1. This document provides an overview of big data processing with Hadoop. It defines big data and describes the challenges of volume, velocity, variety and variability.
2. Traditional data processing approaches are inadequate for big data due to its scale. Hadoop provides a distributed file system called HDFS and a MapReduce framework to address this.
3. HDFS uses a master-slave architecture with a NameNode and DataNodes to store and retrieve file blocks. MapReduce allows distributed processing of large datasets across clusters through mapping and reducing functions.