SlideShare a Scribd company logo
Covariance Matrix Adaptation Evolution Strategy
Support Vector Machines
Self-Adaptive Surrogate-Assisted CMA-ES
New Surrogate-Assisted Search Control and
Restart Strategies for CMA-ES
Ilya Loshchilov, Marc Schoenauer, Michèle Sebag
TAO
INRIA − CNRS − Univ. Paris-Sud
Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 1/ 45
Covariance Matrix Adaptation Evolution Strategy
Support Vector Machines
Self-Adaptive Surrogate-Assisted CMA-ES
This Talk
Part-I: Self-Adaptive Surrogate-Assisted CMA-ES
Full paper: ES-EP track, 11.30 a.m., Tuesday, July 10
BBOB papers: IPOP-saACM-ES and BIPOP-saACM-ES on the
i). Noiseless and ii). Noisy Testbeds
Part-II: Alternative Restart Strategies for CMA-ES
Full paper: PPSN 2012
BBOB paper: NIPOP-aCMA-ES and NBIPOP-aCMA-ES on the
Noiseless Testbed
Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 2/ 45
Covariance Matrix Adaptation Evolution Strategy
Support Vector Machines
Self-Adaptive Surrogate-Assisted CMA-ES
Part-I
Part-I: Self-Adaptive Surrogate-Assisted CMA-ES
Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 3/ 45
Covariance Matrix Adaptation Evolution Strategy
Support Vector Machines
Self-Adaptive Surrogate-Assisted CMA-ES
Motivations
Find Argmin {F : X → R}
Context: ill-posed optimization problems continuous
Function F (fitness function) on X ⊂ Rd
Gradient not available or not useful
F available as an oracle (black box)
Build {x1, x2, . . .} → Argmin(F)
Black-Box approaches
+ Robust
− High computational costs:
number of expensive function
evaluations (e.g. CFD)
Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 4/ 45
Covariance Matrix Adaptation Evolution Strategy
Support Vector Machines
Self-Adaptive Surrogate-Assisted CMA-ES
Surrogate-Assisted Optimization
Principle
Gather E = {(xi, F(xi))} training set
Build ˆF from E learn surrogate model
Use surrogate model ˆF for some time:
Optimization: use ˆF instead of true F in std algo
Filtering: select promising xi based on ˆF in population-based algo.
Compute F(xi) for some xi
Update ˆF
Iterate
Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 5/ 45
Covariance Matrix Adaptation Evolution Strategy
Support Vector Machines
Self-Adaptive Surrogate-Assisted CMA-ES
Content
1 Covariance Matrix Adaptation Evolution Strategy
2 Support Vector Machines
Support Vector Machine (SVM)
Rank-based SVM
3 Self-Adaptive Surrogate-Assisted CMA-ES
Algorithm
Results
Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 6/ 45
Covariance Matrix Adaptation Evolution Strategy
Support Vector Machines
Self-Adaptive Surrogate-Assisted CMA-ES
(µ, λ)-Covariance Matrix Adaptation Evolution Strategy
Rank-µ Update
yi ∼ N (0, C) , C = I
xi = m + σ yi, σ = 1
sampling of λ
solutions
Cµ = 1
µ yi:λyT
i:λ
C ← (1 − 1) × C + 1 × Cµ
calculating C from
best µ out of λ
mnew ← m + 1
µ yi:λ
new distribution
Ruling principles:
i). the adaptation increases the probability of successful steps to appear again;
ii). C ≈ H−1
Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 7/ 45
Covariance Matrix Adaptation Evolution Strategy
Support Vector Machines
Self-Adaptive Surrogate-Assisted CMA-ES
Invariance: Guarantee for Generalization
Invariance properties of CMA-ES
Invariance to order preserving
transformations in function space
true for all comparison-based algorithms
Translation and rotation invariance
thanks to C
−3 −2 −1 0 1 2 3
−3
−2
−1
0
1
2
3
−3 −2 −1 0 1 2 3
−3
−2
−1
0
1
2
3
CMA-ES is almost parameterless
Tuning on a small set of functions Hansen & Ostermeier 2001
Default values generalize to whole classes
Exception: population size for multi-modal functions
see the second part of this talk
Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 8/ 45
Covariance Matrix Adaptation Evolution Strategy
Support Vector Machines
Self-Adaptive Surrogate-Assisted CMA-ES
Support Vector Machine (SVM)
Rank-based SVM
Contents
1 Covariance Matrix Adaptation Evolution Strategy
2 Support Vector Machines
Support Vector Machine (SVM)
Rank-based SVM
3 Self-Adaptive Surrogate-Assisted CMA-ES
Algorithm
Results
Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 9/ 45
Covariance Matrix Adaptation Evolution Strategy
Support Vector Machines
Self-Adaptive Surrogate-Assisted CMA-ES
Support Vector Machine (SVM)
Rank-based SVM
Support Vector Machine for Classification
Linear Classifier
L1
2
3
L
L
b
w
w
w2/|| ||
-1
b
b
+1
0
b
xi
support
vector
Main Idea
Training Data:
D = (xi, yi)|xi ∈ IRd
, yi ∈ {−1, +1}
n
i=1
w, xi − b ≥ +1 ⇒ yi = +1;
w, xi − b ≤ −1 ⇒ yi = −1;
Optimization Problem: Primal Form
Minimize{w, ξ}
1
2 ||w||2
+ C
n
i=1 ξi
subject to: yi( w, xi − b) ≥ 1 − ξi, ξi ≥ 0
Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 10/ 45
Covariance Matrix Adaptation Evolution Strategy
Support Vector Machines
Self-Adaptive Surrogate-Assisted CMA-ES
Support Vector Machine (SVM)
Rank-based SVM
Support Vector Machine for Classification
Linear Classifier
L1
2
3
L
L
b
w
w
w2/|| ||
-1
b
b
+1
0
b
xi
support
vector
Optimization Problem: Dual Form
Quadratic in Lagrangian multipliers:
Maximize{α}
n
i αi − 1
2
n
i,j=1 αiαjyiyj xi, xj
subject to: 0 ≤ αi ≤ C,
n
i αiyi = 0
Properties
Decision Function:
ˆF(x) = sign(
n
i αiyi xi, x − b)
The Dual form may be solved using standard
quadratic programming solver.
Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 11/ 45
Covariance Matrix Adaptation Evolution Strategy
Support Vector Machines
Self-Adaptive Surrogate-Assisted CMA-ES
Support Vector Machine (SVM)
Rank-based SVM
Support Vector Machine for Classification
Non-Linear Classifier
ww, (x)F -b =+1
w, (x)F -b = -1
w2/|| ||
a) b) c)
support vector
xi
F
Non-linear classification with the "Kernel trick"
Maximize{α}
n
i αi − 1
2
n
i,j=1 αiαjyiyjK(xi, xj)
subject to: 0 ≤ αi ≤ C,
n
i αiyi = 0,
where K(x, x′
) =def < Φ(x), Φ(x′
) > is the Kernel function a
Decision Function: ˆF(x) = sign(
n
i αiyiK(xi, x) − b)
aΦ must be chosen such that K is positive semi-definite
Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 12/ 45
Covariance Matrix Adaptation Evolution Strategy
Support Vector Machines
Self-Adaptive Surrogate-Assisted CMA-ES
Support Vector Machine (SVM)
Rank-based SVM
Support Vector Machine for Classification
Non-Linear Classifier: Kernels
Gaussian or Radial Basis Function (RBF): K(xi, xj) = exp(
xi−xj
2
2σ2 )
Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 13/ 45
Covariance Matrix Adaptation Evolution Strategy
Support Vector Machines
Self-Adaptive Surrogate-Assisted CMA-ES
Support Vector Machine (SVM)
Rank-based SVM
Regression To Value or Regression To Rank?
Why Comparison-Based Surrogates?
Example
F(x) = x2
1 + (x1 + x2)2
.
An efficient Evolutionary Algorithm (EA) with
surrogate models may be 4.3 faster on F(x).
But the same EA is only 2.4 faster on G(x) = F(x)1/4
! a
aCMA-ES with quadratic meta-model (lmm-CMA-ES) on fSchwefel 2-D
Comparison-based surrogate models → invariance to
rank-preserving transformations of F(x)!
Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 14/ 45
Covariance Matrix Adaptation Evolution Strategy
Support Vector Machines
Self-Adaptive Surrogate-Assisted CMA-ES
Support Vector Machine (SVM)
Rank-based SVM
Rank-based Support Vector Machine
Find ˆF(x) which preserves the ordering of training/test points
On training set E = {xi, i = 1 . . . n}
expert gives preferences:
(xik
≻ xjk
), k = 1 . . . K
underconstrained regression
w
L( 1r )
L( 2r )
xx
x
Order constraints Primal form
Minimize 1
2 ||w||2
+ C
K
k=1 ξk
subject to ∀ k, w, xik
− w, xjk
≥ 1 − ξk
Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 15/ 45
Covariance Matrix Adaptation Evolution Strategy
Support Vector Machines
Self-Adaptive Surrogate-Assisted CMA-ES
Support Vector Machine (SVM)
Rank-based SVM
Surrogate Models for CMA-ES
Using Rank-SVM
Builds a global model using Rank-SVM
xi ≻ xj iff F(xi) < F(xj)
Kernel and parameters highly problem-dependent
ACM Algorithm
Use C from CMA-ES as Gaussian kernel
I. Loshchilov, M. Schoenauer, M. Sebag (2010). "Comparison-based optimizers need
comparison-based surrogates”
Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 16/ 45
Covariance Matrix Adaptation Evolution Strategy
Support Vector Machines
Self-Adaptive Surrogate-Assisted CMA-ES
Support Vector Machine (SVM)
Rank-based SVM
Model Learning
Non-Separable Ellipsoid Problem
K(xi, xj) = e−
(xi−xj )T (xi−xj)
2σ2
; KC(xi, xj) = e−
(xi−xj )T C−1(xi−xj )
2σ2
Invariance to rotation of the search space thanks to C ≈ H−1
!
Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 17/ 45
Covariance Matrix Adaptation Evolution Strategy
Support Vector Machines
Self-Adaptive Surrogate-Assisted CMA-ES
Algorithm
Results
Contents
1 Covariance Matrix Adaptation Evolution Strategy
2 Support Vector Machines
Support Vector Machine (SVM)
Rank-based SVM
3 Self-Adaptive Surrogate-Assisted CMA-ES
Algorithm
Results
Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 18/ 45
Covariance Matrix Adaptation Evolution Strategy
Support Vector Machines
Self-Adaptive Surrogate-Assisted CMA-ES
Algorithm
Results
Using the Surrogate Model
Direct Optimization of Surrogate Model
Simple optimization loop:
optimize F for 1 generation, then optimize ˆF for ˆn generations.
0 5 10 15 20
0
0.5
1
1.5
2
2.5
3
3.5
4
Number of generations
Speedup
Dimension 10 F1 Sphere
F6 AttractSector
F8 Rosenbrock
F10 RotEllipsoid
F11 Discus
F12 Cigar
F13 SharpRidge
F14 SumOfPow
How to
choose ˆn?
Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 19/ 45
Covariance Matrix Adaptation Evolution Strategy
Support Vector Machines
Self-Adaptive Surrogate-Assisted CMA-ES
Algorithm
Results
Adaptation of Surrogate’s Life-Length
Test set: λ recently evaluated points
Model error: fraction of incorrectly ordered points
Number of generation is inversely proportion to the model error:
Model Error
Numberofgenerations
0 0.5 1.0
Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 20/ 45
Covariance Matrix Adaptation Evolution Strategy
Support Vector Machines
Self-Adaptive Surrogate-Assisted CMA-ES
Algorithm
Results
The Proposed s∗
aACM Algorithm
F F
F
F
-
-
-
Surrogate-assisted
CMA-ES with online
adaptation of model
hyper-parameters.
Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 21/ 45
Covariance Matrix Adaptation Evolution Strategy
Support Vector Machines
Self-Adaptive Surrogate-Assisted CMA-ES
Algorithm
Results
Results
Self-adaptation of model hyper-parameters is better than the
best offline settings! (IPOP-s∗
aACM vs IPOP-aACM)
Improvements of original CMA lead to improvements of its
surrogate-assisted version (IPOP-s∗
aACM vs IPOP-s∗
ACM)
0 1000 2000 3000 4000 5000 6000 7000
10
−5
10
0
10
5
Number of function evaluations
Fitness
Rotated Ellipsoid 10−D
IPOP−CMA−ES
IPOP−aCMA−ES
IPOP−ACM−ES
IPOP−aACM−ES
IPOP−s∗
ACM−ES
IPOP−
s∗
aACM−ES
0 1000 2000 3000 4000 5000 6000 7000
10
−5
10
0
10
5
Number of function evaluations
Fitness
Rosenbrock 10−D
IPOP−CMA−ES
IPOP−aCMA−ES
IPOP−ACM−ES
IPOP−aACM−ES
IPOP−s∗
ACM−ES
IPOP−
s∗
aACM−ES
Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 22/ 45
Covariance Matrix Adaptation Evolution Strategy
Support Vector Machines
Self-Adaptive Surrogate-Assisted CMA-ES
Algorithm
Results
Results on Black-Box Optimization Competition
BIPOP-s∗aACM and IPOP-s∗aACM (with restarts) on 24 noiseless 20 dimensional functions
0 1 2 3 4 5 6 7 8 9
log10 of (ERT / dimension)
0.0
0.5
1.0
Proportionoffunctions
RANDOMSEARCH
SPSA
BAYEDA
DIRECT
DE-PSO
GA
LSfminbnd
LSstep
RCGA
Rosenbrock
MCS
ABC
PSO
POEMS
EDA-PSO
NELDERDOERR
NELDER
oPOEMS
FULLNEWUOA
ALPS
GLOBAL
PSO_Bounds
BFGS
ONEFIFTH
Cauchy-EDA
NBC-CMA
CMA-ESPLUSSEL
NEWUOA
AVGNEWUOA
G3PCX
1komma4mirser
1plus1
CMAEGS
DEuniform
DE-F-AUC
MA-LS-CHAIN
VNS
iAMALGAM
IPOP-CMA-ES
AMALGAM
IPOP-ACTCMA-ES
IPOP-saACM-ES
MOS
BIPOP-CMA-ES
BIPOP-saACM-ES
best 2009
f1-24
Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 23/ 45
Covariance Matrix Adaptation Evolution Strategy
Support Vector Machines
Self-Adaptive Surrogate-Assisted CMA-ES
Algorithm
Results
Noiseless case - 1
2 3 5 10 20 40
0
1
2
3
ftarget=1e-08
1 Sphere
BIPOP-CMA
BIPOP-saACM
IPOP-aCMA
IPOP-saACM
2 3 5 10 20 40
0
1
2
3
4
ftarget=1e-08
2 Ellipsoid separable
2 3 5 10 20 40
0
1
2
3
4
5
6
7
ftarget=1e-08
3 Rastrigin separable
2 3 5 10 20 40
0
1
2
3
4
5
6
7
ftarget=1e-08
4 Skew Rastrigin-Bueche separ
2 3 5 10 20 40
0
1
2
ftarget=1e-08
5 Linear slope
2 3 5 10 20 40
0
1
2
3
4
ftarget=1e-08
6 Attractive sector
Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 24/ 45
Covariance Matrix Adaptation Evolution Strategy
Support Vector Machines
Self-Adaptive Surrogate-Assisted CMA-ES
Algorithm
Results
Noiseless case - 2
2 3 5 10 20 40
0
1
2
3
4
ftarget=1e-08
7 Step-ellipsoid
2 3 5 10 20 40
0
1
2
3
4
ftarget=1e-08
8 Rosenbrock original
2 3 5 10 20 40
0
1
2
3
4
ftarget=1e-08
9 Rosenbrock rotated
2 3 5 10 20 40
0
1
2
3
4
ftarget=1e-08
10 Ellipsoid
2 3 5 10 20 40
0
1
2
3
4
ftarget=1e-08
11 Discus
2 3 5 10 20 40
0
1
2
3
4
5
ftarget=1e-08
12 Bent cigar
Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 25/ 45
Covariance Matrix Adaptation Evolution Strategy
Support Vector Machines
Self-Adaptive Surrogate-Assisted CMA-ES
Algorithm
Results
Noiseless case - 3
2 3 5 10 20 40
0
1
2
3
4
5
ftarget=1e-08
13 Sharp ridge
2 3 5 10 20 40
0
1
2
3
4
ftarget=1e-08
14 Sum of different powers
2 3 5 10 20 40
0
1
2
3
4
5
ftarget=1e-08
15 Rastrigin
2 3 5 10 20 40
0
1
2
3
4
5
6
ftarget=1e-08
16 Weierstrass
2 3 5 10 20 40
0
1
2
3
4
5
ftarget=1e-08
17 Schaffer F7, condition 10
2 3 5 10 20 40
0
1
2
3
4
5
ftarget=1e-08
18 Schaffer F7, condition 1000
Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 26/ 45
Covariance Matrix Adaptation Evolution Strategy
Support Vector Machines
Self-Adaptive Surrogate-Assisted CMA-ES
Algorithm
Results
Noiseless case - 4
2 3 5 10 20 40
0
1
2
3
4
5
6
7
ftarget=1e-08
19 Griewank-Rosenbrock F8F2
2 3 5 10 20 40
0
1
2
3
4
5
6
ftarget=1e-08
20 Schwefel x*sin(x)
2 3 5 10 20 40
0
1
2
3
4
5
6
ftarget=1e-08
21 Gallagher 101 peaks
2 3 5 10 20 40
0
1
2
3
4
5
6
7
ftarget=1e-08
22 Gallagher 21 peaks
2 3 5 10 20 40
0
1
2
3
4
5
6
7
ftarget=1e-08
23 Katsuuras
2 3 5 10 20 40
0
1
2
3
4
5
6
7
8
ftarget=1e-08
24 Lunacek bi-Rastrigin
BIPOP-CMA
BIPOP-saACM
IPOP-aCMA
IPOP-saACM
Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 27/ 45
Covariance Matrix Adaptation Evolution Strategy
Support Vector Machines
Self-Adaptive Surrogate-Assisted CMA-ES
Algorithm
Results
Noisy case - 1
0 1 2 3 4 5 6 7 8
log10 of (# f-evals / dimension)
0.0
0.5
1.0
Proportionoffunctions
best 2009
IPOP-aCMA
IPOP-saACMf101-106
0 1 2 3 4 5 6 7 8
log10 of (# f-evals / dimension)
0.0
0.5
1.0
Proportionoffunctions
best 2009
IPOP-aCMA
IPOP-saACMf107-121
0 1 2 3 4 5 6 7 8
log10 of (# f-evals / dimension)
0.0
0.5
1.0
Proportionoffunctions
IPOP-aCMA
IPOP-saACM
best 2009f122-130
0 1 2 3 4 5 6 7 8
log10 of (# f-evals / dimension)
0.0
0.5
1.0
Proportionoffunctions
IPOP-aCMA
IPOP-saACM
best 2009f101-130
Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 28/ 45
Covariance Matrix Adaptation Evolution Strategy
Support Vector Machines
Self-Adaptive Surrogate-Assisted CMA-ES
Algorithm
Results
Noisy case - 2
2 3 5 10 20 40
0
1
2
3
ftarget=1e-08
101 Sphere moderate Gauss
IPOP-aCMA
IPOP-saACM
2 3 5 10 20 40
0
1
2
3
ftarget=1e-08
102 Sphere moderate unif
2 3 5 10 20 40
0
1
2
3
ftarget=1e-08
103 Sphere moderate Cauchy
2 3 5 10 20 40
0
1
2
3
4
5
ftarget=1e-08
104 Rosenbrock moderate Gauss
2 3 5 10 20 40
0
1
2
3
4
5
6
ftarget=1e-08
105 Rosenbrock moderate unif
2 3 5 10 20 40
0
1
2
3
4
ftarget=1e-08
106 Rosenbrock moderate Cauchy
Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 29/ 45
Covariance Matrix Adaptation Evolution Strategy
Support Vector Machines
Self-Adaptive Surrogate-Assisted CMA-ES
Algorithm
Results
Time Complexity
5 10 15 20 25 30 35 40
10
−3
10
−2
10
−1
10
0
Dimension
Time(sec)
CPU cost per function evaluation
F1 Sphere
F8 Rosenbrock
F10 RotEllipsoid
F15 RotRastrigin
CPU cost for IPOP-aACM-ES with fixed hyper-parameters.
With self-adaptation will be about 10-20 times more expensive.
Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 30/ 45
Covariance Matrix Adaptation Evolution Strategy
Support Vector Machines
Self-Adaptive Surrogate-Assisted CMA-ES
Machine Learning for Optimization: Discussion
s∗
aACM is from 2 to 4 times faster on 8 out of 24 noiseless
functions.
Invariant to rank-preserving and orthogonal transformations of
the search space : Yes
The computation complexity (the cost of speed-up) is O(d3
)
The source code is available online:
https://sites.google.com/site/acmesgecco/
Open Questions
How to improve the search on multi-modal functions ?
What else from Machine Learning can improve the search ?
Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 31/ 45
Original Restarts Strategies: IPOP-CMA-ES and BIPOP-CMA-ES
Preliminary Analysis
New Restart Strategies: NIPOP-CMA-ES and NBIPOP-CMA-ES
Results
Part-II
Part-II: Alternative Restart Strategies for CMA-ES
Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 32/ 45
Original Restarts Strategies: IPOP-CMA-ES and BIPOP-CMA-ES
Preliminary Analysis
New Restart Strategies: NIPOP-CMA-ES and NBIPOP-CMA-ES
Results
Content
4 Original Restarts Strategies: IPOP-CMA-ES and BIPOP-CMA-ES
5 Preliminary Analysis
6 New Restart Strategies: NIPOP-CMA-ES and NBIPOP-CMA-ES
7 Results
Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 33/ 45
Original Restarts Strategies: IPOP-CMA-ES and BIPOP-CMA-ES
Preliminary Analysis
New Restart Strategies: NIPOP-CMA-ES and NBIPOP-CMA-ES
Results
IPOP-CMA-ES
IPOP-CMA-ES: 1
1 set population size λlarge = λdefault and initial step-size
σ0
large = σdefault
2 run/restart CMA-ES until stopping criterion is reached
3 if not happy then set λlarge = 2λlarge and GO TO STEP 2.
1Anne Auger, Nikolaus Hansen (CEC 2005). "A Restart CMA Evolution Strategy With
Increasing Population Size"
Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 34/ 45
Original Restarts Strategies: IPOP-CMA-ES and BIPOP-CMA-ES
Preliminary Analysis
New Restart Strategies: NIPOP-CMA-ES and NBIPOP-CMA-ES
Results
BIPOP-CMA-ES
BIPOP-CMA-ES: 2
Regime-1 (large populations, IPOP part):
Each restart: λlarge = 2 ∗ λlarge , σ0
large = σ0
default
Regime-2 (small populations):
Each restart:
λsmall = λdefault
1
2
λlarge
λdefault
U[0,1]2
, σ0
small = σ0
default × 10−2U[0,1]
where U[0, 1] stands for the uniform distribution in [0, 1].
BIPOP-CMA-ES launches the first run with default population size
and initial step-size. In each restart, it selects the restart regime
with less function evaluations used so far.
2Nikolaus Hansen (GECCO BBOB 2009). "Benchmarking a BI-population CMA-ES on the
BBOB-2009 function testbed"
Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 35/ 45
Original Restarts Strategies: IPOP-CMA-ES and BIPOP-CMA-ES
Preliminary Analysis
New Restart Strategies: NIPOP-CMA-ES and NBIPOP-CMA-ES
Results
Preliminary Analysis
λ / λ
default
σ/σ
default
F15 Rotated Rastrigin 20−D
10
0
10
1
10
2
10
−2
10
−1
10
0
λ / λ
default
σ/σ
default
F22 Gallagher 21 peaks 20−D
10
0
10
1
10
2
10
−2
10
−1
10
0
Legends indicate that the optimum up to precision f(x) = 10−10
is
found in 15 runs always (+), sometimes (⊕) or never (◦).
Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 36/ 45
Original Restarts Strategies: IPOP-CMA-ES and BIPOP-CMA-ES
Preliminary Analysis
New Restart Strategies: NIPOP-CMA-ES and NBIPOP-CMA-ES
Results
Preliminary Analysis
λ / λ
default
σ/σ
default
F23 Katsuuras 20−D
10
0
10
1
10
2
10
−2
10
−1
10
0
λ / λ
default
σ/σ
default
F24 Lunacek bi−Rastrigin 20−D
10
0
10
1
10
2
10
−2
10
−1
10
0
Legends indicate that the optimum up to precision f(x) = 10−10
is
found in 15 runs always (+), sometimes (⊕) or never (◦).
Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 37/ 45
Original Restarts Strategies: IPOP-CMA-ES and BIPOP-CMA-ES
Preliminary Analysis
New Restart Strategies: NIPOP-CMA-ES and NBIPOP-CMA-ES
Results
NIPOP-CMA-ES (New IPOP-CMA-ES)
NIPOP-CMA-ES: 3
1 set population size λlarge = λdefault and initial step-size
σ0
large = σdefault
2 run/restart CMA-ES until stopping criterion is reached
3 if not happy then set λlarge = 2λlarge, σ0
= σ0
/ρσdec and GO TO
STEP 2.
For ρσdec = 1.6 used in this study, NIPOP-CMA-ES reaches the
lower bound (σ = 10−2
σdefault) used by BIPOP-CMA-ES after 9
restarts.
3Ilya Loshchilov, Marc Schoenauer, Michele Sebag (PPSN 2012). "Alternative Restart
Strategies for CMA-ES"
Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 38/ 45
Original Restarts Strategies: IPOP-CMA-ES and BIPOP-CMA-ES
Preliminary Analysis
New Restart Strategies: NIPOP-CMA-ES and NBIPOP-CMA-ES
Results
NBIPOP-CMA-ES (New BIPOP-CMA-ES)
NBIPOP-CMA-ES: 4
Regime-1 (large populations, NIPOP part):
Each restart: λlarge = 2 ∗ λlarge , σ0
= σ0
/ρσdec
Regime-2 (small populations):
Each restart: λsmall = λdefault, σ0
small = σ0
default × 10−2U[0,1]
where U[0, 1] stands for the uniform distribution in [0, 1].
Adaptation of allowed budgets for regimes A and B:
IF A found the best solution so far
THEN budget of A = ρbudget× budget of B (ρbudget = 2)
4Ilya Loshchilov, Marc Schoenauer, Michele Sebag (PPSN 2012). "Alternative Restart
Strategies for CMA-ES"
Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 39/ 45
Original Restarts Strategies: IPOP-CMA-ES and BIPOP-CMA-ES
Preliminary Analysis
New Restart Strategies: NIPOP-CMA-ES and NBIPOP-CMA-ES
Results
An illustration of λ and σ hyper-parameters distribution
10
0
10
1
10
2
10
3
10
−2
10
−1
10
0
λ / λdefault
σ/σdefault
9 restarts of IPOP-CMA-ES (◦), BIPOP-CMA-ES (◦ and · for 10 runs),
NIPOP-CMA-ES ( ) and NBIPOP-CMA-ES ( and many △ for
λ/λdefault = 1, σ/σdefault ∈ [10−2
, 100
]).
Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 40/ 45
Original Restarts Strategies: IPOP-CMA-ES and BIPOP-CMA-ES
Preliminary Analysis
New Restart Strategies: NIPOP-CMA-ES and NBIPOP-CMA-ES
Results
On Multi-Modal Functions
2 3 5 10 20 40
0
1
2
3
4
5
ftarget=1e-08
15 Rastrigin
2 3 5 10 20 40
0
1
2
3
4
5
6
ftarget=1e-08
16 Weierstrass
2 3 5 10 20 40
0
1
2
3
4
5
6
7
ftarget=1e-08
21 Gallagher 101 peaks
2 3 5 10 20 40
0
1
2
3
4
5
6
7
ftarget=1e-08
22 Gallagher 21 peaks
2 3 5 10 20 40
0
1
2
3
4
5
6
ftarget=1e-08
23 Katsuuras
2 3 5 10 20 40
0
1
2
3
4
5
6
7
ftarget=1e-08
24 Lunacek bi-Rastrigin
BIPOP-aCMA
IPOP-aCMA
NBIPOP-aCMA
NIPOP-aCMA
Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 41/ 45
Original Restarts Strategies: IPOP-CMA-ES and BIPOP-CMA-ES
Preliminary Analysis
New Restart Strategies: NIPOP-CMA-ES and NBIPOP-CMA-ES
Results
NIPOP-aCMA-ES on 20-dimensional F15 Rastrigin
0 0.5 1 1.5 2 2.5 3 3.5 4
x 10
5
10
−10
10
−5
10
0
10
5
2e−0061e−006
f=−1.16608589451062e−009
blue:abs(f), cyan:f−min(f), green:sigma, red:axis ratio
σ step-size is green line
Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 42/ 45
Original Restarts Strategies: IPOP-CMA-ES and BIPOP-CMA-ES
Preliminary Analysis
New Restart Strategies: NIPOP-CMA-ES and NBIPOP-CMA-ES
Results
ECDFs
Results for 40-D
0 1 2 3 4 5 6 7 8
log10 of (# f-evals / dimension)
0.0
0.5
1.0
Proportionoffunctions
IPOP-aCMA
NIPOP-aCMA
BIPOP-aCMA
best 2009
NBIPOP-aCMAf20-24
0 1 2 3 4 5 6 7 8
log10 of (# f-evals / dimension)
0.0
0.5
1.0
Proportionoffunctions
IPOP-aCMA
NIPOP-aCMA
BIPOP-aCMA
NBIPOP-aCMA
best 2009f1-24
Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 43/ 45
Original Restarts Strategies: IPOP-CMA-ES and BIPOP-CMA-ES
Preliminary Analysis
New Restart Strategies: NIPOP-CMA-ES and NBIPOP-CMA-ES
Results
Restart Strategies for CMA-ES: Discussion
(Of course) It all depends on benchmark functions we use.
Against Overfitting: Results confirmed on a real-world problem of
Interplanetary Trajectory Optimization (see PPSN2012 paper).
NIPOP can be competitive (while simpler) with BIPOP.
The decrease of the initial step-size is not that bad idea for IPOP.
Adaptation of computational budgets for regimes works well.
Further Work
Surrogate-assisted search in the space of λ, σ hyper-parameters.
Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 44/ 45
Original Restarts Strategies: IPOP-CMA-ES and BIPOP-CMA-ES
Preliminary Analysis
New Restart Strategies: NIPOP-CMA-ES and NBIPOP-CMA-ES
Results
Thank you for your attention!
Questions?
Check the source code! it’s available online:
Self-Adaptive Surrogate-Assisted CMA-ES :
https://sites.google.com/site/acmesgecco/
NIPOP and NBIPOP: https://sites.google.com/site/ppsnbipop/
Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 45/ 45

More Related Content

PDF
PDF
A comparison of learning methods to predict N2O fluxes and N leaching
PDF
Well placement optimization
PDF
Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
PPSX
Covariance Matrix Adaptation Evolution Strategy - CMA-ES
PDF
Dominance-Based Pareto-Surrogate for Multi-Objective Optimization
PDF
BI-population CMA-ES Algorithms with Surrogate Models and Line Searches
PPT
Linear Discrimination Centering on Support Vector Machines
A comparison of learning methods to predict N2O fluxes and N leaching
Well placement optimization
Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
Covariance Matrix Adaptation Evolution Strategy - CMA-ES
Dominance-Based Pareto-Surrogate for Multi-Objective Optimization
BI-population CMA-ES Algorithms with Surrogate Models and Line Searches
Linear Discrimination Centering on Support Vector Machines

Similar to New Surrogate-Assisted Search Control and Restart Strategies for CMA-ES (20)

PDF
The International Journal of Engineering and Science (The IJES)
PDF
Intensive Surrogate Model Exploitation in Self-adaptive Surrogate-assisted CM...
PPT
Support Vector Machine (Classification) - Step by Step
PDF
A Multi-Objective Genetic Algorithm for Pruning Support Vector Machines
PDF
An Introduction to Model Order Reduction
PDF
A BA-based algorithm for parameter optimization of support vector machine
PPT
1629 stochastic subgradient approach for solving linear support vector
PPT
AI & ML INTRODUCTION OF AI AND ML FOR LEARING BASICS
PPTX
論文紹介 Adaptive metropolis algorithm using variational bayesian
PPTX
Mining Regional Knowledge in Spatial Dataset
PDF
2012 05-10 kaiser
PPTX
Support Vector Machines USING MACHINE LEARNING HOW IT WORKS
DOC
Tutorial - Support vector machines
DOC
Tutorial - Support vector machines
PPTX
Kernel based swarm optimization for renewable energy application
PPTX
Svm vs ls svm
DOCX
Vlsi design for svm based speaker verification system
PPTX
Seminar_New -CESG
PPTX
support vector machine and associative classification
The International Journal of Engineering and Science (The IJES)
Intensive Surrogate Model Exploitation in Self-adaptive Surrogate-assisted CM...
Support Vector Machine (Classification) - Step by Step
A Multi-Objective Genetic Algorithm for Pruning Support Vector Machines
An Introduction to Model Order Reduction
A BA-based algorithm for parameter optimization of support vector machine
1629 stochastic subgradient approach for solving linear support vector
AI & ML INTRODUCTION OF AI AND ML FOR LEARING BASICS
論文紹介 Adaptive metropolis algorithm using variational bayesian
Mining Regional Knowledge in Spatial Dataset
2012 05-10 kaiser
Support Vector Machines USING MACHINE LEARNING HOW IT WORKS
Tutorial - Support vector machines
Tutorial - Support vector machines
Kernel based swarm optimization for renewable energy application
Svm vs ls svm
Vlsi design for svm based speaker verification system
Seminar_New -CESG
support vector machine and associative classification
Ad

Recently uploaded (20)

DOCX
The AUB Centre for AI in Media Proposal.docx
PDF
Assigned Numbers - 2025 - Bluetooth® Document
PPTX
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
PDF
The Rise and Fall of 3GPP – Time for a Sabbatical?
PPT
Teaching material agriculture food technology
PDF
Mobile App Security Testing_ A Comprehensive Guide.pdf
PDF
Per capita expenditure prediction using model stacking based on satellite ima...
PPTX
A Presentation on Artificial Intelligence
PPTX
Spectroscopy.pptx food analysis technology
PPT
“AI and Expert System Decision Support & Business Intelligence Systems”
PPTX
20250228 LYD VKU AI Blended-Learning.pptx
PDF
Spectral efficient network and resource selection model in 5G networks
PDF
Encapsulation_ Review paper, used for researhc scholars
PDF
Approach and Philosophy of On baking technology
PDF
Empathic Computing: Creating Shared Understanding
PDF
Chapter 3 Spatial Domain Image Processing.pdf
PPTX
Programs and apps: productivity, graphics, security and other tools
PDF
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
PDF
Network Security Unit 5.pdf for BCA BBA.
PDF
Advanced methodologies resolving dimensionality complications for autism neur...
The AUB Centre for AI in Media Proposal.docx
Assigned Numbers - 2025 - Bluetooth® Document
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
The Rise and Fall of 3GPP – Time for a Sabbatical?
Teaching material agriculture food technology
Mobile App Security Testing_ A Comprehensive Guide.pdf
Per capita expenditure prediction using model stacking based on satellite ima...
A Presentation on Artificial Intelligence
Spectroscopy.pptx food analysis technology
“AI and Expert System Decision Support & Business Intelligence Systems”
20250228 LYD VKU AI Blended-Learning.pptx
Spectral efficient network and resource selection model in 5G networks
Encapsulation_ Review paper, used for researhc scholars
Approach and Philosophy of On baking technology
Empathic Computing: Creating Shared Understanding
Chapter 3 Spatial Domain Image Processing.pdf
Programs and apps: productivity, graphics, security and other tools
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
Network Security Unit 5.pdf for BCA BBA.
Advanced methodologies resolving dimensionality complications for autism neur...
Ad

New Surrogate-Assisted Search Control and Restart Strategies for CMA-ES

  • 1. Covariance Matrix Adaptation Evolution Strategy Support Vector Machines Self-Adaptive Surrogate-Assisted CMA-ES New Surrogate-Assisted Search Control and Restart Strategies for CMA-ES Ilya Loshchilov, Marc Schoenauer, Michèle Sebag TAO INRIA − CNRS − Univ. Paris-Sud Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 1/ 45
  • 2. Covariance Matrix Adaptation Evolution Strategy Support Vector Machines Self-Adaptive Surrogate-Assisted CMA-ES This Talk Part-I: Self-Adaptive Surrogate-Assisted CMA-ES Full paper: ES-EP track, 11.30 a.m., Tuesday, July 10 BBOB papers: IPOP-saACM-ES and BIPOP-saACM-ES on the i). Noiseless and ii). Noisy Testbeds Part-II: Alternative Restart Strategies for CMA-ES Full paper: PPSN 2012 BBOB paper: NIPOP-aCMA-ES and NBIPOP-aCMA-ES on the Noiseless Testbed Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 2/ 45
  • 3. Covariance Matrix Adaptation Evolution Strategy Support Vector Machines Self-Adaptive Surrogate-Assisted CMA-ES Part-I Part-I: Self-Adaptive Surrogate-Assisted CMA-ES Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 3/ 45
  • 4. Covariance Matrix Adaptation Evolution Strategy Support Vector Machines Self-Adaptive Surrogate-Assisted CMA-ES Motivations Find Argmin {F : X → R} Context: ill-posed optimization problems continuous Function F (fitness function) on X ⊂ Rd Gradient not available or not useful F available as an oracle (black box) Build {x1, x2, . . .} → Argmin(F) Black-Box approaches + Robust − High computational costs: number of expensive function evaluations (e.g. CFD) Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 4/ 45
  • 5. Covariance Matrix Adaptation Evolution Strategy Support Vector Machines Self-Adaptive Surrogate-Assisted CMA-ES Surrogate-Assisted Optimization Principle Gather E = {(xi, F(xi))} training set Build ˆF from E learn surrogate model Use surrogate model ˆF for some time: Optimization: use ˆF instead of true F in std algo Filtering: select promising xi based on ˆF in population-based algo. Compute F(xi) for some xi Update ˆF Iterate Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 5/ 45
  • 6. Covariance Matrix Adaptation Evolution Strategy Support Vector Machines Self-Adaptive Surrogate-Assisted CMA-ES Content 1 Covariance Matrix Adaptation Evolution Strategy 2 Support Vector Machines Support Vector Machine (SVM) Rank-based SVM 3 Self-Adaptive Surrogate-Assisted CMA-ES Algorithm Results Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 6/ 45
  • 7. Covariance Matrix Adaptation Evolution Strategy Support Vector Machines Self-Adaptive Surrogate-Assisted CMA-ES (µ, λ)-Covariance Matrix Adaptation Evolution Strategy Rank-µ Update yi ∼ N (0, C) , C = I xi = m + σ yi, σ = 1 sampling of λ solutions Cµ = 1 µ yi:λyT i:λ C ← (1 − 1) × C + 1 × Cµ calculating C from best µ out of λ mnew ← m + 1 µ yi:λ new distribution Ruling principles: i). the adaptation increases the probability of successful steps to appear again; ii). C ≈ H−1 Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 7/ 45
  • 8. Covariance Matrix Adaptation Evolution Strategy Support Vector Machines Self-Adaptive Surrogate-Assisted CMA-ES Invariance: Guarantee for Generalization Invariance properties of CMA-ES Invariance to order preserving transformations in function space true for all comparison-based algorithms Translation and rotation invariance thanks to C −3 −2 −1 0 1 2 3 −3 −2 −1 0 1 2 3 −3 −2 −1 0 1 2 3 −3 −2 −1 0 1 2 3 CMA-ES is almost parameterless Tuning on a small set of functions Hansen & Ostermeier 2001 Default values generalize to whole classes Exception: population size for multi-modal functions see the second part of this talk Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 8/ 45
  • 9. Covariance Matrix Adaptation Evolution Strategy Support Vector Machines Self-Adaptive Surrogate-Assisted CMA-ES Support Vector Machine (SVM) Rank-based SVM Contents 1 Covariance Matrix Adaptation Evolution Strategy 2 Support Vector Machines Support Vector Machine (SVM) Rank-based SVM 3 Self-Adaptive Surrogate-Assisted CMA-ES Algorithm Results Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 9/ 45
  • 10. Covariance Matrix Adaptation Evolution Strategy Support Vector Machines Self-Adaptive Surrogate-Assisted CMA-ES Support Vector Machine (SVM) Rank-based SVM Support Vector Machine for Classification Linear Classifier L1 2 3 L L b w w w2/|| || -1 b b +1 0 b xi support vector Main Idea Training Data: D = (xi, yi)|xi ∈ IRd , yi ∈ {−1, +1} n i=1 w, xi − b ≥ +1 ⇒ yi = +1; w, xi − b ≤ −1 ⇒ yi = −1; Optimization Problem: Primal Form Minimize{w, ξ} 1 2 ||w||2 + C n i=1 ξi subject to: yi( w, xi − b) ≥ 1 − ξi, ξi ≥ 0 Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 10/ 45
  • 11. Covariance Matrix Adaptation Evolution Strategy Support Vector Machines Self-Adaptive Surrogate-Assisted CMA-ES Support Vector Machine (SVM) Rank-based SVM Support Vector Machine for Classification Linear Classifier L1 2 3 L L b w w w2/|| || -1 b b +1 0 b xi support vector Optimization Problem: Dual Form Quadratic in Lagrangian multipliers: Maximize{α} n i αi − 1 2 n i,j=1 αiαjyiyj xi, xj subject to: 0 ≤ αi ≤ C, n i αiyi = 0 Properties Decision Function: ˆF(x) = sign( n i αiyi xi, x − b) The Dual form may be solved using standard quadratic programming solver. Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 11/ 45
  • 12. Covariance Matrix Adaptation Evolution Strategy Support Vector Machines Self-Adaptive Surrogate-Assisted CMA-ES Support Vector Machine (SVM) Rank-based SVM Support Vector Machine for Classification Non-Linear Classifier ww, (x)F -b =+1 w, (x)F -b = -1 w2/|| || a) b) c) support vector xi F Non-linear classification with the "Kernel trick" Maximize{α} n i αi − 1 2 n i,j=1 αiαjyiyjK(xi, xj) subject to: 0 ≤ αi ≤ C, n i αiyi = 0, where K(x, x′ ) =def < Φ(x), Φ(x′ ) > is the Kernel function a Decision Function: ˆF(x) = sign( n i αiyiK(xi, x) − b) aΦ must be chosen such that K is positive semi-definite Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 12/ 45
  • 13. Covariance Matrix Adaptation Evolution Strategy Support Vector Machines Self-Adaptive Surrogate-Assisted CMA-ES Support Vector Machine (SVM) Rank-based SVM Support Vector Machine for Classification Non-Linear Classifier: Kernels Gaussian or Radial Basis Function (RBF): K(xi, xj) = exp( xi−xj 2 2σ2 ) Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 13/ 45
  • 14. Covariance Matrix Adaptation Evolution Strategy Support Vector Machines Self-Adaptive Surrogate-Assisted CMA-ES Support Vector Machine (SVM) Rank-based SVM Regression To Value or Regression To Rank? Why Comparison-Based Surrogates? Example F(x) = x2 1 + (x1 + x2)2 . An efficient Evolutionary Algorithm (EA) with surrogate models may be 4.3 faster on F(x). But the same EA is only 2.4 faster on G(x) = F(x)1/4 ! a aCMA-ES with quadratic meta-model (lmm-CMA-ES) on fSchwefel 2-D Comparison-based surrogate models → invariance to rank-preserving transformations of F(x)! Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 14/ 45
  • 15. Covariance Matrix Adaptation Evolution Strategy Support Vector Machines Self-Adaptive Surrogate-Assisted CMA-ES Support Vector Machine (SVM) Rank-based SVM Rank-based Support Vector Machine Find ˆF(x) which preserves the ordering of training/test points On training set E = {xi, i = 1 . . . n} expert gives preferences: (xik ≻ xjk ), k = 1 . . . K underconstrained regression w L( 1r ) L( 2r ) xx x Order constraints Primal form Minimize 1 2 ||w||2 + C K k=1 ξk subject to ∀ k, w, xik − w, xjk ≥ 1 − ξk Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 15/ 45
  • 16. Covariance Matrix Adaptation Evolution Strategy Support Vector Machines Self-Adaptive Surrogate-Assisted CMA-ES Support Vector Machine (SVM) Rank-based SVM Surrogate Models for CMA-ES Using Rank-SVM Builds a global model using Rank-SVM xi ≻ xj iff F(xi) < F(xj) Kernel and parameters highly problem-dependent ACM Algorithm Use C from CMA-ES as Gaussian kernel I. Loshchilov, M. Schoenauer, M. Sebag (2010). "Comparison-based optimizers need comparison-based surrogates” Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 16/ 45
  • 17. Covariance Matrix Adaptation Evolution Strategy Support Vector Machines Self-Adaptive Surrogate-Assisted CMA-ES Support Vector Machine (SVM) Rank-based SVM Model Learning Non-Separable Ellipsoid Problem K(xi, xj) = e− (xi−xj )T (xi−xj) 2σ2 ; KC(xi, xj) = e− (xi−xj )T C−1(xi−xj ) 2σ2 Invariance to rotation of the search space thanks to C ≈ H−1 ! Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 17/ 45
  • 18. Covariance Matrix Adaptation Evolution Strategy Support Vector Machines Self-Adaptive Surrogate-Assisted CMA-ES Algorithm Results Contents 1 Covariance Matrix Adaptation Evolution Strategy 2 Support Vector Machines Support Vector Machine (SVM) Rank-based SVM 3 Self-Adaptive Surrogate-Assisted CMA-ES Algorithm Results Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 18/ 45
  • 19. Covariance Matrix Adaptation Evolution Strategy Support Vector Machines Self-Adaptive Surrogate-Assisted CMA-ES Algorithm Results Using the Surrogate Model Direct Optimization of Surrogate Model Simple optimization loop: optimize F for 1 generation, then optimize ˆF for ˆn generations. 0 5 10 15 20 0 0.5 1 1.5 2 2.5 3 3.5 4 Number of generations Speedup Dimension 10 F1 Sphere F6 AttractSector F8 Rosenbrock F10 RotEllipsoid F11 Discus F12 Cigar F13 SharpRidge F14 SumOfPow How to choose ˆn? Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 19/ 45
  • 20. Covariance Matrix Adaptation Evolution Strategy Support Vector Machines Self-Adaptive Surrogate-Assisted CMA-ES Algorithm Results Adaptation of Surrogate’s Life-Length Test set: λ recently evaluated points Model error: fraction of incorrectly ordered points Number of generation is inversely proportion to the model error: Model Error Numberofgenerations 0 0.5 1.0 Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 20/ 45
  • 21. Covariance Matrix Adaptation Evolution Strategy Support Vector Machines Self-Adaptive Surrogate-Assisted CMA-ES Algorithm Results The Proposed s∗ aACM Algorithm F F F F - - - Surrogate-assisted CMA-ES with online adaptation of model hyper-parameters. Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 21/ 45
  • 22. Covariance Matrix Adaptation Evolution Strategy Support Vector Machines Self-Adaptive Surrogate-Assisted CMA-ES Algorithm Results Results Self-adaptation of model hyper-parameters is better than the best offline settings! (IPOP-s∗ aACM vs IPOP-aACM) Improvements of original CMA lead to improvements of its surrogate-assisted version (IPOP-s∗ aACM vs IPOP-s∗ ACM) 0 1000 2000 3000 4000 5000 6000 7000 10 −5 10 0 10 5 Number of function evaluations Fitness Rotated Ellipsoid 10−D IPOP−CMA−ES IPOP−aCMA−ES IPOP−ACM−ES IPOP−aACM−ES IPOP−s∗ ACM−ES IPOP− s∗ aACM−ES 0 1000 2000 3000 4000 5000 6000 7000 10 −5 10 0 10 5 Number of function evaluations Fitness Rosenbrock 10−D IPOP−CMA−ES IPOP−aCMA−ES IPOP−ACM−ES IPOP−aACM−ES IPOP−s∗ ACM−ES IPOP− s∗ aACM−ES Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 22/ 45
  • 23. Covariance Matrix Adaptation Evolution Strategy Support Vector Machines Self-Adaptive Surrogate-Assisted CMA-ES Algorithm Results Results on Black-Box Optimization Competition BIPOP-s∗aACM and IPOP-s∗aACM (with restarts) on 24 noiseless 20 dimensional functions 0 1 2 3 4 5 6 7 8 9 log10 of (ERT / dimension) 0.0 0.5 1.0 Proportionoffunctions RANDOMSEARCH SPSA BAYEDA DIRECT DE-PSO GA LSfminbnd LSstep RCGA Rosenbrock MCS ABC PSO POEMS EDA-PSO NELDERDOERR NELDER oPOEMS FULLNEWUOA ALPS GLOBAL PSO_Bounds BFGS ONEFIFTH Cauchy-EDA NBC-CMA CMA-ESPLUSSEL NEWUOA AVGNEWUOA G3PCX 1komma4mirser 1plus1 CMAEGS DEuniform DE-F-AUC MA-LS-CHAIN VNS iAMALGAM IPOP-CMA-ES AMALGAM IPOP-ACTCMA-ES IPOP-saACM-ES MOS BIPOP-CMA-ES BIPOP-saACM-ES best 2009 f1-24 Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 23/ 45
  • 24. Covariance Matrix Adaptation Evolution Strategy Support Vector Machines Self-Adaptive Surrogate-Assisted CMA-ES Algorithm Results Noiseless case - 1 2 3 5 10 20 40 0 1 2 3 ftarget=1e-08 1 Sphere BIPOP-CMA BIPOP-saACM IPOP-aCMA IPOP-saACM 2 3 5 10 20 40 0 1 2 3 4 ftarget=1e-08 2 Ellipsoid separable 2 3 5 10 20 40 0 1 2 3 4 5 6 7 ftarget=1e-08 3 Rastrigin separable 2 3 5 10 20 40 0 1 2 3 4 5 6 7 ftarget=1e-08 4 Skew Rastrigin-Bueche separ 2 3 5 10 20 40 0 1 2 ftarget=1e-08 5 Linear slope 2 3 5 10 20 40 0 1 2 3 4 ftarget=1e-08 6 Attractive sector Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 24/ 45
  • 25. Covariance Matrix Adaptation Evolution Strategy Support Vector Machines Self-Adaptive Surrogate-Assisted CMA-ES Algorithm Results Noiseless case - 2 2 3 5 10 20 40 0 1 2 3 4 ftarget=1e-08 7 Step-ellipsoid 2 3 5 10 20 40 0 1 2 3 4 ftarget=1e-08 8 Rosenbrock original 2 3 5 10 20 40 0 1 2 3 4 ftarget=1e-08 9 Rosenbrock rotated 2 3 5 10 20 40 0 1 2 3 4 ftarget=1e-08 10 Ellipsoid 2 3 5 10 20 40 0 1 2 3 4 ftarget=1e-08 11 Discus 2 3 5 10 20 40 0 1 2 3 4 5 ftarget=1e-08 12 Bent cigar Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 25/ 45
  • 26. Covariance Matrix Adaptation Evolution Strategy Support Vector Machines Self-Adaptive Surrogate-Assisted CMA-ES Algorithm Results Noiseless case - 3 2 3 5 10 20 40 0 1 2 3 4 5 ftarget=1e-08 13 Sharp ridge 2 3 5 10 20 40 0 1 2 3 4 ftarget=1e-08 14 Sum of different powers 2 3 5 10 20 40 0 1 2 3 4 5 ftarget=1e-08 15 Rastrigin 2 3 5 10 20 40 0 1 2 3 4 5 6 ftarget=1e-08 16 Weierstrass 2 3 5 10 20 40 0 1 2 3 4 5 ftarget=1e-08 17 Schaffer F7, condition 10 2 3 5 10 20 40 0 1 2 3 4 5 ftarget=1e-08 18 Schaffer F7, condition 1000 Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 26/ 45
  • 27. Covariance Matrix Adaptation Evolution Strategy Support Vector Machines Self-Adaptive Surrogate-Assisted CMA-ES Algorithm Results Noiseless case - 4 2 3 5 10 20 40 0 1 2 3 4 5 6 7 ftarget=1e-08 19 Griewank-Rosenbrock F8F2 2 3 5 10 20 40 0 1 2 3 4 5 6 ftarget=1e-08 20 Schwefel x*sin(x) 2 3 5 10 20 40 0 1 2 3 4 5 6 ftarget=1e-08 21 Gallagher 101 peaks 2 3 5 10 20 40 0 1 2 3 4 5 6 7 ftarget=1e-08 22 Gallagher 21 peaks 2 3 5 10 20 40 0 1 2 3 4 5 6 7 ftarget=1e-08 23 Katsuuras 2 3 5 10 20 40 0 1 2 3 4 5 6 7 8 ftarget=1e-08 24 Lunacek bi-Rastrigin BIPOP-CMA BIPOP-saACM IPOP-aCMA IPOP-saACM Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 27/ 45
  • 28. Covariance Matrix Adaptation Evolution Strategy Support Vector Machines Self-Adaptive Surrogate-Assisted CMA-ES Algorithm Results Noisy case - 1 0 1 2 3 4 5 6 7 8 log10 of (# f-evals / dimension) 0.0 0.5 1.0 Proportionoffunctions best 2009 IPOP-aCMA IPOP-saACMf101-106 0 1 2 3 4 5 6 7 8 log10 of (# f-evals / dimension) 0.0 0.5 1.0 Proportionoffunctions best 2009 IPOP-aCMA IPOP-saACMf107-121 0 1 2 3 4 5 6 7 8 log10 of (# f-evals / dimension) 0.0 0.5 1.0 Proportionoffunctions IPOP-aCMA IPOP-saACM best 2009f122-130 0 1 2 3 4 5 6 7 8 log10 of (# f-evals / dimension) 0.0 0.5 1.0 Proportionoffunctions IPOP-aCMA IPOP-saACM best 2009f101-130 Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 28/ 45
  • 29. Covariance Matrix Adaptation Evolution Strategy Support Vector Machines Self-Adaptive Surrogate-Assisted CMA-ES Algorithm Results Noisy case - 2 2 3 5 10 20 40 0 1 2 3 ftarget=1e-08 101 Sphere moderate Gauss IPOP-aCMA IPOP-saACM 2 3 5 10 20 40 0 1 2 3 ftarget=1e-08 102 Sphere moderate unif 2 3 5 10 20 40 0 1 2 3 ftarget=1e-08 103 Sphere moderate Cauchy 2 3 5 10 20 40 0 1 2 3 4 5 ftarget=1e-08 104 Rosenbrock moderate Gauss 2 3 5 10 20 40 0 1 2 3 4 5 6 ftarget=1e-08 105 Rosenbrock moderate unif 2 3 5 10 20 40 0 1 2 3 4 ftarget=1e-08 106 Rosenbrock moderate Cauchy Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 29/ 45
  • 30. Covariance Matrix Adaptation Evolution Strategy Support Vector Machines Self-Adaptive Surrogate-Assisted CMA-ES Algorithm Results Time Complexity 5 10 15 20 25 30 35 40 10 −3 10 −2 10 −1 10 0 Dimension Time(sec) CPU cost per function evaluation F1 Sphere F8 Rosenbrock F10 RotEllipsoid F15 RotRastrigin CPU cost for IPOP-aACM-ES with fixed hyper-parameters. With self-adaptation will be about 10-20 times more expensive. Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 30/ 45
  • 31. Covariance Matrix Adaptation Evolution Strategy Support Vector Machines Self-Adaptive Surrogate-Assisted CMA-ES Machine Learning for Optimization: Discussion s∗ aACM is from 2 to 4 times faster on 8 out of 24 noiseless functions. Invariant to rank-preserving and orthogonal transformations of the search space : Yes The computation complexity (the cost of speed-up) is O(d3 ) The source code is available online: https://sites.google.com/site/acmesgecco/ Open Questions How to improve the search on multi-modal functions ? What else from Machine Learning can improve the search ? Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 31/ 45
  • 32. Original Restarts Strategies: IPOP-CMA-ES and BIPOP-CMA-ES Preliminary Analysis New Restart Strategies: NIPOP-CMA-ES and NBIPOP-CMA-ES Results Part-II Part-II: Alternative Restart Strategies for CMA-ES Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 32/ 45
  • 33. Original Restarts Strategies: IPOP-CMA-ES and BIPOP-CMA-ES Preliminary Analysis New Restart Strategies: NIPOP-CMA-ES and NBIPOP-CMA-ES Results Content 4 Original Restarts Strategies: IPOP-CMA-ES and BIPOP-CMA-ES 5 Preliminary Analysis 6 New Restart Strategies: NIPOP-CMA-ES and NBIPOP-CMA-ES 7 Results Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 33/ 45
  • 34. Original Restarts Strategies: IPOP-CMA-ES and BIPOP-CMA-ES Preliminary Analysis New Restart Strategies: NIPOP-CMA-ES and NBIPOP-CMA-ES Results IPOP-CMA-ES IPOP-CMA-ES: 1 1 set population size λlarge = λdefault and initial step-size σ0 large = σdefault 2 run/restart CMA-ES until stopping criterion is reached 3 if not happy then set λlarge = 2λlarge and GO TO STEP 2. 1Anne Auger, Nikolaus Hansen (CEC 2005). "A Restart CMA Evolution Strategy With Increasing Population Size" Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 34/ 45
  • 35. Original Restarts Strategies: IPOP-CMA-ES and BIPOP-CMA-ES Preliminary Analysis New Restart Strategies: NIPOP-CMA-ES and NBIPOP-CMA-ES Results BIPOP-CMA-ES BIPOP-CMA-ES: 2 Regime-1 (large populations, IPOP part): Each restart: λlarge = 2 ∗ λlarge , σ0 large = σ0 default Regime-2 (small populations): Each restart: λsmall = λdefault 1 2 λlarge λdefault U[0,1]2 , σ0 small = σ0 default × 10−2U[0,1] where U[0, 1] stands for the uniform distribution in [0, 1]. BIPOP-CMA-ES launches the first run with default population size and initial step-size. In each restart, it selects the restart regime with less function evaluations used so far. 2Nikolaus Hansen (GECCO BBOB 2009). "Benchmarking a BI-population CMA-ES on the BBOB-2009 function testbed" Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 35/ 45
  • 36. Original Restarts Strategies: IPOP-CMA-ES and BIPOP-CMA-ES Preliminary Analysis New Restart Strategies: NIPOP-CMA-ES and NBIPOP-CMA-ES Results Preliminary Analysis λ / λ default σ/σ default F15 Rotated Rastrigin 20−D 10 0 10 1 10 2 10 −2 10 −1 10 0 λ / λ default σ/σ default F22 Gallagher 21 peaks 20−D 10 0 10 1 10 2 10 −2 10 −1 10 0 Legends indicate that the optimum up to precision f(x) = 10−10 is found in 15 runs always (+), sometimes (⊕) or never (◦). Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 36/ 45
  • 37. Original Restarts Strategies: IPOP-CMA-ES and BIPOP-CMA-ES Preliminary Analysis New Restart Strategies: NIPOP-CMA-ES and NBIPOP-CMA-ES Results Preliminary Analysis λ / λ default σ/σ default F23 Katsuuras 20−D 10 0 10 1 10 2 10 −2 10 −1 10 0 λ / λ default σ/σ default F24 Lunacek bi−Rastrigin 20−D 10 0 10 1 10 2 10 −2 10 −1 10 0 Legends indicate that the optimum up to precision f(x) = 10−10 is found in 15 runs always (+), sometimes (⊕) or never (◦). Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 37/ 45
  • 38. Original Restarts Strategies: IPOP-CMA-ES and BIPOP-CMA-ES Preliminary Analysis New Restart Strategies: NIPOP-CMA-ES and NBIPOP-CMA-ES Results NIPOP-CMA-ES (New IPOP-CMA-ES) NIPOP-CMA-ES: 3 1 set population size λlarge = λdefault and initial step-size σ0 large = σdefault 2 run/restart CMA-ES until stopping criterion is reached 3 if not happy then set λlarge = 2λlarge, σ0 = σ0 /ρσdec and GO TO STEP 2. For ρσdec = 1.6 used in this study, NIPOP-CMA-ES reaches the lower bound (σ = 10−2 σdefault) used by BIPOP-CMA-ES after 9 restarts. 3Ilya Loshchilov, Marc Schoenauer, Michele Sebag (PPSN 2012). "Alternative Restart Strategies for CMA-ES" Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 38/ 45
  • 39. Original Restarts Strategies: IPOP-CMA-ES and BIPOP-CMA-ES Preliminary Analysis New Restart Strategies: NIPOP-CMA-ES and NBIPOP-CMA-ES Results NBIPOP-CMA-ES (New BIPOP-CMA-ES) NBIPOP-CMA-ES: 4 Regime-1 (large populations, NIPOP part): Each restart: λlarge = 2 ∗ λlarge , σ0 = σ0 /ρσdec Regime-2 (small populations): Each restart: λsmall = λdefault, σ0 small = σ0 default × 10−2U[0,1] where U[0, 1] stands for the uniform distribution in [0, 1]. Adaptation of allowed budgets for regimes A and B: IF A found the best solution so far THEN budget of A = ρbudget× budget of B (ρbudget = 2) 4Ilya Loshchilov, Marc Schoenauer, Michele Sebag (PPSN 2012). "Alternative Restart Strategies for CMA-ES" Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 39/ 45
  • 40. Original Restarts Strategies: IPOP-CMA-ES and BIPOP-CMA-ES Preliminary Analysis New Restart Strategies: NIPOP-CMA-ES and NBIPOP-CMA-ES Results An illustration of λ and σ hyper-parameters distribution 10 0 10 1 10 2 10 3 10 −2 10 −1 10 0 λ / λdefault σ/σdefault 9 restarts of IPOP-CMA-ES (◦), BIPOP-CMA-ES (◦ and · for 10 runs), NIPOP-CMA-ES ( ) and NBIPOP-CMA-ES ( and many △ for λ/λdefault = 1, σ/σdefault ∈ [10−2 , 100 ]). Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 40/ 45
  • 41. Original Restarts Strategies: IPOP-CMA-ES and BIPOP-CMA-ES Preliminary Analysis New Restart Strategies: NIPOP-CMA-ES and NBIPOP-CMA-ES Results On Multi-Modal Functions 2 3 5 10 20 40 0 1 2 3 4 5 ftarget=1e-08 15 Rastrigin 2 3 5 10 20 40 0 1 2 3 4 5 6 ftarget=1e-08 16 Weierstrass 2 3 5 10 20 40 0 1 2 3 4 5 6 7 ftarget=1e-08 21 Gallagher 101 peaks 2 3 5 10 20 40 0 1 2 3 4 5 6 7 ftarget=1e-08 22 Gallagher 21 peaks 2 3 5 10 20 40 0 1 2 3 4 5 6 ftarget=1e-08 23 Katsuuras 2 3 5 10 20 40 0 1 2 3 4 5 6 7 ftarget=1e-08 24 Lunacek bi-Rastrigin BIPOP-aCMA IPOP-aCMA NBIPOP-aCMA NIPOP-aCMA Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 41/ 45
  • 42. Original Restarts Strategies: IPOP-CMA-ES and BIPOP-CMA-ES Preliminary Analysis New Restart Strategies: NIPOP-CMA-ES and NBIPOP-CMA-ES Results NIPOP-aCMA-ES on 20-dimensional F15 Rastrigin 0 0.5 1 1.5 2 2.5 3 3.5 4 x 10 5 10 −10 10 −5 10 0 10 5 2e−0061e−006 f=−1.16608589451062e−009 blue:abs(f), cyan:f−min(f), green:sigma, red:axis ratio σ step-size is green line Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 42/ 45
  • 43. Original Restarts Strategies: IPOP-CMA-ES and BIPOP-CMA-ES Preliminary Analysis New Restart Strategies: NIPOP-CMA-ES and NBIPOP-CMA-ES Results ECDFs Results for 40-D 0 1 2 3 4 5 6 7 8 log10 of (# f-evals / dimension) 0.0 0.5 1.0 Proportionoffunctions IPOP-aCMA NIPOP-aCMA BIPOP-aCMA best 2009 NBIPOP-aCMAf20-24 0 1 2 3 4 5 6 7 8 log10 of (# f-evals / dimension) 0.0 0.5 1.0 Proportionoffunctions IPOP-aCMA NIPOP-aCMA BIPOP-aCMA NBIPOP-aCMA best 2009f1-24 Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 43/ 45
  • 44. Original Restarts Strategies: IPOP-CMA-ES and BIPOP-CMA-ES Preliminary Analysis New Restart Strategies: NIPOP-CMA-ES and NBIPOP-CMA-ES Results Restart Strategies for CMA-ES: Discussion (Of course) It all depends on benchmark functions we use. Against Overfitting: Results confirmed on a real-world problem of Interplanetary Trajectory Optimization (see PPSN2012 paper). NIPOP can be competitive (while simpler) with BIPOP. The decrease of the initial step-size is not that bad idea for IPOP. Adaptation of computational budgets for regimes works well. Further Work Surrogate-assisted search in the space of λ, σ hyper-parameters. Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 44/ 45
  • 45. Original Restarts Strategies: IPOP-CMA-ES and BIPOP-CMA-ES Preliminary Analysis New Restart Strategies: NIPOP-CMA-ES and NBIPOP-CMA-ES Results Thank you for your attention! Questions? Check the source code! it’s available online: Self-Adaptive Surrogate-Assisted CMA-ES : https://sites.google.com/site/acmesgecco/ NIPOP and NBIPOP: https://sites.google.com/site/ppsnbipop/ Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Surrogate and Restart Strategies for CMA-ES 45/ 45