This document provides a review of Hadoop storage and clustering algorithms. It begins with an introduction to big data and the challenges of storing and processing large, diverse datasets. It then discusses related technologies like cloud computing and Hadoop, including the Hadoop Distributed File System (HDFS) and MapReduce processing model. The document analyzes and compares various clustering techniques like K-means, fuzzy C-means, hierarchical clustering, and Self-Organizing Maps based on parameters such as number of clusters, size of clusters, dataset type, and noise.