SlideShare a Scribd company logo
The International Journal Of Engineering And Science (IJES)
||Volume|| 3 ||Issue|| 01 || Pages || 11-23 || 2014 ||
ISSN (e): 2319 – 1813 ISSN (p): 2319 – 1805

Infrared Studies Of Curing Of Araldite DLS 772 / 4 4’DDS And
Araldite LY 5052 / 4 4’ DDS Epoxy Systems Using Conventional
And Microwave Energy.
Babatunde Bolasodun1*, Olubukola Rufai1 and Stephen Durowaiye1
1

Department of Metallurgical and Materials Engineering, University of Lagos

------------------------------------------------------ABSTRACT---------------------------------------------------Comparative studies were carried out on the effects of infrared radiation on the cure of two epoxy
resins Araldite DLS 772, Araldite LY 5052 and a hardener, 4 4’ Diaminodiphenyl sulfone.
A microwave heated calorimeter and an industrial oven were used to cure the samples at various
isothermal conditions and different holding times. A FT-IR spectrometer was used to carry out infrared studies
of the cured epoxy samples. The infrared spectra of microwave and conventionally cured samples are similar,
indicating a similar reaction pathway. For both epoxy systems, the rate of consumption of epoxy and amine
groups was higher during curing under microwave conditions. This is because microwave heating directly heats
the polymer molecules as a result of the relaxation of the polarized polymer dipoles along the electric field,
allowing more epoxy to be reacted with the amine in the curing reaction.

Keywords: - Infrared, Epoxy, Microwave, Curing
--------------------------------------------------------------------------------------------------------------------------Date of Submission: 03 October 2013

Date of Acceptance: 15 January 2014

--------------------------------------------------------------------------------------------------------------------------I.
INTRODUCTION
Fourier Transform Infrared Spectroscopy has been widely used to study crosslinked systems. It can
provide detailed information on the chemical structure of the molecules. Fourier Transform Infrared
spectroscopy also provides a quick and accurate means of determining the extent of conversion. For an epoxy
system, the use of Fourier Transform Infrared Spectroscopy has mainly been limited to the investigation of the
disappearance of epoxy and amine groups [1-4]. The reason for this limitation is because of several factors such
as the complexity of the reactions, the difficulties associated with the characterization of the products during
network formation, and the superimposition of the characteristic bands which make peak identification very
difficult [1-4].
Microwave heating uses the ability of some liquids and solids to convert electromagnetic energy into heat. It is
based on the principle that a material can be heated by applying energy to it in the form of high frequency electromagnetic
waves. An electromagnetic radiation consists of an electric field whose plane is perpendicular to the plane of a magnetic
field. The microwave heating effect originates from the interaction of the electric field component of the microwaves with
charged particles in the materials. A current will be induced through the material if the charged particles are able to move
through the electric field. If the particles can not move because they are bonded to the material, they will simply rearrange
themselves in phase with the electric field. This mechanism is called dielectric polarisation [5].

Figure 1 An electromagnetic wave [6].

www.theijes.com

The IJES

Page 11
Infrared Studies Of Curing Of Araldite Dls 772 / 4 4’dds And...
Microwaves have been found to be a good alternative method for curing thermoset polymers.
Compared to conventional heating techniques which are based on conduction of heat through a material,
microwave heating is a direct form of heating. Microwaves generate heat within the materials. Microwave
radiation enables sample temperatures to be potentially changed or controlled more readily [7]. Any increase or
decrease in the microwave input power leads to a corresponding increase or decrease in the temperature of the
material undergoing cure. Unlike conventional heating which heats the material being processed, along with the
walls of the oven and the air surrounding the process material, microwave heating affects only the material
being processed. This makes microwave heating a more energy efficient method of heating materials being
processed, and this translates into lower production costs for microwave heating [3]. Microwaves do not have
any intrinsic difficulties associated with their use, as a result of this, microwave cured products are applied to
many diverse industries [4].
The curing of epoxy resin by amine curing agents is expressed by the formula shown in figure below.
The epoxy moieties of the DGEBA can react with either the primary or secondary amine to form an OH in the
main chain as in (i) and (ii) which, later on, can react with another epoxide ring to further crosslink the resin.
The relative rates of those three reactions are important for the final structure and properties of the cured
resin[8].

This article presents the results of the infrared studies on the conventional and microwave cure of
Araldite DLS 772 / 4 4’ DDS and Araldite LY 5052 / 4 4’ DDS epoxy

II.

EXPERIMENTAL

2.1 MATERIALS
Araldite DLS 772 and Araldite LY 5052 were the epoxy resin used for this research. It was supplied by
Hexcel, UK. Araldite DLS 772 has an epoxy equivalent of 192.33, while Araldite LY 5052 has an epoxy
equivalent of 148. The hardener used for this study was 4 4’ Diaminodiphenyl sulfone. It was supplied by
Sigma-Aldrich.

www.theijes.com

The IJES

Page 12
Infrared Studies Of Curing Of Araldite Dls 772 / 4 4’dds And...

Figure 2 Chemical Structure of Epoxy Phenol Novalak Resin

Figure 3 Chemical structure of 1 4, butanedioldiglycidyl ether
O
H 2N

S

NH2

O

Figure 4 4, 4’ diphenyldiaminosulfone [4]

III.

CURING PROCEDURE

In order to choose the appropriate stoichometric amine / epoxy (A/E) ratio value to be used for this research,
Araldite LY 5052 / 4 4’ DDS and Araldite DLS 772 / 4 4’DDS epoxy systems were prepared with amine / epoxy
stoichiometric ratios of 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2. DSC scans were carried out on these systems. The systems were
heated at 10 K min-1 from 30 to 350 oC in order to cure the sample. It was then cooled back to 0 oC, and reheated at a heating
rate of 10 K min-1 in order to determine the glass transition temperature value. The epoxy amine / epoxy ratio with the
highest Tg was chosen for this research.
Similar samples of Araldite LY 5052 / 4 4’ DDS and Araldite DLS 772 / 4 4’DDS epoxy system with amine /
epoxy ratios of 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2 were prepared for microwave curing. A heating rate of 10 K min-1 was
used to cure the sample from 30 to 310 oC, and allowed to cool. Pieces of the cured samples were extracted from the
microwave sample tube, and a DSC scan was carried out on the extracted piece from 30 to 350 oC at a heating rate of 10 K
min-1 in order to determine its glass transition temperature.
220
200

Tg (0C)

180
160
DSC

140

Microwave

120
100
80
60
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

A/E Molar Ratio (M)

Figure 5 Plot of Glass Transition against Molar ratio for different stoichiometric ratios for both conventional and microwave
cured samples of Araldite LY 5052 / 4 4’ DDS epoxy system.

www.theijes.com

The IJES

Page 13
Infrared Studies Of Curing Of Araldite Dls 772 / 4 4’dds And...

200
180
160

Tg (0C)

140
120

Conventional

100

Microwave

80
60
40
20
0
0.3

0.5

0.7

0.9

1.1

1.3

Molar Ratio

Figure 6 Plot of Glass Transition against Molar ratio for different stoichiometric ratios for both conventional and microwave
curing for Araldite DLS 772 / 4 4’ DDS epoxy system.
Both plots show a increase in Tg values as the Amine / Epoxy ratio increases up to a maximum, and then the Tg
starts to decrease. The highest Tg values of conventional and microwave heated samples occur at different stoichiometric
ratios. The highest Tg value of the microwave cured sample occurs at a higher Amine / Epoxy Molar ratio than conventional
heating. This is an early indication that the curing mechanisms for conventional and microwave curing are different. For both
epoxy systems, the Amine / Epoxy ratio with the highest T g for both microwave and conventionally cured samples were was
selected and used for all subsequent experiments in this research. Table 4.5 below show the selected Amine / Epoxy ratio
from the conventionally and microwave cured samples which were used this research.

Table 1 Stoichiometric ratios chosen for this research.
Epoxy system
Araldite LY 5052 / 4 4 DDS
Araldite DLS 772 / 4 4 DDS

Conventional (amine / epoxy ratio)
0.85
0.8

Microwave (amine / epoxy ratio)
1.0
1.1

An industrial oven was used for the thermal curing of the Araldite DLS 772 / 4 4’ DDS and Araldite LY 5052 / 4
4’DDS epoxy system. Samples weighing between 2-5 mg were placed in aluminium sample pans; and heated in an industrial
oven to 30 , 60, 90, 120, 150, 180, 210, 240 degrees. The samples were held at these temperatures for 30 minutes.

Figure 7 : Microwave Heated Calorimeter used for this research.
A microwave calorimeter shown in figure 7 was used to carry out microwave curing of the samples. The
microwave curing was carried out in a cylindrical brass, single mode cavity operating in a TE111 mode which was designed
to give maximum field strength at the centre of gravity. A Hewlitt-Packard 8720ET was used to generate microwaves at a
frequency of 2.45GHz; which were then amplified to a maximum power of 30W with a solid state amplifier. An Anritsu
power meter was used to measure the transmitted and reflected powers. The power required for heating the sample was
calculated by subtracting the transmitted and reflected powers from the amplifier power. This power is similar to the heat
flow to the DSC cell in the sense that there will be a decrease in the microwave power during exothermic reaction, while an
endothermic reaction will require an increase in the microwave power.

www.theijes.com

The IJES

Page 14
Infrared Studies Of Curing Of Araldite Dls 772 / 4 4’dds And...
For microwave curing, epoxy resin samples weighing an average of 0.3g were poured in glass test
tubes and placed in the centre of the cavity. A flouroptic thermometer was inserted in a 1.5 mm diameter glass
tube placed in a test tube. Separate samples were heated to 30 , 60, 90, 120, 150, 180, 210, 240 degrees and held
at these temperatures for 30 minutes.

RESULTS AND DISCUSSION
3.1 Araldite LY 5052 / 4 4’ DDS and Araldite DLS 772 / 4 4 epoxy systems.
FT-IR was used to study the changes in the epoxy peaks which occur when the curing reaction took
place. The spectrum of an uncured mixture of Araldite LY 5052 / 4 4 ‘DDS epoxy system with an amine / epoxy
ratio of 0.85 is shown in figure 5 below.
2.00

Absorbance

1.80
1.60
1.40
1.20
1.00
0.80
0.60
0.40
0.20
0.00
4000.00

3500.00

3000.00

2500.00

2000.00

1500.00

1000.00

500.00

Wavelength (cm -1)

Figure 8 FT-IR Spectra of uncured Araldite LY 5052 / 4 4 ‘ DDS epoxy system with an amine / epoxy ratio of 0.85.

2.00

Absorbance

1.80
1.60
1.40

1510
1610
0

1150
1250
916

833

1.20
1.00
0.80
0.60
0.40
0.20
0.00
1600.00 1500.00 1400.00 1300.00 1200.00 1100.00 1000.00

900.00

800.00

-1

Wavelength (cm )

Figure 9 Expanded view of FT-IR Spectra of uncured 0.85M amine / epoxy ratio for Araldite LY 5052 / 4 4 ‘
DDS epoxy system .
The spectrum in figure 9 shows a noticeable oxirane ring (epoxy) peak at 916 cm-1. This is the asymmetric ring
stretching band of the epoxy ring [9-12]. The spectrum also shows the symmetric stretching of the epoxy ring at 1250cm -1.
The bands at 1510cm-1 and 833 cm-1 are assigned to the p-phenylene groups [10, 11]. The aliphatic stretching vibration of –
CH2- groups is shown as a peak at 2920cm-1 [10].The stretching vibration of the primary amino group (-NH2) which is from
the hardener (4 4’ DDS) shows an absorption peak at 1610cm-1 [10].The peaks at 1250cm-1 and 1150 cm-1 are the strong
asymmetric and symmetric SO2 stretching [10].

Figures 10 to 13 show the overlaid FT-IR spectra of Araldite LY 5052 / 4 4’ DDS and Araldite DLS
772 / 4 4’ DDS epoxy systems after conventional and microwave heating at 180 oC for 240 minutes

www.theijes.com

The IJES

Page 15
Infrared Studies Of Curing Of Araldite Dls 772 / 4 4’dds And...

Figure 10 Overlaid FT-IR Spectra of Araldite LY 5052 / 4 4’ DDS with an amine / epoxy ratio of 0.85 after
conventional and microwave heating at 180oC for 240 minutes.

Figure 11 Expanded view of Overlaid FT-IR Spectra of Araldite LY 5052 / 4 4’ DDS with an amine / epoxy
ratio of 0.85 after conventional and microwave heating at 180 oC for 240 minutes

Figure 12 Overlaid FT-IR Spectra of Araldite DLS 772 / 4 4’ DDS with an amine / epoxy ratio of 0.8 after
conventional and microwave heating at 180 oC for 240 minutes.

www.theijes.com

The IJES

Page 16
Infrared Studies Of Curing Of Araldite Dls 772 / 4 4’dds And...

Figure 13 Expanded view of Overlaid FT-IR Spectra of Araldite DLS 772 / 4 4’ DDS with an amine / epoxy
ratio of 0.8 after conventional and microwave heating at 180 oC for 240 minutes.
For both epoxy systems, the infrared spectra of the specimens after they had been cured at 180oC for
240 minutes were noticeably different from the spectra of the uncured specimen. The prominent features that
occurred during polymerization were the decreasing and almost complete disappearance of the epoxy ring at 915
cm-1 and 862 cm-1[9, 12]. The N-H stretch band at 1610cm-1 also decreased in size. The decrease in the epoxy
and the amine bonds is an indication of the consumption of the epoxy and the amine bands during the reaction.
The curing reaction occurs by the reaction of the end epoxy groups with the hardener. The epoxy rings open out
and the molecules become linked in a three dimensional network. New absorptions were formed around
3400cm-1. This was as a result of the formation of the secondary amine and the hydroxyl groups during cure.
The bands at 833 and 1510 cm-1 were unaffected during cure and thus remained constant [9, 11, 12]. The almost
complete disappearance of the epoxy and the amine peaks at the end of the spectra showed that most of the
epoxy and the amine group reacted during the curing process. These occurrences indicated that a crosslinked
network was formed.
Several samples of Araldite LY 5052 / 4 4’ DDS and Araldite DLS 772 / 4 4’ DDS were cured using
both a DSC and a microwave heated cavity at 180 oC. At intervals of 30 minutes up to 240 minutes, a specimen
was removed. The reaction was quickly stopped by dipping it into liquid nitrogen for about ten minutes. An
infrared spectrum was then taken.
The overlaid spectra for both the conventionally cured and microwave cured samples of both epoxy
systems at different times at 180oC are shown in figures 14 to 19.

Figure 14 Overlaid spectra for conventionally cured Araldite LY 5052 / 4 4’ DDS with an amine / epoxy ratio of 0.85

www.theijes.com

The IJES

Page 17
Infrared Studies Of Curing Of Araldite Dls 772 / 4 4’dds And...

Figure 15 Overlaid spectra for microwave cured Araldite LY 5052 / 4 4’ DDS with an amine / epoxy ratio of 0.85

Figure 16 Overlaid spectra for conventionally cured Araldite LY 5052 / 4 4’ DDS with an amine / epoxy ratio of 1.0

Figure 17 Overlaid spectra for microwave cured Araldite LY 5052 / 4 4’ DDS with an amine / epoxy ratio of 1.0

www.theijes.com

The IJES

Page 18
Infrared Studies Of Curing Of Araldite Dls 772 / 4 4’dds And...

Figure 18 Overlaid spectra for conventional cured Araldite DLS 772 / 4 4’ DDS with an amine / epoxy ratio of 0.8.

Figure 19 Overlaid spectra for microwave cured Araldite DLS 772 / 4 4’ DDS with an amine / epoxy ratio of 0.8.

The epoxide bands can be used to estimate the degrees of polymerization. The rate of polymerization
can be estimated by following the loss of epoxide as the isothermal cure time increases. In order to estimate the
changes in the epoxide concentrations during polymerization, the absorbance at 916 cm -1 is divided by the
absorbance at 1510 cm-1 which was used as an internal standard [1, 13, 14]. The infrared spectra data used was
in absorbance because as stated in Beer’s Law, the absorbance is linearly proportional to concentration [15].
A comparison of polymerization rates is shown in figure 20 for conventional and microwave curing of
Araldite LY 5052 / 4 4 DDS different times at an isothermal temperature of 180 oC.
1
Conventional

0.9

Microwave

0.8

A916 / A1510

0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
0

30

60

90

120

150

180

210

240

Time (mins)

Figure 20 Epoxide absorbance normalised against the absorbance for phenyl for Araldite LY 5052 /4 4’DDS
with an amine / epoxy ratio of 0.85 at different times at 180 oC during conventional and microwave heating.

www.theijes.com

The IJES

Page 19
Infrared Studies Of Curing Of Araldite Dls 772 / 4 4’dds And...
It can be observed that there was an increase in the consumption of epoxide as the reaction time
proceeded. Also, the rate of consumption of the epoxide was much faster in the microwave curing than in
conventional curing at each measured time. Overall, there was a higher consumption of epoxy in the microwave
curing than in the conventional curing. This enhancement in polymerization in the microwave region is very
much anticipated because microwave heating directly heats the polymer molecules as a result of the relaxation
of the polarized polymer dipoles along the electric field [9]. This allows more epoxy to be reacted with the
amine in the curing reaction.
Epoxide absorbance ratios for Araldite LY 5052 / 4 4’ DDS with an amine / epoxy ratio of 1.0 and
Araldite DLS 772 / 4 4’ DDS with an amine / epoxy ratio of 0.8 epoxy systems are shown figures 21 – 24. The
results all show that a higher rate of epoxy was consumed in microwave heating than in conventional heating,
and a higher rate of polymerization for microwave. As explained, this is because of the ability of microwave
energy to selectively heat the localised hotspot in a molecule unlike the conventional heating which requires the
entire material to be heated first.
1
0.9

Conventional

0.8

Microwave

A916 / A1510

0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
0

30

60

90

120
Time (mins)

150

180

210

240

Figure 21 Epoxide absorbance normalised against the absorbance for phenyl for Araldite LY 5052 / 4 4’DDS
with an amine / epoxy ratio of 1.0 at different times at 180 oC during conventional and microwave heating.
1
0.9
Conventional

0.8

Microwave

A916 / A1510

0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
0

30

60

90

120
Time

150

180

210

240

Figure 22 Epoxide absorbance normalised against the absorbance for phenyl for Araldite DLS 772 / 4 4’DDS
with an amine / epoxy ratio of 0.8 at different times at 180 oC during conventional and microwave heating.

www.theijes.com

The IJES

Page 20
Infrared Studies Of Curing Of Araldite Dls 772 / 4 4’dds And...
1
0.9
Conventional

0.7

A916 / A1510

0.8

Microwave

0.6
0.5
0.4
0.3
0.2
0.1
0
0

30

60

90

120

150

180

210

240

Time (mins)

Figure 23 Epoxide absorbance normalised against the absorbance for phenyl for Araldite DLS 772 / 4 4’DDS
with an amine / epoxy ratio of 1.1 at different times at 180 oC during conventional and microwave heating.
The amine bands were used to estimate the degrees of polymerization. The loss of the amine band
during curing can also be used to follow the rate of polymerization as the isothermal cure time increases. In
order to estimate the changes in the amine concentrations during polymerization, the absorbance at 1610 cm -1 is
divided by the internal standard, which is the absorbance at 1510 cm -1 [1, 13, 14].
A comparison of polymerization rates using the amine band is shown in figure 24 for conventional and
microwave curing of Araldite LY 5052 / 4 4 DDS an amine / epoxy ratio of 0.85 at different times at an
isothermal temperature of 180 oC.
1
Conventional

0.9

Microwave

A1610 / A1510

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
0

30

60

90

120

150

180

210

240

Time (mins)

Figure 24 Amine absorbance normalised against the absorbance for phenyl for Araldite LY 5052 / 4 4’DDS
with an amine / epoxy ratio of 0.85 at different times at 180 oC during conventional and microwave heating.
It can be observed from figure 24 that the rate of consumption of the amine was much faster in the
microwave curing than in conventional curing at each measured time. A higher consumption of amine in the
microwave curing than in the conventional curing was observed. This enhancement in polymerization in the
microwave region is very much anticipated because microwave heating directly heats the polymer molecules as
a result of the relaxation of the polarized polymer dipoles along the electric field [16], allowing more amine to
be consumed during the curing reaction.

www.theijes.com

The IJES

Page 21
Infrared Studies Of Curing Of Araldite Dls 772 / 4 4’dds And...
The amine absorbance ratios Araldite LY 5052 / 4 4’ DDS with an amine / epoxy ratio of 1.0 and
Araldite DLS 772 / 4 4’ DDS epoxy system with an amine / epoxy ratio of 0.8 are shown in figures 25 to 27 . As
with the figures 21 to 24, the results all show that a higher rate of amine was consumed in microwave heating
than in conventional heating, and a higher rate of polymerization for microwave. This is because of the ability of
microwave energy to selectively heat the localised hotspot in a molecule unlike the conventional heating which
requires the entire material to be heated first.

1
0.9

Conventional

0.8

Microwave

A1610 / A1510

0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
0

30

60

90

120
Time (mins)

150

180

210

240

Figure 25 Amine absorbance normalised against the absorbance for phenyl for Araldite LY 5052 / 4 4’DDS
with an amine / epoxy ratio of 1.0 at different times at 180 oC during conventional and microwave heating.
0.9
0.8

Conventional

A1610 / A1510

0.7

Microwave

0.6
0.5
0.4
0.3
0.2
0.1
0
0

30

60

90

120
150
Time (mins)

180

210

240

Figure 26 Amine absorbance normalised against the absorbance for phenyl for Araldite DLS 772 / 4 4’DDS
with an amine / epoxy ratio of 0.8 at different times at 180 oC during conventional and microwave heating.

www.theijes.com

The IJES

Page 22
Infrared Studies Of Curing Of Araldite Dls 772 / 4 4’dds And...
1
0.9

A1610 / A1510

0.8

Conventional

0.7

Microwave

0.6
0.5
0.4
0.3
0.2
0.1
0
0

30

60

90

120

150

180

210

240

Time (mins)

Figure 27 Amine absorbance normalised against the absorbance for phenyl for Araldite DLS 772 / 4 4’DDS
with an amine / epoxy ratio of 1.1 at different times at 180 oC during conventional and microwave heating.

CONCLUSION
The similarity of the infrared spectra for both microwave and conventional curing of both epoxy
systems is an indication that the curing reactions follows the same reaction pathway. For both Araldite LY 5052
/ 4 4’ DDS and Araldite DLS 772 / 4 4’ DDS epoxy systems, the rate of consumption of the epoxy and amine
groups was higher during the microwave curing reactions. This is because microwave heating directly heats the
polymer molecules which leads to the relaxation of the polarized polymer dipoles along the electric field,
allowing more epoxy and amine to be consumed during the curing reaction.

REFERENCES
[1.]
[2.]
[3.]
[4.]
[5.]
[6.]
[7.]
[8.]
[9.]
[10.]
[11.]
[12.]
[13.]
[14.]
[15.]
[16.]

Mertzel, E. and J.L. Koenig, Application of FTIR and NMR to epoxy resins. Advances in polymer science, 1986. 74: p. 75.
Allen, R.O. and P. Sanderson, Characterization of Epoxy Glues with FTIR. Applied Spectroscopy Reviews, 1988. 24(3): p. 175187.
Rozenberg, B., Kinetics, thermodynamics and mechanism of reactions of epoxy oligomers with amines. Epoxy resins and
composites II, 1986: p. 113-165.
Oleinik, E.F., Advances in polymer science, 1986. 80: p. 49.
Metaxas, A.C. and R.J. Meredith, Industrial Microwave Heating. 1988: Peter Peregrinus Ltd.
Ghoul, C., Microwave Curing of Diglycidyl Ether of Bisphenol A / Dicyandiamide Resin System, in Materials Science. 2003,
University of Manchester.
Hill, D.J.T., G.A. George, and D.G. Rogers, A systematic study of the microwave and thermal cure kinetics of the DGEBA/DDS
and DGEBA/DDM epoxy-amine resin systems. Polymers for Advanced Technologies, 2002. 13(5): p. 353-362.
in Three Bond Technical News. 1990, 32. p. 1-5.
Smith, R.E., F.N. Larsen, and C.L. Long, Epoxy resin cure. II. FTIR analysis. Journal of Applied Polymer Science, 1984. 29(12):
p. 3713-3726.
Silverstein, R.M., G. Clayton Bassler, and T.C. Morrill, Spectrometric Identification Of Organic Compounds. Fifth ed. 1991.
Cole, K.C., et al., Comparison of infrared spectroscopic methods for the quantitative analysis of epoxy resins used in carbonepoxy composite materials. Applied Spectroscopy, 1988. 42(5): p. 761-769.
Cañavate, J., et al., Study of the curing process of an epoxy resin by FTIR spectroscopy. Polymer-Plastics Technology and
Engineering, 2000. 39(5): p. 937-943.
Feazel, C.E. and E.A. Verchot, A simple technique for use with infrared spectroscopy to study the curing of epoxy resins. Journal
of Polymer Science, 1957. 25(110): p. 351-353.
Schiering, D.W., et al., An infrared spectroscopic investigation of the curing reactions of the EPON 828/meta-phenylenediamine
system. Journal of Applied Polymer Science, 1987. 34(7): p. 2367-2375.
Smith, B.C., Fundamentals Of Fourier Transform Infrared Spectroscopy. First ed. 1996.
Wei, J., M.C. Hawley, and M.T. Demeuse, Kinetics modeling and time-temperature-transformation diagram of microwave and
thermal cure of epoxy resins. Polymer Engineering and Science, 1995. 35(6): p. 461-470.

www.theijes.com

The IJES

Page 23

More Related Content

PDF
Fabrication and characterization of conducting polymer composite
PDF
D030101017022
PDF
Thermal analysis of manganese ii bakelite composites
PDF
A comaprative study for selection of effective electrolyte solution for elect...
PDF
Evaluation of curing behavior of tetra functional epoxy resin with methyl nad...
PDF
Mechanical Properties Of Fibre Reinforced Concrete Subjected To Elevated Temp...
PDF
Electrospun Nanofibers Reinforced Aluminium Matrix Composites, A Trial to Imp...
PDF
Emilia sonchifolia extract as green corrosion inhibitor for mild steel in aci...
Fabrication and characterization of conducting polymer composite
D030101017022
Thermal analysis of manganese ii bakelite composites
A comaprative study for selection of effective electrolyte solution for elect...
Evaluation of curing behavior of tetra functional epoxy resin with methyl nad...
Mechanical Properties Of Fibre Reinforced Concrete Subjected To Elevated Temp...
Electrospun Nanofibers Reinforced Aluminium Matrix Composites, A Trial to Imp...
Emilia sonchifolia extract as green corrosion inhibitor for mild steel in aci...

What's hot (18)

PDF
International Refereed Journal of Engineering and Science (IRJES)
PDF
Studies Of Influence on Multiwalled Carbon Nanotubes (MWCNT’s) Reinforced Ep...
PDF
Studies on Electrical and Sensing Properties of Polyaniline / Iron Oxide (-F...
PDF
Modifying of li ni0.8co0.2o2 cathode material by chemical vapor deposition co...
PDF
Thermodynamic characterization of metal dissolution and inhibitor adsorption ...
DOCX
Maryam Bachelor thesis
PDF
Effect of calcination on the electrical properties and quantum confinement of...
PDF
Effect of calcination on the electrical properties and quantum confinement of...
PDF
Thermal analysis and dc conductivity of polypyrrole
PDF
Thermal analysis and dc conductivity of
PDF
Kq3618201825
PDF
J0436469
PDF
Es36888890
PDF
Synthesis and Luminescence Studies of Eu doped AlSrLaO4 Phosphor
PDF
Studies of the Atomic and Crystalline Characteristics of Ceramic Oxide Nano P...
PDF
Experimental and Theoretical Investigation of Thiazolyl Blue as a Corrosion I...
PDF
Synthesis and optimisation of ir o2 electrocatalysts by adams fusion method f...
PDF
Synthesis and optimisation of ir o2 electrocatalysts by adams fusion method f...
International Refereed Journal of Engineering and Science (IRJES)
Studies Of Influence on Multiwalled Carbon Nanotubes (MWCNT’s) Reinforced Ep...
Studies on Electrical and Sensing Properties of Polyaniline / Iron Oxide (-F...
Modifying of li ni0.8co0.2o2 cathode material by chemical vapor deposition co...
Thermodynamic characterization of metal dissolution and inhibitor adsorption ...
Maryam Bachelor thesis
Effect of calcination on the electrical properties and quantum confinement of...
Effect of calcination on the electrical properties and quantum confinement of...
Thermal analysis and dc conductivity of polypyrrole
Thermal analysis and dc conductivity of
Kq3618201825
J0436469
Es36888890
Synthesis and Luminescence Studies of Eu doped AlSrLaO4 Phosphor
Studies of the Atomic and Crystalline Characteristics of Ceramic Oxide Nano P...
Experimental and Theoretical Investigation of Thiazolyl Blue as a Corrosion I...
Synthesis and optimisation of ir o2 electrocatalysts by adams fusion method f...
Synthesis and optimisation of ir o2 electrocatalysts by adams fusion method f...
Ad

Similar to C030102011023 (20)

PDF
Increasing temperature resistance - Highlight
PDF
1065-3910-1-PB
PDF
EVALUATION OF CURING BEHAVIOR OF TETRA-FUNCTIONAL EPOXY RESIN WITH METHYL NAD...
PDF
Evaluation of curing behavior of tetra functional epoxy resin with methyl nad...
PPT
"Introduction to Epoxies" by Hubert Monteiro, Royce International
PDF
Aradur 450 Brochure
PDF
Raising performance with specialty components - Highlight
PDF
Design Fabrication and Static Analysis of Single Composite Lap Joint
DOC
Final RP Paper
PDF
Raising performance in aerospace industry - Highlight
PPTX
Epoxy coatings
PPT
All_Epoxies_Are_Not_the_Same_(rev4).ppt
PPTX
poster for scholars week2
PDF
140225 Composites EXPO 2014
PPTX
Epoxy resin presented by biswajit maity
PDF
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
PDF
Araldite 2011 adhesive
PDF
Epon product overview 2009 08
PPTX
Epoxy composites thermal conductivity enhancement
Increasing temperature resistance - Highlight
1065-3910-1-PB
EVALUATION OF CURING BEHAVIOR OF TETRA-FUNCTIONAL EPOXY RESIN WITH METHYL NAD...
Evaluation of curing behavior of tetra functional epoxy resin with methyl nad...
"Introduction to Epoxies" by Hubert Monteiro, Royce International
Aradur 450 Brochure
Raising performance with specialty components - Highlight
Design Fabrication and Static Analysis of Single Composite Lap Joint
Final RP Paper
Raising performance in aerospace industry - Highlight
Epoxy coatings
All_Epoxies_Are_Not_the_Same_(rev4).ppt
poster for scholars week2
140225 Composites EXPO 2014
Epoxy resin presented by biswajit maity
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
Araldite 2011 adhesive
Epon product overview 2009 08
Epoxy composites thermal conductivity enhancement
Ad

Recently uploaded (20)

PDF
Building Integrated photovoltaic BIPV_UPV.pdf
PPTX
MYSQL Presentation for SQL database connectivity
PPTX
PA Analog/Digital System: The Backbone of Modern Surveillance and Communication
PDF
Electronic commerce courselecture one. Pdf
PPTX
Big Data Technologies - Introduction.pptx
PDF
Reach Out and Touch Someone: Haptics and Empathic Computing
PDF
Bridging biosciences and deep learning for revolutionary discoveries: a compr...
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PPTX
A Presentation on Artificial Intelligence
PDF
Agricultural_Statistics_at_a_Glance_2022_0.pdf
PDF
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
PPTX
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
PDF
Review of recent advances in non-invasive hemoglobin estimation
PPTX
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
PDF
Spectral efficient network and resource selection model in 5G networks
PDF
NewMind AI Weekly Chronicles - August'25 Week I
PDF
Advanced methodologies resolving dimensionality complications for autism neur...
PDF
Mobile App Security Testing_ A Comprehensive Guide.pdf
PPTX
20250228 LYD VKU AI Blended-Learning.pptx
PDF
Encapsulation theory and applications.pdf
Building Integrated photovoltaic BIPV_UPV.pdf
MYSQL Presentation for SQL database connectivity
PA Analog/Digital System: The Backbone of Modern Surveillance and Communication
Electronic commerce courselecture one. Pdf
Big Data Technologies - Introduction.pptx
Reach Out and Touch Someone: Haptics and Empathic Computing
Bridging biosciences and deep learning for revolutionary discoveries: a compr...
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
A Presentation on Artificial Intelligence
Agricultural_Statistics_at_a_Glance_2022_0.pdf
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
Review of recent advances in non-invasive hemoglobin estimation
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
Spectral efficient network and resource selection model in 5G networks
NewMind AI Weekly Chronicles - August'25 Week I
Advanced methodologies resolving dimensionality complications for autism neur...
Mobile App Security Testing_ A Comprehensive Guide.pdf
20250228 LYD VKU AI Blended-Learning.pptx
Encapsulation theory and applications.pdf

C030102011023

  • 1. The International Journal Of Engineering And Science (IJES) ||Volume|| 3 ||Issue|| 01 || Pages || 11-23 || 2014 || ISSN (e): 2319 – 1813 ISSN (p): 2319 – 1805 Infrared Studies Of Curing Of Araldite DLS 772 / 4 4’DDS And Araldite LY 5052 / 4 4’ DDS Epoxy Systems Using Conventional And Microwave Energy. Babatunde Bolasodun1*, Olubukola Rufai1 and Stephen Durowaiye1 1 Department of Metallurgical and Materials Engineering, University of Lagos ------------------------------------------------------ABSTRACT---------------------------------------------------Comparative studies were carried out on the effects of infrared radiation on the cure of two epoxy resins Araldite DLS 772, Araldite LY 5052 and a hardener, 4 4’ Diaminodiphenyl sulfone. A microwave heated calorimeter and an industrial oven were used to cure the samples at various isothermal conditions and different holding times. A FT-IR spectrometer was used to carry out infrared studies of the cured epoxy samples. The infrared spectra of microwave and conventionally cured samples are similar, indicating a similar reaction pathway. For both epoxy systems, the rate of consumption of epoxy and amine groups was higher during curing under microwave conditions. This is because microwave heating directly heats the polymer molecules as a result of the relaxation of the polarized polymer dipoles along the electric field, allowing more epoxy to be reacted with the amine in the curing reaction. Keywords: - Infrared, Epoxy, Microwave, Curing --------------------------------------------------------------------------------------------------------------------------Date of Submission: 03 October 2013 Date of Acceptance: 15 January 2014 --------------------------------------------------------------------------------------------------------------------------I. INTRODUCTION Fourier Transform Infrared Spectroscopy has been widely used to study crosslinked systems. It can provide detailed information on the chemical structure of the molecules. Fourier Transform Infrared spectroscopy also provides a quick and accurate means of determining the extent of conversion. For an epoxy system, the use of Fourier Transform Infrared Spectroscopy has mainly been limited to the investigation of the disappearance of epoxy and amine groups [1-4]. The reason for this limitation is because of several factors such as the complexity of the reactions, the difficulties associated with the characterization of the products during network formation, and the superimposition of the characteristic bands which make peak identification very difficult [1-4]. Microwave heating uses the ability of some liquids and solids to convert electromagnetic energy into heat. It is based on the principle that a material can be heated by applying energy to it in the form of high frequency electromagnetic waves. An electromagnetic radiation consists of an electric field whose plane is perpendicular to the plane of a magnetic field. The microwave heating effect originates from the interaction of the electric field component of the microwaves with charged particles in the materials. A current will be induced through the material if the charged particles are able to move through the electric field. If the particles can not move because they are bonded to the material, they will simply rearrange themselves in phase with the electric field. This mechanism is called dielectric polarisation [5]. Figure 1 An electromagnetic wave [6]. www.theijes.com The IJES Page 11
  • 2. Infrared Studies Of Curing Of Araldite Dls 772 / 4 4’dds And... Microwaves have been found to be a good alternative method for curing thermoset polymers. Compared to conventional heating techniques which are based on conduction of heat through a material, microwave heating is a direct form of heating. Microwaves generate heat within the materials. Microwave radiation enables sample temperatures to be potentially changed or controlled more readily [7]. Any increase or decrease in the microwave input power leads to a corresponding increase or decrease in the temperature of the material undergoing cure. Unlike conventional heating which heats the material being processed, along with the walls of the oven and the air surrounding the process material, microwave heating affects only the material being processed. This makes microwave heating a more energy efficient method of heating materials being processed, and this translates into lower production costs for microwave heating [3]. Microwaves do not have any intrinsic difficulties associated with their use, as a result of this, microwave cured products are applied to many diverse industries [4]. The curing of epoxy resin by amine curing agents is expressed by the formula shown in figure below. The epoxy moieties of the DGEBA can react with either the primary or secondary amine to form an OH in the main chain as in (i) and (ii) which, later on, can react with another epoxide ring to further crosslink the resin. The relative rates of those three reactions are important for the final structure and properties of the cured resin[8]. This article presents the results of the infrared studies on the conventional and microwave cure of Araldite DLS 772 / 4 4’ DDS and Araldite LY 5052 / 4 4’ DDS epoxy II. EXPERIMENTAL 2.1 MATERIALS Araldite DLS 772 and Araldite LY 5052 were the epoxy resin used for this research. It was supplied by Hexcel, UK. Araldite DLS 772 has an epoxy equivalent of 192.33, while Araldite LY 5052 has an epoxy equivalent of 148. The hardener used for this study was 4 4’ Diaminodiphenyl sulfone. It was supplied by Sigma-Aldrich. www.theijes.com The IJES Page 12
  • 3. Infrared Studies Of Curing Of Araldite Dls 772 / 4 4’dds And... Figure 2 Chemical Structure of Epoxy Phenol Novalak Resin Figure 3 Chemical structure of 1 4, butanedioldiglycidyl ether O H 2N S NH2 O Figure 4 4, 4’ diphenyldiaminosulfone [4] III. CURING PROCEDURE In order to choose the appropriate stoichometric amine / epoxy (A/E) ratio value to be used for this research, Araldite LY 5052 / 4 4’ DDS and Araldite DLS 772 / 4 4’DDS epoxy systems were prepared with amine / epoxy stoichiometric ratios of 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2. DSC scans were carried out on these systems. The systems were heated at 10 K min-1 from 30 to 350 oC in order to cure the sample. It was then cooled back to 0 oC, and reheated at a heating rate of 10 K min-1 in order to determine the glass transition temperature value. The epoxy amine / epoxy ratio with the highest Tg was chosen for this research. Similar samples of Araldite LY 5052 / 4 4’ DDS and Araldite DLS 772 / 4 4’DDS epoxy system with amine / epoxy ratios of 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2 were prepared for microwave curing. A heating rate of 10 K min-1 was used to cure the sample from 30 to 310 oC, and allowed to cool. Pieces of the cured samples were extracted from the microwave sample tube, and a DSC scan was carried out on the extracted piece from 30 to 350 oC at a heating rate of 10 K min-1 in order to determine its glass transition temperature. 220 200 Tg (0C) 180 160 DSC 140 Microwave 120 100 80 60 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 A/E Molar Ratio (M) Figure 5 Plot of Glass Transition against Molar ratio for different stoichiometric ratios for both conventional and microwave cured samples of Araldite LY 5052 / 4 4’ DDS epoxy system. www.theijes.com The IJES Page 13
  • 4. Infrared Studies Of Curing Of Araldite Dls 772 / 4 4’dds And... 200 180 160 Tg (0C) 140 120 Conventional 100 Microwave 80 60 40 20 0 0.3 0.5 0.7 0.9 1.1 1.3 Molar Ratio Figure 6 Plot of Glass Transition against Molar ratio for different stoichiometric ratios for both conventional and microwave curing for Araldite DLS 772 / 4 4’ DDS epoxy system. Both plots show a increase in Tg values as the Amine / Epoxy ratio increases up to a maximum, and then the Tg starts to decrease. The highest Tg values of conventional and microwave heated samples occur at different stoichiometric ratios. The highest Tg value of the microwave cured sample occurs at a higher Amine / Epoxy Molar ratio than conventional heating. This is an early indication that the curing mechanisms for conventional and microwave curing are different. For both epoxy systems, the Amine / Epoxy ratio with the highest T g for both microwave and conventionally cured samples were was selected and used for all subsequent experiments in this research. Table 4.5 below show the selected Amine / Epoxy ratio from the conventionally and microwave cured samples which were used this research. Table 1 Stoichiometric ratios chosen for this research. Epoxy system Araldite LY 5052 / 4 4 DDS Araldite DLS 772 / 4 4 DDS Conventional (amine / epoxy ratio) 0.85 0.8 Microwave (amine / epoxy ratio) 1.0 1.1 An industrial oven was used for the thermal curing of the Araldite DLS 772 / 4 4’ DDS and Araldite LY 5052 / 4 4’DDS epoxy system. Samples weighing between 2-5 mg were placed in aluminium sample pans; and heated in an industrial oven to 30 , 60, 90, 120, 150, 180, 210, 240 degrees. The samples were held at these temperatures for 30 minutes. Figure 7 : Microwave Heated Calorimeter used for this research. A microwave calorimeter shown in figure 7 was used to carry out microwave curing of the samples. The microwave curing was carried out in a cylindrical brass, single mode cavity operating in a TE111 mode which was designed to give maximum field strength at the centre of gravity. A Hewlitt-Packard 8720ET was used to generate microwaves at a frequency of 2.45GHz; which were then amplified to a maximum power of 30W with a solid state amplifier. An Anritsu power meter was used to measure the transmitted and reflected powers. The power required for heating the sample was calculated by subtracting the transmitted and reflected powers from the amplifier power. This power is similar to the heat flow to the DSC cell in the sense that there will be a decrease in the microwave power during exothermic reaction, while an endothermic reaction will require an increase in the microwave power. www.theijes.com The IJES Page 14
  • 5. Infrared Studies Of Curing Of Araldite Dls 772 / 4 4’dds And... For microwave curing, epoxy resin samples weighing an average of 0.3g were poured in glass test tubes and placed in the centre of the cavity. A flouroptic thermometer was inserted in a 1.5 mm diameter glass tube placed in a test tube. Separate samples were heated to 30 , 60, 90, 120, 150, 180, 210, 240 degrees and held at these temperatures for 30 minutes. RESULTS AND DISCUSSION 3.1 Araldite LY 5052 / 4 4’ DDS and Araldite DLS 772 / 4 4 epoxy systems. FT-IR was used to study the changes in the epoxy peaks which occur when the curing reaction took place. The spectrum of an uncured mixture of Araldite LY 5052 / 4 4 ‘DDS epoxy system with an amine / epoxy ratio of 0.85 is shown in figure 5 below. 2.00 Absorbance 1.80 1.60 1.40 1.20 1.00 0.80 0.60 0.40 0.20 0.00 4000.00 3500.00 3000.00 2500.00 2000.00 1500.00 1000.00 500.00 Wavelength (cm -1) Figure 8 FT-IR Spectra of uncured Araldite LY 5052 / 4 4 ‘ DDS epoxy system with an amine / epoxy ratio of 0.85. 2.00 Absorbance 1.80 1.60 1.40 1510 1610 0 1150 1250 916 833 1.20 1.00 0.80 0.60 0.40 0.20 0.00 1600.00 1500.00 1400.00 1300.00 1200.00 1100.00 1000.00 900.00 800.00 -1 Wavelength (cm ) Figure 9 Expanded view of FT-IR Spectra of uncured 0.85M amine / epoxy ratio for Araldite LY 5052 / 4 4 ‘ DDS epoxy system . The spectrum in figure 9 shows a noticeable oxirane ring (epoxy) peak at 916 cm-1. This is the asymmetric ring stretching band of the epoxy ring [9-12]. The spectrum also shows the symmetric stretching of the epoxy ring at 1250cm -1. The bands at 1510cm-1 and 833 cm-1 are assigned to the p-phenylene groups [10, 11]. The aliphatic stretching vibration of – CH2- groups is shown as a peak at 2920cm-1 [10].The stretching vibration of the primary amino group (-NH2) which is from the hardener (4 4’ DDS) shows an absorption peak at 1610cm-1 [10].The peaks at 1250cm-1 and 1150 cm-1 are the strong asymmetric and symmetric SO2 stretching [10]. Figures 10 to 13 show the overlaid FT-IR spectra of Araldite LY 5052 / 4 4’ DDS and Araldite DLS 772 / 4 4’ DDS epoxy systems after conventional and microwave heating at 180 oC for 240 minutes www.theijes.com The IJES Page 15
  • 6. Infrared Studies Of Curing Of Araldite Dls 772 / 4 4’dds And... Figure 10 Overlaid FT-IR Spectra of Araldite LY 5052 / 4 4’ DDS with an amine / epoxy ratio of 0.85 after conventional and microwave heating at 180oC for 240 minutes. Figure 11 Expanded view of Overlaid FT-IR Spectra of Araldite LY 5052 / 4 4’ DDS with an amine / epoxy ratio of 0.85 after conventional and microwave heating at 180 oC for 240 minutes Figure 12 Overlaid FT-IR Spectra of Araldite DLS 772 / 4 4’ DDS with an amine / epoxy ratio of 0.8 after conventional and microwave heating at 180 oC for 240 minutes. www.theijes.com The IJES Page 16
  • 7. Infrared Studies Of Curing Of Araldite Dls 772 / 4 4’dds And... Figure 13 Expanded view of Overlaid FT-IR Spectra of Araldite DLS 772 / 4 4’ DDS with an amine / epoxy ratio of 0.8 after conventional and microwave heating at 180 oC for 240 minutes. For both epoxy systems, the infrared spectra of the specimens after they had been cured at 180oC for 240 minutes were noticeably different from the spectra of the uncured specimen. The prominent features that occurred during polymerization were the decreasing and almost complete disappearance of the epoxy ring at 915 cm-1 and 862 cm-1[9, 12]. The N-H stretch band at 1610cm-1 also decreased in size. The decrease in the epoxy and the amine bonds is an indication of the consumption of the epoxy and the amine bands during the reaction. The curing reaction occurs by the reaction of the end epoxy groups with the hardener. The epoxy rings open out and the molecules become linked in a three dimensional network. New absorptions were formed around 3400cm-1. This was as a result of the formation of the secondary amine and the hydroxyl groups during cure. The bands at 833 and 1510 cm-1 were unaffected during cure and thus remained constant [9, 11, 12]. The almost complete disappearance of the epoxy and the amine peaks at the end of the spectra showed that most of the epoxy and the amine group reacted during the curing process. These occurrences indicated that a crosslinked network was formed. Several samples of Araldite LY 5052 / 4 4’ DDS and Araldite DLS 772 / 4 4’ DDS were cured using both a DSC and a microwave heated cavity at 180 oC. At intervals of 30 minutes up to 240 minutes, a specimen was removed. The reaction was quickly stopped by dipping it into liquid nitrogen for about ten minutes. An infrared spectrum was then taken. The overlaid spectra for both the conventionally cured and microwave cured samples of both epoxy systems at different times at 180oC are shown in figures 14 to 19. Figure 14 Overlaid spectra for conventionally cured Araldite LY 5052 / 4 4’ DDS with an amine / epoxy ratio of 0.85 www.theijes.com The IJES Page 17
  • 8. Infrared Studies Of Curing Of Araldite Dls 772 / 4 4’dds And... Figure 15 Overlaid spectra for microwave cured Araldite LY 5052 / 4 4’ DDS with an amine / epoxy ratio of 0.85 Figure 16 Overlaid spectra for conventionally cured Araldite LY 5052 / 4 4’ DDS with an amine / epoxy ratio of 1.0 Figure 17 Overlaid spectra for microwave cured Araldite LY 5052 / 4 4’ DDS with an amine / epoxy ratio of 1.0 www.theijes.com The IJES Page 18
  • 9. Infrared Studies Of Curing Of Araldite Dls 772 / 4 4’dds And... Figure 18 Overlaid spectra for conventional cured Araldite DLS 772 / 4 4’ DDS with an amine / epoxy ratio of 0.8. Figure 19 Overlaid spectra for microwave cured Araldite DLS 772 / 4 4’ DDS with an amine / epoxy ratio of 0.8. The epoxide bands can be used to estimate the degrees of polymerization. The rate of polymerization can be estimated by following the loss of epoxide as the isothermal cure time increases. In order to estimate the changes in the epoxide concentrations during polymerization, the absorbance at 916 cm -1 is divided by the absorbance at 1510 cm-1 which was used as an internal standard [1, 13, 14]. The infrared spectra data used was in absorbance because as stated in Beer’s Law, the absorbance is linearly proportional to concentration [15]. A comparison of polymerization rates is shown in figure 20 for conventional and microwave curing of Araldite LY 5052 / 4 4 DDS different times at an isothermal temperature of 180 oC. 1 Conventional 0.9 Microwave 0.8 A916 / A1510 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 30 60 90 120 150 180 210 240 Time (mins) Figure 20 Epoxide absorbance normalised against the absorbance for phenyl for Araldite LY 5052 /4 4’DDS with an amine / epoxy ratio of 0.85 at different times at 180 oC during conventional and microwave heating. www.theijes.com The IJES Page 19
  • 10. Infrared Studies Of Curing Of Araldite Dls 772 / 4 4’dds And... It can be observed that there was an increase in the consumption of epoxide as the reaction time proceeded. Also, the rate of consumption of the epoxide was much faster in the microwave curing than in conventional curing at each measured time. Overall, there was a higher consumption of epoxy in the microwave curing than in the conventional curing. This enhancement in polymerization in the microwave region is very much anticipated because microwave heating directly heats the polymer molecules as a result of the relaxation of the polarized polymer dipoles along the electric field [9]. This allows more epoxy to be reacted with the amine in the curing reaction. Epoxide absorbance ratios for Araldite LY 5052 / 4 4’ DDS with an amine / epoxy ratio of 1.0 and Araldite DLS 772 / 4 4’ DDS with an amine / epoxy ratio of 0.8 epoxy systems are shown figures 21 – 24. The results all show that a higher rate of epoxy was consumed in microwave heating than in conventional heating, and a higher rate of polymerization for microwave. As explained, this is because of the ability of microwave energy to selectively heat the localised hotspot in a molecule unlike the conventional heating which requires the entire material to be heated first. 1 0.9 Conventional 0.8 Microwave A916 / A1510 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 30 60 90 120 Time (mins) 150 180 210 240 Figure 21 Epoxide absorbance normalised against the absorbance for phenyl for Araldite LY 5052 / 4 4’DDS with an amine / epoxy ratio of 1.0 at different times at 180 oC during conventional and microwave heating. 1 0.9 Conventional 0.8 Microwave A916 / A1510 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 30 60 90 120 Time 150 180 210 240 Figure 22 Epoxide absorbance normalised against the absorbance for phenyl for Araldite DLS 772 / 4 4’DDS with an amine / epoxy ratio of 0.8 at different times at 180 oC during conventional and microwave heating. www.theijes.com The IJES Page 20
  • 11. Infrared Studies Of Curing Of Araldite Dls 772 / 4 4’dds And... 1 0.9 Conventional 0.7 A916 / A1510 0.8 Microwave 0.6 0.5 0.4 0.3 0.2 0.1 0 0 30 60 90 120 150 180 210 240 Time (mins) Figure 23 Epoxide absorbance normalised against the absorbance for phenyl for Araldite DLS 772 / 4 4’DDS with an amine / epoxy ratio of 1.1 at different times at 180 oC during conventional and microwave heating. The amine bands were used to estimate the degrees of polymerization. The loss of the amine band during curing can also be used to follow the rate of polymerization as the isothermal cure time increases. In order to estimate the changes in the amine concentrations during polymerization, the absorbance at 1610 cm -1 is divided by the internal standard, which is the absorbance at 1510 cm -1 [1, 13, 14]. A comparison of polymerization rates using the amine band is shown in figure 24 for conventional and microwave curing of Araldite LY 5052 / 4 4 DDS an amine / epoxy ratio of 0.85 at different times at an isothermal temperature of 180 oC. 1 Conventional 0.9 Microwave A1610 / A1510 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 30 60 90 120 150 180 210 240 Time (mins) Figure 24 Amine absorbance normalised against the absorbance for phenyl for Araldite LY 5052 / 4 4’DDS with an amine / epoxy ratio of 0.85 at different times at 180 oC during conventional and microwave heating. It can be observed from figure 24 that the rate of consumption of the amine was much faster in the microwave curing than in conventional curing at each measured time. A higher consumption of amine in the microwave curing than in the conventional curing was observed. This enhancement in polymerization in the microwave region is very much anticipated because microwave heating directly heats the polymer molecules as a result of the relaxation of the polarized polymer dipoles along the electric field [16], allowing more amine to be consumed during the curing reaction. www.theijes.com The IJES Page 21
  • 12. Infrared Studies Of Curing Of Araldite Dls 772 / 4 4’dds And... The amine absorbance ratios Araldite LY 5052 / 4 4’ DDS with an amine / epoxy ratio of 1.0 and Araldite DLS 772 / 4 4’ DDS epoxy system with an amine / epoxy ratio of 0.8 are shown in figures 25 to 27 . As with the figures 21 to 24, the results all show that a higher rate of amine was consumed in microwave heating than in conventional heating, and a higher rate of polymerization for microwave. This is because of the ability of microwave energy to selectively heat the localised hotspot in a molecule unlike the conventional heating which requires the entire material to be heated first. 1 0.9 Conventional 0.8 Microwave A1610 / A1510 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 30 60 90 120 Time (mins) 150 180 210 240 Figure 25 Amine absorbance normalised against the absorbance for phenyl for Araldite LY 5052 / 4 4’DDS with an amine / epoxy ratio of 1.0 at different times at 180 oC during conventional and microwave heating. 0.9 0.8 Conventional A1610 / A1510 0.7 Microwave 0.6 0.5 0.4 0.3 0.2 0.1 0 0 30 60 90 120 150 Time (mins) 180 210 240 Figure 26 Amine absorbance normalised against the absorbance for phenyl for Araldite DLS 772 / 4 4’DDS with an amine / epoxy ratio of 0.8 at different times at 180 oC during conventional and microwave heating. www.theijes.com The IJES Page 22
  • 13. Infrared Studies Of Curing Of Araldite Dls 772 / 4 4’dds And... 1 0.9 A1610 / A1510 0.8 Conventional 0.7 Microwave 0.6 0.5 0.4 0.3 0.2 0.1 0 0 30 60 90 120 150 180 210 240 Time (mins) Figure 27 Amine absorbance normalised against the absorbance for phenyl for Araldite DLS 772 / 4 4’DDS with an amine / epoxy ratio of 1.1 at different times at 180 oC during conventional and microwave heating. CONCLUSION The similarity of the infrared spectra for both microwave and conventional curing of both epoxy systems is an indication that the curing reactions follows the same reaction pathway. For both Araldite LY 5052 / 4 4’ DDS and Araldite DLS 772 / 4 4’ DDS epoxy systems, the rate of consumption of the epoxy and amine groups was higher during the microwave curing reactions. This is because microwave heating directly heats the polymer molecules which leads to the relaxation of the polarized polymer dipoles along the electric field, allowing more epoxy and amine to be consumed during the curing reaction. REFERENCES [1.] [2.] [3.] [4.] [5.] [6.] [7.] [8.] [9.] [10.] [11.] [12.] [13.] [14.] [15.] [16.] Mertzel, E. and J.L. Koenig, Application of FTIR and NMR to epoxy resins. Advances in polymer science, 1986. 74: p. 75. Allen, R.O. and P. Sanderson, Characterization of Epoxy Glues with FTIR. Applied Spectroscopy Reviews, 1988. 24(3): p. 175187. Rozenberg, B., Kinetics, thermodynamics and mechanism of reactions of epoxy oligomers with amines. Epoxy resins and composites II, 1986: p. 113-165. Oleinik, E.F., Advances in polymer science, 1986. 80: p. 49. Metaxas, A.C. and R.J. Meredith, Industrial Microwave Heating. 1988: Peter Peregrinus Ltd. Ghoul, C., Microwave Curing of Diglycidyl Ether of Bisphenol A / Dicyandiamide Resin System, in Materials Science. 2003, University of Manchester. Hill, D.J.T., G.A. George, and D.G. Rogers, A systematic study of the microwave and thermal cure kinetics of the DGEBA/DDS and DGEBA/DDM epoxy-amine resin systems. Polymers for Advanced Technologies, 2002. 13(5): p. 353-362. in Three Bond Technical News. 1990, 32. p. 1-5. Smith, R.E., F.N. Larsen, and C.L. Long, Epoxy resin cure. II. FTIR analysis. Journal of Applied Polymer Science, 1984. 29(12): p. 3713-3726. Silverstein, R.M., G. Clayton Bassler, and T.C. Morrill, Spectrometric Identification Of Organic Compounds. Fifth ed. 1991. Cole, K.C., et al., Comparison of infrared spectroscopic methods for the quantitative analysis of epoxy resins used in carbonepoxy composite materials. Applied Spectroscopy, 1988. 42(5): p. 761-769. Cañavate, J., et al., Study of the curing process of an epoxy resin by FTIR spectroscopy. Polymer-Plastics Technology and Engineering, 2000. 39(5): p. 937-943. Feazel, C.E. and E.A. Verchot, A simple technique for use with infrared spectroscopy to study the curing of epoxy resins. Journal of Polymer Science, 1957. 25(110): p. 351-353. Schiering, D.W., et al., An infrared spectroscopic investigation of the curing reactions of the EPON 828/meta-phenylenediamine system. Journal of Applied Polymer Science, 1987. 34(7): p. 2367-2375. Smith, B.C., Fundamentals Of Fourier Transform Infrared Spectroscopy. First ed. 1996. Wei, J., M.C. Hawley, and M.T. Demeuse, Kinetics modeling and time-temperature-transformation diagram of microwave and thermal cure of epoxy resins. Polymer Engineering and Science, 1995. 35(6): p. 461-470. www.theijes.com The IJES Page 23