SlideShare a Scribd company logo
Faculty of Engineering
Calc. and Analytic geom. 1
ENB1101
Lectures 5-6
sinaiuniversity.net
Asst. Prof.
Dr. M. Basseem
Exercise
Consider 𝑦 =
𝑥𝑥 ln3𝑥
𝑒 𝑥sin−1𝑥
7/2
. Find 𝑦′
ln 𝑦 =
7
2
ln
𝑥𝑥 ln3𝑥
𝑒 𝑥sin−1𝑥
ln 𝑦 =
7
2
𝑥 ln 𝑥 + 3 ln ln 𝑥 − 𝑥 − ln sin−1
𝑥
By diff.
Solution
𝑦′
𝑦
=
7
2
1 + ln 𝑥 +
3
𝑥 ln 𝑥
−
1
2 𝑥
−
1
1 − 𝑥2 sin−1𝑥
𝑦′
=
7𝑦
2
1 + ln 𝑥 +
3
𝑥 ln 𝑥
−
1
2 𝑥
−
1
1 − 𝑥2 sin−1𝑥
Exercise
Consider 𝑓 𝑥 = 𝑥2 + 6 𝑥 + 3, 𝑥 ≥ −3.
Find 𝑓−1
′(3). Sketch 𝑓 and 𝑓−1
. Deduce its domain
and range.
∵ 𝑓 0 = 3
Solution
𝑓−1 ′(3) =
1
𝑓′ 𝑓−1
(3)
=
1
𝑓′ 0
=
1
6
.
𝑓′ 𝑥 = 2𝑥 + 6
Slide 1 - 4
Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
𝑓 𝑥 = 𝑥2
+ 6 𝑥 + 3 = 𝑥 + 3 2
− 6
𝑦 = 𝑥 + 3 2
− 6
𝑦 + 6 = 𝑥 + 3 2
𝑦 + 6 = 𝑥 + 3
𝑦 + 6 − 3 = 𝑥
∴ 𝑓−1
= 𝑥 + 6 − 3
Domain = [−3, ∞[ Range = [−6, ∞[
Domain = [−6, ∞[ Range = [−3, ∞[
(−3, −6)
(−6, −3)
Slide 1 - 5
Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
1
sinh csch
2 sinh
1
cosh sech
2 cosh
sinh cosh
tanh coth
cosh sinh
x x
x x
e e
x x
x
e e
x x
x
x x
x x
x x



 

 
 
Hyperbolic functions
DEFINITION
Slide 1 - 6
Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Note that sinh 𝑥 has domain and range
 cosh 𝑥 has domain and range [1, ∞[.
HYPERBOLIC FUNCTIONS
Slide 1 - 7
Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
The graph of tanh 𝑥 is shown.
It has the horizontal asymptotes y = ±1.
HYPERBOLIC FUNCTIONS
Slide 1 - 8
Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
 It can be proved that, if a heavy flexible cable
 is suspended between two points at the same
 height, it takes the shape of a curve with
 equation y = c + a cosh(x/a) called a catenary.
 The Latin word
catena means
‘chain.’
APPLICATIONS
Slide 1 - 9
Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
 Another application occurs in the
 description of ocean waves.
 The velocity of a water wave with length L moving across a
body of water with depth d is modeled by
the function
where g is the acceleration due to gravity.
2
tanh
2
gL d
v
L


 
  
 
APPLICATIONS
Slide 1 - 10
Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
 The hyperbolic functions satisfy
 a number of identities that are similar to
 well-known trigonometric identities.
HYPERBOLIC IDENTITIES
Slide 1 - 11
Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
2 2
2 2
sinh( ) sinh
cosh( ) cosh
cosh sinh 1
1 tanh sech
sinh( ) sinh cosh cosh sinh
cosh( ) cosh cosh sinh sinh
x x
x x
x x
x x
x y x y x y
x y x y x y
  
 
 
 
  
  
HYPERBOLIC IDENTITIES
 We list some identities here.
sinh 2𝑥 = 2 sinh 𝑥 cosh 𝑥
cosh 2𝑥 = cosh2
𝑥 + sinh2
𝑥
Slide 1 - 12
Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
 Prove:
a. cosh2x – sinh2x = 1
b. 1 – tanh2 x = sech2x
HYPERBOLIC FUNCTIONS Example 1
Slide 1 - 13
Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
2 2
2 2
2 2 2 2
cosh sinh
2 2
2 2
4 4
4
1
4
x x x x
x x x x
e e e e
x x
e e e e
 
 
   
 
  
   
   
   
 
 
HYPERBOLIC FUNCTIONS Example 1 a
Slide 1 - 14
Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
 We start with the identity proved in (a):
 cosh2x – sinh2x = 1
 If we divide both sides by cosh2x, we get:
2
2 2
2 2
sinh 1
1
cosh cosh
or 1 tanh sech
x
x x
x x
 
 
HYPERBOLIC FUNCTIONS Example 1 b
Slide 1 - 15
Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
 The identity proved in Example 1 a
 gives a clue to the reason for the name
 ‘hyperbolic’ functions, as follows.
HYPERBOLIC FUNCTIONS
Slide 1 - 16
Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
 The derivatives of the hyperbolic
 functions are easily computed.
For example,
(sinh ) cosh
2 2
x x x x
d d e e e e
x x
dx dx
 
 
 
  
 
 
DERIVATIVES OF HYPERBOLIC FUNCTIONS
Slide 1 - 17
Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
 We list the differentiation formulas for
 the hyperbolic functions here.
DERIVATIVES
Slide 1 - 18
Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
 Any of these differentiation rules can be combined with the
Chain Rule.
sinh
(cosh ) sinh
2
d d x
x x x
dx dx x
  
1.
𝑑
𝑑𝑥
sinh 𝑓 = cosh 𝑓 . 𝑓′
2.
𝑑
𝑑𝑥
cosh 𝑓 = sinh 𝑓 . 𝑓′
3.
𝑑
𝑑𝑥
tanh 𝑓 = sech2 𝑓 . 𝑓′
4.
𝑑
𝑑𝑥
sech 𝑓 = −sech 𝑓 tanh 𝑓 . 𝑓′
5.
𝑑
𝑑𝑥
csch 𝑓 = −csch 𝑓 coth 𝑓 . 𝑓′
6.
𝑑
𝑑𝑥
coth 𝑓 = −csch2 𝑓 . 𝑓′
Consider
𝑓 = 𝑓(𝑥)
Example:
Slide 1 - 19
Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
 You can see from the figures that sinh
 and tanh are one-to-one functions.
So, they have inverse functions denoted by
sinh−1
𝑥 and tanh−1
𝑥.
INVERSE HYPERBOLIC FUNCTIONS
Slide 1 - 20
Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
 This figure shows that cosh 𝑥 is not one-to-one.
However, when restricted to the domain
[0, ∞], it becomes one-to-one.
INVERSE FUNCTIONS
Slide 1 - 21
Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
1
1
1
sinh sinh
cosh cosh and 0
tanh tanh
y x y x
y x y x y
y x y x



  
   
  
Definition 2
INVERSE FUNCTIONS
 The remaining inverse hyperbolic functions
are defined similarly.
Slide 1 - 22
Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
 The graphs of sinh−1
𝑥,
cosh−1
𝑥 and tanh−1
𝑥 are
displayed.
INVERSE FUNCTIONS
𝑦 = sinh−1
𝑥
𝑦 = tanh−1 𝑥
𝑦 = cosh−1
𝑥
Slide 1 - 23
Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
 Since the hyperbolic functions are defined
in terms of exponential functions, it’s not
surprising to learn that the inverse hyperbolic
functions can be expressed in terms of logarithms.
INVERSE FUNCTIONS
Slide 1 - 24
Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
In particular, we have:
 
 
1 2
1 2
1 1
2
sinh ln 1
cosh ln 1 1
1
tanh ln 1 1
1
x x x x
x x x x
x
x x
x



   
   

 
   
 

 
INVERSE FUNCTIONS
Slide 1 - 25
Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Show that .
Let y = sinh-1 x. Then,
So, e y – 2x – e -y = 0
Or, multiplying by e y, e 2y – 2xe y – 1 = 0
This is really a quadratic equation in e y:
(e y )2 – 2x (e y ) – 1 = 0
 
1 2
sinh ln 1
x x x

  
sinh
2
y y
e e
x y


 
INVERSE FUNCTIONS
Slide 1 - 26
Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
 Solving by the quadratic formula,
 we get:

Note that e y > 0, but
So, the minus sign is inadmissible and we have:
Thus,
2
2
2 4 4
1
2
y x x
e x x
 
   
2
1 0
x x
  
2
1
y
e x x
  
 
2
ln( ) ln 1
y
y e x x
   
INVERSE FUNCTIONS
Slide 1 - 27
Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
, |𝑥| < 1 , |𝑥| > 1
Slide 1 - 28
Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Prove that .
 Let y = sinh-1 x. Then, sinh y = x.
 If we differentiate this equation implicitly
with respect to x, we get:
 As cosh2 y - sinh2 y = 1 and cosh y ≥ 0, we have:
 So,
1
2
1
(sinh )
1
d
x
dx x



cosh 1
dy
y
dx

2
cosh 1 sinh
y y
 
2 2
1 1 1
cosh 1 sinh 1
dy
dx y y x
  
 
DERIVATIVES
Slide 1 - 29
Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
 By another way, we have:
   
 
 
1 2
2
2
2 2
2
2
2 2
sinh ln 1
1
1
1
1
1
1 1
1 1
1
1 1
d d
x x x
dx dx
d
x x
dx
x x
x
x x x
x x
x
x x x

  
  
 
 
 
 
  
 
 
 

  
DERIVATIVES
Implicit Differentiation
Slide 1 - 31
Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Implicit Differentiation
So far, all the equations and functions we
looked at were all stated explicitly in terms
of one variable:
x
y
1

In this function, y is defined
explicitly in terms of x. If we re-
wrote it as 𝑥𝑦 = 1, y is now
defined implicitly in terms of x.
It is easy to find the derivative of an explicit
function, but what about:
5
3
4 2
3



 y
y
y
x
Slide 1 - 32
Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
2 2
1
x y
 
This is not a function,
but it would still be nice
to be able to find the
slope.
2 2
1
d d d
x y
dx dx dx
  Do the same thing to both sides.
2 2 0
dy
x y
dx
 
Note use of chain rule.
2 2
dy
y x
dx
 
2
2
dy x
dx y


dy x
dx y
 

Slide 1 - 33
Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
2
2 sin
y x y
 
2
2 sin
d d d
y x y
dx dx dx
 
This can’t be solved for y.
2 2 cos
dy dy
x y
dx dx
 
2 cos 2
dy dy
y x
dx dx
 
  2
2 cos
dy
x
y
dx


2
2 cos
dy x
dx y


This technique is called
implicit differentiation.
1 Differentiate both sides w.r.t. x.
2 Solve for .
dy
dx 
Slide 1 - 34
Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
4
5
2
3
3
4
i) x
x
y
y 


Find dy/dx if:
3
4
2
12
5
8
3 x
x
dx
dy
y
dx
dy
y 


  3
4
2
12
5
8
3 x
x
y
y
dx
dy



 
y
y
x
x
dx
dy
8
3
12
5
2
3
4



Examples.
Slide 1 - 35
Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Find
dy/dx
if:
2
2
2
2
sin
cos
cos
sin
ii) x
y
x
y 


)
2
(
cos
2
sin
)
2
(
sin
2
cos 2
2
2
2
x
x
dx
dy
y
y
x
x
dx
dy
y
y 















2
2
2
2
sin
2
cos
2
sin
2
cos
2 x
x
x
x
dx
dy
y
y
dx
dy
y
y 


  2
2
2
2
sin
2
cos
2
sin
2
cos
2 x
x
x
x
y
y
y
y
dx
dy



 
2
2
2
2
sin
2
cos
2
sin
2
cos
2
y
y
y
y
x
x
x
x
dx
dy



 
 
2
2
2
2
sin
cos
sin
cos
y
y
y
x
x
x
dx
dy



Slide 1 - 36
Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Find
dy/dx
if:
8
4
5
3
iii) 3
2
2


 y
xy
x
0
12
10
5
6 2
2




dx
dy
y
dx
dy
xy
y
x
Product
Rule!
  2
2
5
6
12
10 y
x
y
xy
dx
dy




 
2
2
12
10
5
6
y
xy
y
x
dx
dy




Slide 1 - 37
Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
We need the slope. Since we can’t solve for y, we use implicit
differentiation to solve for .
dy
dx
2 2
7
x xy y
   ( 1,2)

2 2
7
x xy y
  
2 2 0
dy
dy
x y
x y
dx
dx
 
  

 
 
Note product rule.
2 2 0
dy dy
x x y y
dx dx
   
  2
2
dy
y x
y x
dx
 

2
2
dy y x
dx y x



 
 
2 2 1
2 2 1
m
 

  
2 2
4 1



4
5


Find the equations of the lines tangent and normal to the curve
at .
Slide 1 - 38
Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
2 2
7
x xy y
   ( 1,2)

4
5
m 
tangent:
 
4
2 1
5
y x
  
4 4
2
5 5
y x
  
4 14
5 5
y x
 

Find the equations of the lines tangent and normal to the curve
at .
normal:
 
5
2 1
4
y x
   
5 5
2
4 4
y x
   
5 3
4 4
y x
  
Normal line is
perpendicular
to tangent
)
( 1
1 x
x
m
y
y 


Eq. of straight line
Slide 1 - 39
Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Example. Find derivative at (1, 1)
x
x
y
x
y



2
3
3
2
Product Rule is
easier than quotient
rule, so let’s cross
multiply!
3
3
3
2
x
xy
x
y 


2
3
2
2
3
3
3
2 x
y
dx
dy
xy
x
dx
dy
y 



  2
3
2
6
3
2 x
y
xy
y
dx
dy



 
2
2
3
3
2
6
xy
y
x
y
dx
dy



 
2
2
3
)
1
)(
1
(
3
)
1
(
2
)
1
(
6
)
1
(



dx
dy
5
1
5




dx
dy
Slide 1 - 40
Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Higher Order Derivatives
Find if .
2
2
d y
dx
3 2
2 3 7
x y
 
3 2
2 3 7
x y
 
2
6 6 0
x y y
 
2
6 6
y y x

  
2
6
6
x
y
y

 

2
x
y
y
 
2
2
2
y x x y
y
y

 
 
2
2
2x x
y y
y y
 
 
2 2
2
2x x
y
y
x
y
y
   
4
3
2x x
y
y y
  
Substitute
back into the
equation.
y

Derivatives of
Parametric Equations
Lesson 10.2
Derivative of Parametric Equations
Consider the graph of
x = 2 sin t, y = cos t
We seek the slope, that
is
𝑑𝑦
𝑑𝑥
=
𝑑𝑦
𝑑𝑡
.
𝑑𝑡
𝑑𝑥
For parametric equations:
𝑑𝑦
𝑑𝑥
=
𝑑𝑦/𝑑𝑡
𝑑𝑥/𝑑𝑡
 For our example :
𝑑𝑦
𝑑𝑥
=
− sin 𝑡
2 cos 𝑡
=
− tan 𝑡
2
Second Derivatives
The second derivative is the derivative of the
first derivative
But the first derivative is a function of t
 We seek the derivative with respect to x
 We must use the chain rule
𝑑2𝑦
𝑑𝑥2 =
𝑑
𝑑𝑥
𝑦′
=
𝑑
𝑑𝑡
𝑦′
.
𝑑𝑡
𝑑𝑥
=
𝑑
𝑑𝑡
𝑦′
𝑑𝑥
𝑑𝑡
Second Derivatives
Find the second derivative of the parametric
equations
 x = 3 + 4cos t
y = 1 – sin t
 First derivative:
𝑑𝑦
𝑑𝑥
=
𝑦.
𝑥. =
− 𝑐𝑜𝑠 𝑡
−4 sin 𝑡
=
cot 𝑡
4
 Second derivative:
𝑑2𝑦
𝑑𝑥2 =
𝑑
𝑑𝑡
𝑦′
.
𝑑𝑡
𝑑𝑥
=
−1
4
csc2𝑡
−4 sin 𝑡
∴ 𝑦′′
=
1
16 sin3𝑡
Try This!
Where does the curve described by the
parametric equations have a horizontal tangent?
 x = t – 4
y = (t 2 + t)2
 Find the derivative
 For what value of t does dy/dx = 0?
Exercise
Consider 𝑥 = 2 sin
𝑡+1
𝑡−1
, 𝑦 = cos
𝑡+1
𝑡−1
. Prove 𝑦′′ =
−1
4 𝑦3
∵ cos2
𝜃 + sin2
𝜃 = 1
∴
𝑥2
4
+ 𝑦2
= 1
𝑥
2
+ 2𝑦𝑦′ = 0
∴ 𝑦′
=
−𝑥
4𝑦
By diff.
4𝑦′′
=
−𝑦+𝑥𝑦′
𝑦2
4𝑦′′
=
−𝑦+𝑥
−𝑥
4𝑦
𝑦2
By diff.
4𝑦′′
=
−𝑦2−
𝑥2
4
𝑦3
𝑦′′
=
−1
4𝑦3
Solution
Exercise
i) Consider
∵ cos 2𝛽 = 1 − 2 sin2
𝛽
∴ 𝑦 = 1 − 2𝑥2
Solution
𝑦′
= −4 𝑥 → 𝑦′ 2
= 16𝑥2
𝑦′′
= −4
𝑦′ 2
𝑦′′
= −64𝑥2
= 32 −2𝑥2
= 32(𝑦 − 1)
𝑦 = cos 2
𝑡
1−𝑡
, 𝑥 = sin
𝑡
1−𝑡
. Prove
𝑦′ 2𝑦′′ = 32(𝑦 − 1)
Slide 1 - 48
Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Find
dy/dx
if:    .
tanh
sin
5 2
1
y
xy
xy

 
  y
h
y
y
x
x
yy
y
x
y
x
y
e x
y 2
4
2
2
ln
sec
'
1
1
'
2
5
ln
' 


















.
1
10
ln
sec
1
5
'
4
2
ln
2
4
2
2
ln
y
x
yx
x
e
y
h
y
x
y
e
x
y
y
x
y
x
y






ii) Find 𝑦’ for:
Slide 1 - 49
Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Introduction to integrtion
 In differentiation, the differential coefficient
𝑑𝑦
𝑑𝑥
indicates
that a function of x is being differentiated with respect
to x, the dx indicating that it is “with respect to x”.
 In integration, the variable of integration is shown by
adding d(the variable) after the function to be
integrated. When we want to integrate a function, we
use a special notation: 𝒇 𝒙 𝒅𝒙.
 Thus, to integrate 4x, we will write it as follows:
49
Slide 1 - 50
Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Introduction
4𝑥 𝒅𝒙 = 2x2
+ c , c ∈ ℝ.
Integral
sign
This term is called
the integrand
There must always be
a term of the form dx
Constant of
integration
50
Slide 1 - 51
Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Indefinite integral
 Note that along with the integral sign ( 𝑑𝑥), there is a term of the form dx,
which must always be written, and which indicates the variable involved, in
our example x.
 We say that 4x is integrated with respect x, i.e: 𝟒𝒙 𝒅𝒙
 The function being integrated is called the integrand.
 Technically, integrals of this type are called indefinite integrals, to
distinguish them from definite integrals, which we will deal with later.
 When you are required to evaluate an indefinite integral, your answer must
always include a constant of integration.; i.e:
𝟒𝒙 𝒅𝒙 = 2𝑥2 + c; where c ∈ ℝ
51
Slide 1 - 52
Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Definition of anti-derivative
 Formally, we define the anti-derivative
as: If f(x) is a continuous function and F(x)
is the function whose derivative is f(x), i.e.:
𝑭′
(x) = f(x) , then:
𝒇 𝒙 𝒅𝒙 = F(x) + c;
where c is any arbitrary constant.
52
Slide 1 - 53
Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Table of
INTEGRATION
Slide 1 - 54
Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
i)
𝑑𝑥
𝑥 1+ln 𝑥 3 •
𝑓′𝑑𝑥
𝑓 𝑛 =
𝑓−𝑛+1
−𝑛+1
+ 𝑐
=
1+ln 𝑥 −2
−2
+c
ii)
1+tan 𝑥 3𝑑𝑥
1−𝑠𝑖𝑛2 𝑥
• 𝑓𝑛
𝑓′
𝑑𝑥 =
𝑓𝑛+1
𝑛+1
+ 𝑐
=
1+tan 𝑥 4
4
+c
=
1 + tan 𝑥 3𝑑𝑥
𝑐𝑜𝑠2 𝑥
= sec2 𝑥 1 + tan 𝑥 3𝑑𝑥
Examples. Find the following integrals:
Slide 1 - 55
Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
iii)
1−2𝑥3 𝑑𝑥
2𝑥−𝑥4+1
•
𝑓′𝑑𝑥
𝑓
= 2 𝑓 + 𝑐
=
1
2
2 1−2𝑥3 𝑑𝑥
2𝑥−𝑥4+1
=
1
2
. 2 2𝑥 − 𝑥4 + 1 + 𝐶
•
𝑓′𝑑𝑥
𝑎2−𝑓2
= sin−1 𝑓
𝑎
+ 𝑐
iv)
𝑑𝑥
𝑥 4−9 ln2 𝑥
=
1
3
. sin−1 3 ln 𝑥
2
+ 𝐶
=
1
3
3𝑑𝑥
𝑥 4− 3 ln 𝑥 2
Slide 1 - 56
Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
iv)
3+𝑥 𝑑𝑥
𝑥−5
=
𝑥−5 +3+5
𝑥−5
𝑑𝑥
= 1 +
8
𝑥−5
𝑑𝑥
= 𝑥 + 8 ln |𝑥 − 5| + 𝑐
v)
𝑑𝑥
sin−1 𝑥 1−𝑥2
•
𝑓′𝑑𝑥
𝑓
= ln |𝑓| + 𝑐
= ln | sin−1
𝑥 | + 𝑐
Slide 1 - 57
Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
vi)
1+sin 𝑥 𝑑𝑥
cos2𝑥
= sec2
𝑥 + tan 𝑥 sec 𝑥 𝑑𝑥
= tan 𝑥 + sec 𝑥 + 𝑐
vii)
1−cos 2𝑥 𝑑𝑥
sin2𝑥
=
1−cos 2𝑥 𝑑𝑥
1
2 1−cos 2𝑥
= 2 𝑑𝑥 = 2𝑥 + 𝑐.
• sin2 𝑥 = 1
2 1 − cos 2𝑥
• cos2
𝑥 = 1
2 1 + cos 2𝑥
Note:
Slide 1 - 58
Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
viii) 1 + cos 𝑥 2
𝑑𝑥
= 1 + 2 cos 𝑥 + cos2
𝑥 𝑑𝑥
= 1 + 2 cos 𝑥 + 1
2 1 + cos 2𝑥 𝑑𝑥
= 𝑥 + 2 sin 𝑥 + 1
2 𝑥 +
sin 2𝑥
2
+ 𝑐
ix) cos3
𝑥 𝑑𝑥
= cos2
𝑥 cos 𝑥 𝑑𝑥
= 1 − sin2
𝑥 cos 𝑥 𝑑𝑥
= cos 𝑥 − sin2
𝑥 cos 𝑥 𝑑𝑥 = sin 𝑥 −
sin3𝑥
3
+ 𝑐
Slide 1 - 59
Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
x) cos 𝑥 + sin 𝑥 2
𝑑𝑥
= cos2
𝑥 + sin2
𝑥 + 2 sin 𝑥 cos 𝑥 𝑑𝑥
= 1 + sin 2𝑥 𝑑𝑥
= 𝑥 −
cos 2𝑥
2
+ 𝑐
Slide 1 - 60
Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
xi) tan 𝑥 ln | cos 𝑥 | 𝑑𝑥
=−
ln2| cos 𝑥|
2
+ 𝑐
xii)
𝑒𝑥+𝑒2𝑥
𝑒2𝑥+1
𝑑𝑥
=
1
2
ln 𝑒2𝑥
+ 1 + tan−1
𝑒𝑥
+ 1
•
𝑓′𝑑𝑥
𝑓
= ln |𝑓| + 𝑐
•
𝑓′𝑑𝑥
𝑎2+𝑓2 =
1
𝑎
tan−1 𝑓
𝑎
+ 𝑐
=
1
2
2𝑒2𝑥
𝑒2𝑥+1
+
𝑒𝑥
(𝑒𝑥)2+1
𝑑𝑥
Slide 1 - 61
Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
xiii)
sin 𝑥 cos 𝑥
sin4 𝑥+ cos4 𝑥
𝑑𝑥
÷ cos4
𝑥
=
sin 𝑥
cos3𝑥
tan4 𝑥+1
𝑑𝑥
=
1
2
2 tan 𝑥sec2𝑥
tan2𝑥 2+1
𝑑𝑥
=
1
2
tan−1
tan2
𝑥 + 𝑐
•
𝑓′𝑑𝑥
𝑎2+𝑓2 =
1
𝑎
tan−1 𝑓
𝑎
+ 𝑐
Slide 1 - 62
Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
xiv)
sec 𝑥 cos 2𝑥
sin 𝑥+sec 𝑥
𝑑𝑥
÷ sec 𝑥
=
cos 2𝑥
sin 𝑥 cos 𝑥+1
𝑑𝑥
=
cos 2𝑥
sin 2𝑥
2+1
𝑑𝑥
= ln |
sin 2𝑥
2
+ 1| + 𝑐
Slide 1 - 63
Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
xv)
sec 𝑥+ tan 𝑥
sec 𝑥− tan 𝑥
𝑑𝑥
=
sec 𝑥+ tan 𝑥
sec 𝑥− tan 𝑥
.
sec 𝑥+ tan 𝑥
sec 𝑥+ tan 𝑥
𝑑𝑥
=
sec 𝑥+ tan 𝑥 2
sec2 𝑥−tan2 𝑥
𝑑𝑥
= sec2
𝑥 + sec2
𝑥 − 1 + 2 sec 𝑥 tan 𝑥 𝑑𝑥
tan2
𝑥
= 2 tan 𝑥 − 𝑥 + 2 sec 𝑥 + 𝑐.
 𝑡𝑎𝑛2𝑥 + 1 = 𝑠𝑒𝑐2𝑥
Slide 1 - 64
Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 1 - 65
Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 1 - 66
Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
THANK YOU
@Sinaiunieg www.su.edu.eg
info@su.edu.eg

More Related Content

PPT
Sadiq Hussain
PPT
Top schools in noida
PPT
Top Schools in delhi NCR
PDF
On Application of Power Series Solution of Bessel Problems to the Problems of...
PDF
PDF
03_AJMS_209_19_RA.pdf
PDF
03_AJMS_209_19_RA.pdf
PPT
math differentiation equation
Sadiq Hussain
Top schools in noida
Top Schools in delhi NCR
On Application of Power Series Solution of Bessel Problems to the Problems of...
03_AJMS_209_19_RA.pdf
03_AJMS_209_19_RA.pdf
math differentiation equation

Similar to Calculus 05-6 ccccccccccccccccccccccc.ppsx (20)

PPT
B.tech admission in india
PPT
first order ode with its application
PPT
B.tech admission in india
PDF
PPT
44558176 chapter-2-stress-and-strain-axial-loading
PPTX
11.2 graphing linear equations in two variables
PPTX
HOMOGENEOUS DIFFERENTIAL LINEAR EQUATION.pptx
PPTX
Physical Chemistry Assignment Help
PDF
Solution manual for introduction to nonlinear finite element analysis nam-h...
PDF
Lecture2 xing
PDF
boolean_algebra.pdf for discrete mathematics
PPT
Mba admission in india
PDF
PPTX
20200831-XII-MATHS-CH-5-2 OF 4-PPT cont
PPTX
20200831-XII-MATHS-CH-5-2 OF 4-PPT.pptxm
PPT
physics430_lecture11.ppt
PDF
Calculus 08 techniques_of_integration
PDF
Maths Notes - Differential Equations
PPTX
Ankit vyas
PDF
Implicit Differentiation, Part 1
B.tech admission in india
first order ode with its application
B.tech admission in india
44558176 chapter-2-stress-and-strain-axial-loading
11.2 graphing linear equations in two variables
HOMOGENEOUS DIFFERENTIAL LINEAR EQUATION.pptx
Physical Chemistry Assignment Help
Solution manual for introduction to nonlinear finite element analysis nam-h...
Lecture2 xing
boolean_algebra.pdf for discrete mathematics
Mba admission in india
20200831-XII-MATHS-CH-5-2 OF 4-PPT cont
20200831-XII-MATHS-CH-5-2 OF 4-PPT.pptxm
physics430_lecture11.ppt
Calculus 08 techniques_of_integration
Maths Notes - Differential Equations
Ankit vyas
Implicit Differentiation, Part 1
Ad

Recently uploaded (20)

PPTX
20th Century Theater, Methods, History.pptx
PDF
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
PDF
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
PDF
Practical Manual AGRO-233 Principles and Practices of Natural Farming
PDF
What if we spent less time fighting change, and more time building what’s rig...
PDF
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
PPTX
B.Sc. DS Unit 2 Software Engineering.pptx
PDF
Computing-Curriculum for Schools in Ghana
PDF
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
DOC
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
PDF
Hazard Identification & Risk Assessment .pdf
PDF
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
PDF
IGGE1 Understanding the Self1234567891011
PDF
MBA _Common_ 2nd year Syllabus _2021-22_.pdf
PPTX
Introduction to Building Materials
PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PDF
My India Quiz Book_20210205121199924.pdf
PDF
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
PDF
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
PDF
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
20th Century Theater, Methods, History.pptx
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
Practical Manual AGRO-233 Principles and Practices of Natural Farming
What if we spent less time fighting change, and more time building what’s rig...
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
B.Sc. DS Unit 2 Software Engineering.pptx
Computing-Curriculum for Schools in Ghana
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
Hazard Identification & Risk Assessment .pdf
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
IGGE1 Understanding the Self1234567891011
MBA _Common_ 2nd year Syllabus _2021-22_.pdf
Introduction to Building Materials
Chinmaya Tiranga quiz Grand Finale.pdf
My India Quiz Book_20210205121199924.pdf
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
Ad

Calculus 05-6 ccccccccccccccccccccccc.ppsx

  • 1. Faculty of Engineering Calc. and Analytic geom. 1 ENB1101 Lectures 5-6 sinaiuniversity.net Asst. Prof. Dr. M. Basseem
  • 2. Exercise Consider 𝑦 = 𝑥𝑥 ln3𝑥 𝑒 𝑥sin−1𝑥 7/2 . Find 𝑦′ ln 𝑦 = 7 2 ln 𝑥𝑥 ln3𝑥 𝑒 𝑥sin−1𝑥 ln 𝑦 = 7 2 𝑥 ln 𝑥 + 3 ln ln 𝑥 − 𝑥 − ln sin−1 𝑥 By diff. Solution 𝑦′ 𝑦 = 7 2 1 + ln 𝑥 + 3 𝑥 ln 𝑥 − 1 2 𝑥 − 1 1 − 𝑥2 sin−1𝑥 𝑦′ = 7𝑦 2 1 + ln 𝑥 + 3 𝑥 ln 𝑥 − 1 2 𝑥 − 1 1 − 𝑥2 sin−1𝑥
  • 3. Exercise Consider 𝑓 𝑥 = 𝑥2 + 6 𝑥 + 3, 𝑥 ≥ −3. Find 𝑓−1 ′(3). Sketch 𝑓 and 𝑓−1 . Deduce its domain and range. ∵ 𝑓 0 = 3 Solution 𝑓−1 ′(3) = 1 𝑓′ 𝑓−1 (3) = 1 𝑓′ 0 = 1 6 . 𝑓′ 𝑥 = 2𝑥 + 6
  • 4. Slide 1 - 4 Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 𝑓 𝑥 = 𝑥2 + 6 𝑥 + 3 = 𝑥 + 3 2 − 6 𝑦 = 𝑥 + 3 2 − 6 𝑦 + 6 = 𝑥 + 3 2 𝑦 + 6 = 𝑥 + 3 𝑦 + 6 − 3 = 𝑥 ∴ 𝑓−1 = 𝑥 + 6 − 3 Domain = [−3, ∞[ Range = [−6, ∞[ Domain = [−6, ∞[ Range = [−3, ∞[ (−3, −6) (−6, −3)
  • 5. Slide 1 - 5 Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 1 sinh csch 2 sinh 1 cosh sech 2 cosh sinh cosh tanh coth cosh sinh x x x x e e x x x e e x x x x x x x x x           Hyperbolic functions DEFINITION
  • 6. Slide 1 - 6 Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Note that sinh 𝑥 has domain and range  cosh 𝑥 has domain and range [1, ∞[. HYPERBOLIC FUNCTIONS
  • 7. Slide 1 - 7 Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley The graph of tanh 𝑥 is shown. It has the horizontal asymptotes y = ±1. HYPERBOLIC FUNCTIONS
  • 8. Slide 1 - 8 Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley  It can be proved that, if a heavy flexible cable  is suspended between two points at the same  height, it takes the shape of a curve with  equation y = c + a cosh(x/a) called a catenary.  The Latin word catena means ‘chain.’ APPLICATIONS
  • 9. Slide 1 - 9 Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley  Another application occurs in the  description of ocean waves.  The velocity of a water wave with length L moving across a body of water with depth d is modeled by the function where g is the acceleration due to gravity. 2 tanh 2 gL d v L          APPLICATIONS
  • 10. Slide 1 - 10 Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley  The hyperbolic functions satisfy  a number of identities that are similar to  well-known trigonometric identities. HYPERBOLIC IDENTITIES
  • 11. Slide 1 - 11 Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 2 2 2 2 sinh( ) sinh cosh( ) cosh cosh sinh 1 1 tanh sech sinh( ) sinh cosh cosh sinh cosh( ) cosh cosh sinh sinh x x x x x x x x x y x y x y x y x y x y                HYPERBOLIC IDENTITIES  We list some identities here. sinh 2𝑥 = 2 sinh 𝑥 cosh 𝑥 cosh 2𝑥 = cosh2 𝑥 + sinh2 𝑥
  • 12. Slide 1 - 12 Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley  Prove: a. cosh2x – sinh2x = 1 b. 1 – tanh2 x = sech2x HYPERBOLIC FUNCTIONS Example 1
  • 13. Slide 1 - 13 Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 2 2 2 2 2 2 2 2 cosh sinh 2 2 2 2 4 4 4 1 4 x x x x x x x x e e e e x x e e e e                              HYPERBOLIC FUNCTIONS Example 1 a
  • 14. Slide 1 - 14 Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley  We start with the identity proved in (a):  cosh2x – sinh2x = 1  If we divide both sides by cosh2x, we get: 2 2 2 2 2 sinh 1 1 cosh cosh or 1 tanh sech x x x x x     HYPERBOLIC FUNCTIONS Example 1 b
  • 15. Slide 1 - 15 Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley  The identity proved in Example 1 a  gives a clue to the reason for the name  ‘hyperbolic’ functions, as follows. HYPERBOLIC FUNCTIONS
  • 16. Slide 1 - 16 Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley  The derivatives of the hyperbolic  functions are easily computed. For example, (sinh ) cosh 2 2 x x x x d d e e e e x x dx dx              DERIVATIVES OF HYPERBOLIC FUNCTIONS
  • 17. Slide 1 - 17 Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley  We list the differentiation formulas for  the hyperbolic functions here. DERIVATIVES
  • 18. Slide 1 - 18 Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley  Any of these differentiation rules can be combined with the Chain Rule. sinh (cosh ) sinh 2 d d x x x x dx dx x    1. 𝑑 𝑑𝑥 sinh 𝑓 = cosh 𝑓 . 𝑓′ 2. 𝑑 𝑑𝑥 cosh 𝑓 = sinh 𝑓 . 𝑓′ 3. 𝑑 𝑑𝑥 tanh 𝑓 = sech2 𝑓 . 𝑓′ 4. 𝑑 𝑑𝑥 sech 𝑓 = −sech 𝑓 tanh 𝑓 . 𝑓′ 5. 𝑑 𝑑𝑥 csch 𝑓 = −csch 𝑓 coth 𝑓 . 𝑓′ 6. 𝑑 𝑑𝑥 coth 𝑓 = −csch2 𝑓 . 𝑓′ Consider 𝑓 = 𝑓(𝑥) Example:
  • 19. Slide 1 - 19 Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley  You can see from the figures that sinh  and tanh are one-to-one functions. So, they have inverse functions denoted by sinh−1 𝑥 and tanh−1 𝑥. INVERSE HYPERBOLIC FUNCTIONS
  • 20. Slide 1 - 20 Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley  This figure shows that cosh 𝑥 is not one-to-one. However, when restricted to the domain [0, ∞], it becomes one-to-one. INVERSE FUNCTIONS
  • 21. Slide 1 - 21 Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 1 1 1 sinh sinh cosh cosh and 0 tanh tanh y x y x y x y x y y x y x              Definition 2 INVERSE FUNCTIONS  The remaining inverse hyperbolic functions are defined similarly.
  • 22. Slide 1 - 22 Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley  The graphs of sinh−1 𝑥, cosh−1 𝑥 and tanh−1 𝑥 are displayed. INVERSE FUNCTIONS 𝑦 = sinh−1 𝑥 𝑦 = tanh−1 𝑥 𝑦 = cosh−1 𝑥
  • 23. Slide 1 - 23 Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley  Since the hyperbolic functions are defined in terms of exponential functions, it’s not surprising to learn that the inverse hyperbolic functions can be expressed in terms of logarithms. INVERSE FUNCTIONS
  • 24. Slide 1 - 24 Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley In particular, we have:     1 2 1 2 1 1 2 sinh ln 1 cosh ln 1 1 1 tanh ln 1 1 1 x x x x x x x x x x x x                        INVERSE FUNCTIONS
  • 25. Slide 1 - 25 Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Show that . Let y = sinh-1 x. Then, So, e y – 2x – e -y = 0 Or, multiplying by e y, e 2y – 2xe y – 1 = 0 This is really a quadratic equation in e y: (e y )2 – 2x (e y ) – 1 = 0   1 2 sinh ln 1 x x x     sinh 2 y y e e x y     INVERSE FUNCTIONS
  • 26. Slide 1 - 26 Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley  Solving by the quadratic formula,  we get:  Note that e y > 0, but So, the minus sign is inadmissible and we have: Thus, 2 2 2 4 4 1 2 y x x e x x       2 1 0 x x    2 1 y e x x      2 ln( ) ln 1 y y e x x     INVERSE FUNCTIONS
  • 27. Slide 1 - 27 Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley , |𝑥| < 1 , |𝑥| > 1
  • 28. Slide 1 - 28 Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Prove that .  Let y = sinh-1 x. Then, sinh y = x.  If we differentiate this equation implicitly with respect to x, we get:  As cosh2 y - sinh2 y = 1 and cosh y ≥ 0, we have:  So, 1 2 1 (sinh ) 1 d x dx x    cosh 1 dy y dx  2 cosh 1 sinh y y   2 2 1 1 1 cosh 1 sinh 1 dy dx y y x      DERIVATIVES
  • 29. Slide 1 - 29 Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley  By another way, we have:         1 2 2 2 2 2 2 2 2 2 sinh ln 1 1 1 1 1 1 1 1 1 1 1 1 1 d d x x x dx dx d x x dx x x x x x x x x x x x x                             DERIVATIVES
  • 31. Slide 1 - 31 Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Implicit Differentiation So far, all the equations and functions we looked at were all stated explicitly in terms of one variable: x y 1  In this function, y is defined explicitly in terms of x. If we re- wrote it as 𝑥𝑦 = 1, y is now defined implicitly in terms of x. It is easy to find the derivative of an explicit function, but what about: 5 3 4 2 3     y y y x
  • 32. Slide 1 - 32 Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 2 2 1 x y   This is not a function, but it would still be nice to be able to find the slope. 2 2 1 d d d x y dx dx dx   Do the same thing to both sides. 2 2 0 dy x y dx   Note use of chain rule. 2 2 dy y x dx   2 2 dy x dx y   dy x dx y   
  • 33. Slide 1 - 33 Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 2 2 sin y x y   2 2 sin d d d y x y dx dx dx   This can’t be solved for y. 2 2 cos dy dy x y dx dx   2 cos 2 dy dy y x dx dx     2 2 cos dy x y dx   2 2 cos dy x dx y   This technique is called implicit differentiation. 1 Differentiate both sides w.r.t. x. 2 Solve for . dy dx 
  • 34. Slide 1 - 34 Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 4 5 2 3 3 4 i) x x y y    Find dy/dx if: 3 4 2 12 5 8 3 x x dx dy y dx dy y      3 4 2 12 5 8 3 x x y y dx dy      y y x x dx dy 8 3 12 5 2 3 4    Examples.
  • 35. Slide 1 - 35 Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Find dy/dx if: 2 2 2 2 sin cos cos sin ii) x y x y    ) 2 ( cos 2 sin ) 2 ( sin 2 cos 2 2 2 2 x x dx dy y y x x dx dy y y                 2 2 2 2 sin 2 cos 2 sin 2 cos 2 x x x x dx dy y y dx dy y y      2 2 2 2 sin 2 cos 2 sin 2 cos 2 x x x x y y y y dx dy      2 2 2 2 sin 2 cos 2 sin 2 cos 2 y y y y x x x x dx dy        2 2 2 2 sin cos sin cos y y y x x x dx dy   
  • 36. Slide 1 - 36 Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Find dy/dx if: 8 4 5 3 iii) 3 2 2    y xy x 0 12 10 5 6 2 2     dx dy y dx dy xy y x Product Rule!   2 2 5 6 12 10 y x y xy dx dy       2 2 12 10 5 6 y xy y x dx dy    
  • 37. Slide 1 - 37 Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley We need the slope. Since we can’t solve for y, we use implicit differentiation to solve for . dy dx 2 2 7 x xy y    ( 1,2)  2 2 7 x xy y    2 2 0 dy dy x y x y dx dx           Note product rule. 2 2 0 dy dy x x y y dx dx       2 2 dy y x y x dx    2 2 dy y x dx y x        2 2 1 2 2 1 m       2 2 4 1    4 5   Find the equations of the lines tangent and normal to the curve at .
  • 38. Slide 1 - 38 Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 2 2 7 x xy y    ( 1,2)  4 5 m  tangent:   4 2 1 5 y x    4 4 2 5 5 y x    4 14 5 5 y x    Find the equations of the lines tangent and normal to the curve at . normal:   5 2 1 4 y x     5 5 2 4 4 y x     5 3 4 4 y x    Normal line is perpendicular to tangent ) ( 1 1 x x m y y    Eq. of straight line
  • 39. Slide 1 - 39 Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Example. Find derivative at (1, 1) x x y x y    2 3 3 2 Product Rule is easier than quotient rule, so let’s cross multiply! 3 3 3 2 x xy x y    2 3 2 2 3 3 3 2 x y dx dy xy x dx dy y       2 3 2 6 3 2 x y xy y dx dy      2 2 3 3 2 6 xy y x y dx dy      2 2 3 ) 1 )( 1 ( 3 ) 1 ( 2 ) 1 ( 6 ) 1 (    dx dy 5 1 5     dx dy
  • 40. Slide 1 - 40 Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Higher Order Derivatives Find if . 2 2 d y dx 3 2 2 3 7 x y   3 2 2 3 7 x y   2 6 6 0 x y y   2 6 6 y y x     2 6 6 x y y     2 x y y   2 2 2 y x x y y y      2 2 2x x y y y y     2 2 2 2x x y y x y y     4 3 2x x y y y    Substitute back into the equation. y 
  • 42. Derivative of Parametric Equations Consider the graph of x = 2 sin t, y = cos t We seek the slope, that is 𝑑𝑦 𝑑𝑥 = 𝑑𝑦 𝑑𝑡 . 𝑑𝑡 𝑑𝑥 For parametric equations: 𝑑𝑦 𝑑𝑥 = 𝑑𝑦/𝑑𝑡 𝑑𝑥/𝑑𝑡  For our example : 𝑑𝑦 𝑑𝑥 = − sin 𝑡 2 cos 𝑡 = − tan 𝑡 2
  • 43. Second Derivatives The second derivative is the derivative of the first derivative But the first derivative is a function of t  We seek the derivative with respect to x  We must use the chain rule 𝑑2𝑦 𝑑𝑥2 = 𝑑 𝑑𝑥 𝑦′ = 𝑑 𝑑𝑡 𝑦′ . 𝑑𝑡 𝑑𝑥 = 𝑑 𝑑𝑡 𝑦′ 𝑑𝑥 𝑑𝑡
  • 44. Second Derivatives Find the second derivative of the parametric equations  x = 3 + 4cos t y = 1 – sin t  First derivative: 𝑑𝑦 𝑑𝑥 = 𝑦. 𝑥. = − 𝑐𝑜𝑠 𝑡 −4 sin 𝑡 = cot 𝑡 4  Second derivative: 𝑑2𝑦 𝑑𝑥2 = 𝑑 𝑑𝑡 𝑦′ . 𝑑𝑡 𝑑𝑥 = −1 4 csc2𝑡 −4 sin 𝑡 ∴ 𝑦′′ = 1 16 sin3𝑡
  • 45. Try This! Where does the curve described by the parametric equations have a horizontal tangent?  x = t – 4 y = (t 2 + t)2  Find the derivative  For what value of t does dy/dx = 0?
  • 46. Exercise Consider 𝑥 = 2 sin 𝑡+1 𝑡−1 , 𝑦 = cos 𝑡+1 𝑡−1 . Prove 𝑦′′ = −1 4 𝑦3 ∵ cos2 𝜃 + sin2 𝜃 = 1 ∴ 𝑥2 4 + 𝑦2 = 1 𝑥 2 + 2𝑦𝑦′ = 0 ∴ 𝑦′ = −𝑥 4𝑦 By diff. 4𝑦′′ = −𝑦+𝑥𝑦′ 𝑦2 4𝑦′′ = −𝑦+𝑥 −𝑥 4𝑦 𝑦2 By diff. 4𝑦′′ = −𝑦2− 𝑥2 4 𝑦3 𝑦′′ = −1 4𝑦3 Solution
  • 47. Exercise i) Consider ∵ cos 2𝛽 = 1 − 2 sin2 𝛽 ∴ 𝑦 = 1 − 2𝑥2 Solution 𝑦′ = −4 𝑥 → 𝑦′ 2 = 16𝑥2 𝑦′′ = −4 𝑦′ 2 𝑦′′ = −64𝑥2 = 32 −2𝑥2 = 32(𝑦 − 1) 𝑦 = cos 2 𝑡 1−𝑡 , 𝑥 = sin 𝑡 1−𝑡 . Prove 𝑦′ 2𝑦′′ = 32(𝑦 − 1)
  • 48. Slide 1 - 48 Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Find dy/dx if:    . tanh sin 5 2 1 y xy xy      y h y y x x yy y x y x y e x y 2 4 2 2 ln sec ' 1 1 ' 2 5 ln '                    . 1 10 ln sec 1 5 ' 4 2 ln 2 4 2 2 ln y x yx x e y h y x y e x y y x y x y       ii) Find 𝑦’ for:
  • 49. Slide 1 - 49 Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Introduction to integrtion  In differentiation, the differential coefficient 𝑑𝑦 𝑑𝑥 indicates that a function of x is being differentiated with respect to x, the dx indicating that it is “with respect to x”.  In integration, the variable of integration is shown by adding d(the variable) after the function to be integrated. When we want to integrate a function, we use a special notation: 𝒇 𝒙 𝒅𝒙.  Thus, to integrate 4x, we will write it as follows: 49
  • 50. Slide 1 - 50 Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Introduction 4𝑥 𝒅𝒙 = 2x2 + c , c ∈ ℝ. Integral sign This term is called the integrand There must always be a term of the form dx Constant of integration 50
  • 51. Slide 1 - 51 Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Indefinite integral  Note that along with the integral sign ( 𝑑𝑥), there is a term of the form dx, which must always be written, and which indicates the variable involved, in our example x.  We say that 4x is integrated with respect x, i.e: 𝟒𝒙 𝒅𝒙  The function being integrated is called the integrand.  Technically, integrals of this type are called indefinite integrals, to distinguish them from definite integrals, which we will deal with later.  When you are required to evaluate an indefinite integral, your answer must always include a constant of integration.; i.e: 𝟒𝒙 𝒅𝒙 = 2𝑥2 + c; where c ∈ ℝ 51
  • 52. Slide 1 - 52 Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Definition of anti-derivative  Formally, we define the anti-derivative as: If f(x) is a continuous function and F(x) is the function whose derivative is f(x), i.e.: 𝑭′ (x) = f(x) , then: 𝒇 𝒙 𝒅𝒙 = F(x) + c; where c is any arbitrary constant. 52
  • 53. Slide 1 - 53 Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Table of INTEGRATION
  • 54. Slide 1 - 54 Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley i) 𝑑𝑥 𝑥 1+ln 𝑥 3 • 𝑓′𝑑𝑥 𝑓 𝑛 = 𝑓−𝑛+1 −𝑛+1 + 𝑐 = 1+ln 𝑥 −2 −2 +c ii) 1+tan 𝑥 3𝑑𝑥 1−𝑠𝑖𝑛2 𝑥 • 𝑓𝑛 𝑓′ 𝑑𝑥 = 𝑓𝑛+1 𝑛+1 + 𝑐 = 1+tan 𝑥 4 4 +c = 1 + tan 𝑥 3𝑑𝑥 𝑐𝑜𝑠2 𝑥 = sec2 𝑥 1 + tan 𝑥 3𝑑𝑥 Examples. Find the following integrals:
  • 55. Slide 1 - 55 Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley iii) 1−2𝑥3 𝑑𝑥 2𝑥−𝑥4+1 • 𝑓′𝑑𝑥 𝑓 = 2 𝑓 + 𝑐 = 1 2 2 1−2𝑥3 𝑑𝑥 2𝑥−𝑥4+1 = 1 2 . 2 2𝑥 − 𝑥4 + 1 + 𝐶 • 𝑓′𝑑𝑥 𝑎2−𝑓2 = sin−1 𝑓 𝑎 + 𝑐 iv) 𝑑𝑥 𝑥 4−9 ln2 𝑥 = 1 3 . sin−1 3 ln 𝑥 2 + 𝐶 = 1 3 3𝑑𝑥 𝑥 4− 3 ln 𝑥 2
  • 56. Slide 1 - 56 Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley iv) 3+𝑥 𝑑𝑥 𝑥−5 = 𝑥−5 +3+5 𝑥−5 𝑑𝑥 = 1 + 8 𝑥−5 𝑑𝑥 = 𝑥 + 8 ln |𝑥 − 5| + 𝑐 v) 𝑑𝑥 sin−1 𝑥 1−𝑥2 • 𝑓′𝑑𝑥 𝑓 = ln |𝑓| + 𝑐 = ln | sin−1 𝑥 | + 𝑐
  • 57. Slide 1 - 57 Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley vi) 1+sin 𝑥 𝑑𝑥 cos2𝑥 = sec2 𝑥 + tan 𝑥 sec 𝑥 𝑑𝑥 = tan 𝑥 + sec 𝑥 + 𝑐 vii) 1−cos 2𝑥 𝑑𝑥 sin2𝑥 = 1−cos 2𝑥 𝑑𝑥 1 2 1−cos 2𝑥 = 2 𝑑𝑥 = 2𝑥 + 𝑐. • sin2 𝑥 = 1 2 1 − cos 2𝑥 • cos2 𝑥 = 1 2 1 + cos 2𝑥 Note:
  • 58. Slide 1 - 58 Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley viii) 1 + cos 𝑥 2 𝑑𝑥 = 1 + 2 cos 𝑥 + cos2 𝑥 𝑑𝑥 = 1 + 2 cos 𝑥 + 1 2 1 + cos 2𝑥 𝑑𝑥 = 𝑥 + 2 sin 𝑥 + 1 2 𝑥 + sin 2𝑥 2 + 𝑐 ix) cos3 𝑥 𝑑𝑥 = cos2 𝑥 cos 𝑥 𝑑𝑥 = 1 − sin2 𝑥 cos 𝑥 𝑑𝑥 = cos 𝑥 − sin2 𝑥 cos 𝑥 𝑑𝑥 = sin 𝑥 − sin3𝑥 3 + 𝑐
  • 59. Slide 1 - 59 Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley x) cos 𝑥 + sin 𝑥 2 𝑑𝑥 = cos2 𝑥 + sin2 𝑥 + 2 sin 𝑥 cos 𝑥 𝑑𝑥 = 1 + sin 2𝑥 𝑑𝑥 = 𝑥 − cos 2𝑥 2 + 𝑐
  • 60. Slide 1 - 60 Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley xi) tan 𝑥 ln | cos 𝑥 | 𝑑𝑥 =− ln2| cos 𝑥| 2 + 𝑐 xii) 𝑒𝑥+𝑒2𝑥 𝑒2𝑥+1 𝑑𝑥 = 1 2 ln 𝑒2𝑥 + 1 + tan−1 𝑒𝑥 + 1 • 𝑓′𝑑𝑥 𝑓 = ln |𝑓| + 𝑐 • 𝑓′𝑑𝑥 𝑎2+𝑓2 = 1 𝑎 tan−1 𝑓 𝑎 + 𝑐 = 1 2 2𝑒2𝑥 𝑒2𝑥+1 + 𝑒𝑥 (𝑒𝑥)2+1 𝑑𝑥
  • 61. Slide 1 - 61 Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley xiii) sin 𝑥 cos 𝑥 sin4 𝑥+ cos4 𝑥 𝑑𝑥 ÷ cos4 𝑥 = sin 𝑥 cos3𝑥 tan4 𝑥+1 𝑑𝑥 = 1 2 2 tan 𝑥sec2𝑥 tan2𝑥 2+1 𝑑𝑥 = 1 2 tan−1 tan2 𝑥 + 𝑐 • 𝑓′𝑑𝑥 𝑎2+𝑓2 = 1 𝑎 tan−1 𝑓 𝑎 + 𝑐
  • 62. Slide 1 - 62 Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley xiv) sec 𝑥 cos 2𝑥 sin 𝑥+sec 𝑥 𝑑𝑥 ÷ sec 𝑥 = cos 2𝑥 sin 𝑥 cos 𝑥+1 𝑑𝑥 = cos 2𝑥 sin 2𝑥 2+1 𝑑𝑥 = ln | sin 2𝑥 2 + 1| + 𝑐
  • 63. Slide 1 - 63 Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley xv) sec 𝑥+ tan 𝑥 sec 𝑥− tan 𝑥 𝑑𝑥 = sec 𝑥+ tan 𝑥 sec 𝑥− tan 𝑥 . sec 𝑥+ tan 𝑥 sec 𝑥+ tan 𝑥 𝑑𝑥 = sec 𝑥+ tan 𝑥 2 sec2 𝑥−tan2 𝑥 𝑑𝑥 = sec2 𝑥 + sec2 𝑥 − 1 + 2 sec 𝑥 tan 𝑥 𝑑𝑥 tan2 𝑥 = 2 tan 𝑥 − 𝑥 + 2 sec 𝑥 + 𝑐.  𝑡𝑎𝑛2𝑥 + 1 = 𝑠𝑒𝑐2𝑥
  • 64. Slide 1 - 64 Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
  • 65. Slide 1 - 65 Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
  • 66. Slide 1 - 66 Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley