking
Sum of subset problem.pptx
A* Search Algorithm
daa-unit-3-greedy method
Graph coloring problem
Concurrency Control in Distributed Database.
0 1 knapsack using branch and bound
I.BEST FIRST SEARCH IN AI
Constraint satisfaction problems (csp)
Graph coloring using backtracking
Asymptotic Notation
Vc dimension in Machine Learning
Resolution method in AI.pptx
Knowledge representation In Artificial Intelligence
Flow & Error Control
Problem solving agents
Brute force method
Predicate logic
Np cooks theorem
sum of subset problem using Backtracking
N queens using backtracking
Ad

Similar to BackTracking Algorithm: Technique and Examples (20)

PPTX
Design Algorithms - - Backtracking.pptx
PPTX
it is a ppt discussing important topic of daa such as branch and bound.pptx
PPTX
proficiency presenattion on topic of backtracking algo
DOC
Unit 4 jwfiles
PPTX
Backtracking-N Queens Problem-Graph Coloring-Hamiltonian cycle
PDF
unit 4 of Unit 4 of design and analysis of algorithms
PDF
module5_backtrackingnbranchnbound_2022.pdf
PPTX
Back tracking and branch and bound class 20
PPTX
Branch and bound
PPTX
backtracking 8 Queen.pptx
DOC
algorithm Unit 4
PPTX
8queensproblemusingbacktracking-120903114053-phpapp01.pptx
PPTX
Backtracking Basics.pptx
PPTX
Backtrack-search-algorithm (2).pptx
PPTX
Backtracking in Data Structure and Algorithm
PDF
DAA UNIT-4 (1).pdf
PPTX
Comparitive Analysis of Algorithm strategies
PPT
Algorithm designs and its technique.ppt
PPT
ADT(Algorithm Design Technique Backtracking algorithm).ppt
PPTX
Backtraking pic&amp;def
Design Algorithms - - Backtracking.pptx
it is a ppt discussing important topic of daa such as branch and bound.pptx
proficiency presenattion on topic of backtracking algo
Unit 4 jwfiles
Backtracking-N Queens Problem-Graph Coloring-Hamiltonian cycle
unit 4 of Unit 4 of design and analysis of algorithms
module5_backtrackingnbranchnbound_2022.pdf
Back tracking and branch and bound class 20
Branch and bound
backtracking 8 Queen.pptx
algorithm Unit 4
8queensproblemusingbacktracking-120903114053-phpapp01.pptx
Backtracking Basics.pptx
Backtrack-search-algorithm (2).pptx
Backtracking in Data Structure and Algorithm
DAA UNIT-4 (1).pdf
Comparitive Analysis of Algorithm strategies
Algorithm designs and its technique.ppt
ADT(Algorithm Design Technique Backtracking algorithm).ppt
Backtraking pic&amp;def
Ad

Recently uploaded (20)

PPTX
Introduction to Basics of Ethical Hacking and Penetration Testing -Unit No. 1...
PPTX
05. PRACTICAL GUIDE TO MICROSOFT EXCEL.pptx
PPTX
Introduction-to-Cloud-ComputingFinal.pptx
PPTX
iec ppt-1 pptx icmr ppt on rehabilitation.pptx
PDF
22.Patil - Early prediction of Alzheimer’s disease using convolutional neural...
PDF
Recruitment and Placement PPT.pdfbjfibjdfbjfobj
PDF
Mega Projects Data Mega Projects Data
PPTX
CEE 2 REPORT G7.pptxbdbshjdgsgjgsjfiuhsd
PPTX
1_Introduction to advance data techniques.pptx
PPTX
climate analysis of Dhaka ,Banglades.pptx
PPT
Chapter 3 METAL JOINING.pptnnnnnnnnnnnnn
PPTX
MODULE 8 - DISASTER risk PREPAREDNESS.pptx
PDF
Launch Your Data Science Career in Kochi – 2025
PPT
Chapter 2 METAL FORMINGhhhhhhhjjjjmmmmmmmmm
PPTX
Introduction to Knowledge Engineering Part 1
PDF
Fluorescence-microscope_Botany_detailed content
PPTX
Database Infoormation System (DBIS).pptx
PDF
Galatica Smart Energy Infrastructure Startup Pitch Deck
PPTX
Supervised vs unsupervised machine learning algorithms
Introduction to Basics of Ethical Hacking and Penetration Testing -Unit No. 1...
05. PRACTICAL GUIDE TO MICROSOFT EXCEL.pptx
Introduction-to-Cloud-ComputingFinal.pptx
iec ppt-1 pptx icmr ppt on rehabilitation.pptx
22.Patil - Early prediction of Alzheimer’s disease using convolutional neural...
Recruitment and Placement PPT.pdfbjfibjdfbjfobj
Mega Projects Data Mega Projects Data
CEE 2 REPORT G7.pptxbdbshjdgsgjgsjfiuhsd
1_Introduction to advance data techniques.pptx
climate analysis of Dhaka ,Banglades.pptx
Chapter 3 METAL JOINING.pptnnnnnnnnnnnnn
MODULE 8 - DISASTER risk PREPAREDNESS.pptx
Launch Your Data Science Career in Kochi – 2025
Chapter 2 METAL FORMINGhhhhhhhjjjjmmmmmmmmm
Introduction to Knowledge Engineering Part 1
Fluorescence-microscope_Botany_detailed content
Database Infoormation System (DBIS).pptx
Galatica Smart Energy Infrastructure Startup Pitch Deck
Supervised vs unsupervised machine learning algorithms

BackTracking Algorithm: Technique and Examples

  • 1. Backtracking: Technique & Examples By, Fahim Ferdous Back Track Yes Solution No Solution
  • 2. Backtracking History • ‘Backtrack’ the Word was first introduced by Dr. D.H. Lehmer in 1950s. • R.J Walker Was the First man who gave algorithmic description in 1960. • Later developed by S. Golamb and L. Baumert.
  • 3. Backtracking • What is Backtracking? ----- Backtracking is nothing but the modified process of the brute force approach. where the technique systematically searches for a solution to a problem among all available options. It does so by assuming that the solutions are represented by vectors (v1, ..., in) of values and by traversing through the domains of the vectors until the solutions is found.
  • 4. Backtracking • The Algorithmic Approach – Backtracking systematically try and search possibilities to find the solution. Also it is an important process for solving constraint satisfaction problem like crossword, Sudoku and many other puzzles. It can be more continent technique for parsing other combinatorial optimization problem. – Basically the process is used when the problem has a number of option and just one solution have to be selected. After having a new option set means recursion, the procedure is repeated over and over until final stage.
  • 5. Backtracking Algorithm Backtrack (v1,Vi) If (V1,……., Vi) is a Solution Then Return (V1,…, Vi) For each v DO If (V1,…….,Vi) is acceptable vector THEN Sol = try (V1,…,Vi, V) If sol != () Then RETURN sol End End Return ( )
  • 6. Backtracking • Advantages – Comparison with the Dynamic Programming, Backtracking Approach is more effective in some cases. – Backtracking Algorithm is the best option for solving tactical problem. – Also Backtracking is effective for constraint satisfaction problem. – In greedy Algorithm, getting the Global Optimal Solution is a long procedure and depends on user statements but in Backtracking It Can Easily getable. – Backtracking technique is simple to implement and easy to code. – Different states are stored into stack so that the data or Info can be usable anytime. – The accuracy is granted.
  • 7. Backtracking • Disadvantages – Backtracking Approach is not efficient for solving strategic Problem. – The overall runtime of Backtracking Algorithm is normally slow – To solve Large Problem Sometime it needs to take the help of other techniques like Branch and bound. – Need Large amount of memory space for storing different state function in the stack for big problem. – Thrashing is one of the main problem of Backtracking. – The Basic Approach Detects the conflicts too late.
  • 8. Backtracking • Application of Backtracking • Optimization and tactical problems • Constraints Satisfaction Problem • Electrical Engineering • Robotics • Artificial Intelligence • Genetic and bioinformatics Algorithm • Materials Engineering • Network Communication • Solving puzzles and path
  • 9. Backtracking • Some Problem Solved with Backtracking Technique – N- Queens Problem – Sum of Subset – Sudoku Puzzle – Maze Generation – Hamiltonian Cycle
  • 10. N-Queens Problem • History: First Introduced in 1848 which was known as 8- queens Puzzle. Surprisingly, The First Solution was created in 1950 by Franz Nauck. Nauck made an 8X8 Chessboard to find the first Feasible Solution.
  • 11. N-Queens Problem • Problem Description In a NxN square board N – number of queens need to be placed considering three Condition --- • No two Queens can be placed in same row. • No two Queens Can be places in same Column • No two queens Can be placed in same Diagonal.
  • 12. N-Queens Problem • Backtracking approach for solution - - The Algorithm will check each position [i , j] for each queens . If any Suitable places found , It will place a queen on that position. If not Algorithm will try same approach for next position. Algorithm Nqueen(K,n){ For i= 1 to n { If Place(K,i){ X[k] = I; If(k = n) then Write x[1:n]; Else Nqueen(k+1, n) ; } } } Place(k,i){ For j=1 to k-1{ If((x[j] = i) or abs(x[j] – 1 = abs(j-k))) Return false; } Return true; }
  • 14. Maze Generation Problem Description A N X N board is made in a way So that 1 or 0 can be placed in each box where 1 is for valid path for moving towards exit and 0 is the Closed path. Now, by using Backtracking Algorithm The path to the exit need to be find.
  • 15. Maze Generation • -- Algorithm will try to follow the box which has the value 1 and generate a path. Again, it will check for 1 at the next box. If not found it will go through next box. If entire row is complete, then it will move to the next row and look for 1.
  • 16. Maze Generation • Solution Using Backtracking Technique Algorithm Maze_Gen(graph){ If(Maze_operator(graph, x,y, canvas) == false) Write (“No result”); Return false; Print_Result(canvas); Return true; } Algorithm Maze_operator(graph, x,y, canvas){ If(x ==N-1 && y == N-1){ Canvas[x][y] = 1; Return true; } If(IsSafe(graph, x,y) == true){ Canvas[x][y] = 1; If(Maze_operator(graph, x+1,y, canvas)) Return true; If(Maze_operator(graph, x,y+1, canvas)) Return true; Canvas [x][y] = 0; Return true; } Return false; }
  • 18. Hamiltonian Cycle Hamiltonian Cycle is a graph theory problem where the graph cycle through a graph can visit each node only once. The puzzle was first devised by Sir William Rowan Hamilton and the Problem is named after Him. Condition: The Cycle Started with a Starting Node, and visit all the Nodes in the Graph (Not necessary to visit in sequential Order and not creating edge that is not given) And Stop at The Starting Point/Node.
  • 19. Hamiltonian Cycle • The Backtracking Approach The Algorithm First Check the Starting Node, if there is any edge to the next node. If yes, then the Algorithm will check that node for the edge to the next Node. It will Also Check If any Node is visited twice by the previous Node. If there is any then the Algorithm Will Ignore One and Choose the Optimal One for the Solution.  The Important thing is the tour must finish at the starting point.
  • 20. Hamiltonian Cycle Algorithm Hamilton_Cycle(k){ Repeat{ NextVal(k); If(x[k]==0) then Return; If (k ==n) then Write (x[1:n]); Else Hamilton_Cycle(k+1); } Until (false); } AlgortihmNextVal(k){ Repeat{ X[k] = (x[k]+1) mod (n+1); If(x[k]=0) then return; If (G[x[k-1],x[k]] != 0 ) then{ For j = 1 to k-1 do If(x[j]=x[k]) then Break; If(j = k) then If ((k<n or k=n) && G[x[n],x[1]] != 0) Then return; } } Until (false); }
  • 22. Sudoku Puzzle • The Word ‘Sudoku’ is a Japanese Word. But The Sudoku Puzzle Was First Invented in Switzerland • In a N X N Square Board, The Numbers 1 to N to be Placed in a way that: – All the Number from 1 to N can be Placed in each row. – All the Number from 1 to N can be Placed in each Column. – All The Number from 1 to N Can be Placed in Sub Square boxes of the given box.
  • 23. Sudoku Puzzle • Backtracking Approach The Algorithm Will Check Each Box’s value if the value is in the same row, or same column or same sub-square box. If not,then it placed the value in the box. And go to the next box for the next value, and check the Above Condition. If there is any duplicate value, then The Algorithm check for the next value.
  • 24. Sudoku Puzzle Algorithm Sudoku_Solver(canvas, row, col){ If(anyEmptyLocation(canvas, row, col)) Return true; For I = 1 to n do, { If (find_location(canvas, row,col, i)) { Canvas[row][col] = i; If (Sudoku_Solver(canvas)) Return true; Canvas [row][col] = -1; } } Return false; }
  • 25. Sum of Subset • The Sum of Subset Problem is, there will be a set of distinct positive Numbers X and a given Number N. Now, we have to find all the combination of numbers from X that sum up to N. Make a Set of those Number. W = {4,5,6,3} M = 13
  • 27. Sum of Subset • Backtracking Approach First, organize the numbers in non decreasing order. Then generating a tree, we can find the solution by adding the weight of the nodes. Note that, here more than necessary nodes can be generated. The algorithm will search for the weighted amount of the nodes. If it goes beyond given Number N, then it stops generating nodes and move to other parent nodes for finding solution. Algorithm SumOfSubset(s,k,y){ X[k] = 1; If(s+w[k] = m) Write (x[1:n]); Else if((s+w[k] + w[k+1]) <= m) SumOfSubset(s+w[k], k+1, y-w[k]); If ((s+ y-w[k]>=m) &&(s =w[k+1] <=m)) { X[k] =0; SumOfSubset(s,k+1,y-w[k]); } }
  • 28. Sum of Subset Here M = 53 W = {8,9,14,15,16,22}
  • 29. References • Chapter 6, Backtracking, Design and Analysis of Algorithms – V.V. Muniswami • Chapter – 4, Non- Chronological Backtracking, Handbook on Constraint Programming – F. Rossi, Van Beek • web.cse.ohio-state.edu/~gurari/course/cis680/cis680Ch19.html • www.classle.net/faq/comparisons-divide-and-conquergreedy-methoddynamic- programmingbacktracking-and-branch-and-bound- • Backtracking algorithms for constraint satisfaction problems; a survey R. Dechter, D. Frost, in Constraints, International Journal, 1998. • Bessiere C., Maestre A., Meseguer P., Distributed dynamic backtracking, in M.C. Silaghi, editor, Proceedings of the IJCAI’01 workshop on Distributed Constraint Reasoning, Seattle WA, 2001, pp. 9–16. • A First Look at Graph Theory – Jhon Clark, Allan Holton • Principles and Practice of Constraint Programming- CP 2001: 7th International Conference, CP 2001, Paphos, Cyprus, November 26 - December 1, 2001