SlideShare a Scribd company logo
Calculus I
Review : Functions
In this section we’re going to make sure that you’re familiar with functions and function notation.
Both will appear in almost every section in a Calculus class and so you will need to be able to
deal with them.
First, what exactly is a function? An equation will be a function if for any x in the domain of the
equation (the domain is all the x’s that can be plugged into the equation) the equation will yield
exactly one value of y.
This is usually easier to understand with an example.
Example 1 Determine if each of the following are functions.
(a) 2
1y x= +
(b) 2
1y x= +
Solution
(a) This first one is a function. Given an x, there is only one way to square it and then add 1 to
the result. So, no matter what value of x you put into the equation, there is only one possible
value of y.
(b) The only difference between this equation and the first is that we moved the exponent off the
x and onto the y. This small change is all that is required, in this case, to change the equation
from a function to something that isn’t a function.
To see that this isn’t a function is fairly simple. Choose a value of x, say x=3 and plug this into
the equation.
2
3 1 4y = + =
Now, there are two possible values of y that we could use here. We could use 2y = or 2y = − .
Since there are two possible values of y that we get from a single x this equation isn’t a function.
Note that this only needs to be the case for a single value of x to make an equation not be a
function. For instance we could have used x=-1 and in this case we would get a single y (y=0).
However, because of what happens at x=3 this equation will not be a function.
Next we need to take a quick look at function notation. Function notation is nothing more than a
fancy way of writing the y in a function that will allow us to simplify notation and some of our
work a little.
Let’s take a look at the following function.
2
2 5 3y x x= − +
Using function notation we can write this as any of the following.
© 2007 Paul Dawkins 3 http://tutorial.math.lamar.edu/terms.aspx
Calculus I
( ) ( )
( ) ( )
( ) ( )
2 2
2 2
2 2
2 5 3 2 5 3
2 5 3 2 5 3
2 5 3 2 5 3
f x x x g x x x
h x x x R x x x
w x x x y x x x
= − + = − +
= − + = − +
= − + = − +

Recall that this is NOT a letter times x, this is just a fancy way of writing y.
So, why is this useful? Well let’s take the function above and let’s get the value of the function at
x=-3. Using function notation we represent the value of the function at x=-3 as f(-3). Function
notation gives us a nice compact way of representing function values.
Now, how do we actually evaluate the function? That’s really simple. Everywhere we see an x
on the right side we will substitute whatever is in the parenthesis on the left side. For our
function this gives,
( ) ( ) ( )
( )
2
3 2 3 5 3 3
2 9 15 3
36
f − = − − − +
= + +
=
Let’s take a look at some more function evaluation.
Example 2 Given ( ) 2
6 11f x x x=− + − find each of the following.
(a) ( )2f [Solution]
(b) ( )10f − [Solution]
(c) ( )f t [Solution]
(d) ( )3f t − [Solution]
(e) ( )3f x − [Solution]
(f) ( )4 1f x − [Solution]
Solution
(a) ( ) ( )
2
2 2 6(2) 11 3f =− + − =−
[Return to Problems]
(b) ( ) ( ) ( )
2
10 10 6 10 11 100 60 11 171f − =− − + − − =− − − =−
Be careful when squaring negative numbers!
[Return to Problems]
(c) ( ) 2
6 11f t t t=− + −
Remember that we substitute for the x’s WHATEVER is in the parenthesis on the left. Often this
will be something other than a number. So, in this case we put t’s in for all the x’s on the left.
[Return to Problems]
© 2007 Paul Dawkins 4 http://tutorial.math.lamar.edu/terms.aspx
Calculus I
(d) ( ) ( ) ( )
2 2
3 3 6 3 11 12 38f t t t t t− =− − + − − =− + −
Often instead of evaluating functions at numbers or single letters we will have some fairly
complex evaluations so make sure that you can do these kinds of evaluations.
[Return to Problems]
(e) ( ) ( ) ( )
2 2
3 3 6 3 11 12 38f x x x x x− =− − + − − =− + −
The only difference between this one and the previous one is that I changed the t to an x. Other
than that there is absolutely no difference between the two! Don’t get excited if an x appears
inside the parenthesis on the left.
[Return to Problems]
(f) ( ) ( ) ( )
2 2
4 1 4 1 6 4 1 11 16 32 18f x x x x x− =− − + − − =− + −
This one is not much different from the previous part. All we did was change the equation that
we were plugging into the function.
[Return to Problems]
All throughout a calculus course we will be finding roots of functions. A root of a function is
nothing more than a number for which the function is zero. In other words, finding the roots of a
function, g(x), is equivalent to solving
( ) 0g x =
Example 3 Determine all the roots of ( ) 3 2
9 18 6f t t t t= − +
Solution
So we will need to solve,
3 2
9 18 6 0t t t− + =
First, we should factor the equation as much as possible. Doing this gives,
( )2
3 3 6 2 0t t t− + =
Next recall that if a product of two things are zero then one (or both) of them had to be zero. This
means that,
2
3 0 OR,
3 6 2 0
t
t t
=
− + =
From the first it’s clear that one of the roots must then be t=0. To get the remaining roots we will
need to use the quadratic formula on the second equation. Doing this gives,
© 2007 Paul Dawkins 5 http://tutorial.math.lamar.edu/terms.aspx
Calculus I
( ) ( ) ( )( )
( )
( )( )
2
6 6 4 3 2
2 3
6 12
6
6 4 3
6
6 2 3
6
3 3
3
1
1 3
3
1
1
3
t
− − ± − −
=
±
=
±
=
±
=
±
=
= ±
= ±
In order to remind you how to simplify radicals we gave several forms of the answer.
To complete the problem, here is a complete list of all the roots of this function.
3 3 3 3
0, ,
3 3
t t t
+ −
= = =
Note we didn’t use the final form for the roots from the quadratic. This is usually where we’ll
stop with the simplification for these kinds of roots. Also note that, for the sake of the practice,
we broke up the compact form for the two roots of the quadratic. You will need to be able to do
this so make sure that you can.
This example had a couple of points other than finding roots of functions.
The first was to remind you of the quadratic formula. This won’t be the last time that you’ll need
it in this class.
The second was to get you used to seeing “messy” answers. In fact, the answers in the above list
are not that messy. However, most students come out of an Algebra class very used to seeing
only integers and the occasional “nice” fraction as answers.
So, here is fair warning. In this class I often will intentionally make the answers look “messy”
just to get you out of the habit of always expecting “nice” answers. In “real life” (whatever that
is) the answer is rarely a simple integer such as two. In most problems the answer will be a
decimal that came about from a messy fraction and/or an answer that involved radicals.
© 2007 Paul Dawkins 6 http://tutorial.math.lamar.edu/terms.aspx
Calculus I
One of the more important ideas about functions is that of the domain and range of a function.
In simplest terms the domain of a function is the set of all values that can be plugged into a
function and have the function exist and have a real number for a value. So, for the domain we
need to avoid division by zero, square roots of negative numbers, logarithms of zero and
logarithms of negative numbers (if not familiar with logarithms we’ll take a look at them a little
later), etc. The range of a function is simply the set of all possible values that a function can take.
Let’s find the domain and range of a few functions.
Example 4 Find the domain and range of each of the following functions.
(a) ( ) 5 3f x x= − [Solution]
(b) ( ) 4 7g t t= − [Solution]
(c) ( ) 2
2 12 5h x x x=− + + [Solution]
(d) ( ) 6 3f z z= − − [Solution]
(e) ( ) 8g x = [Solution]
Solution
(a) ( ) 5 3f x x= −
We know that this is a line and that it’s not a horizontal line (because the slope is 5 and not
zero…). This means that this function can take on any value and so the range is all real numbers.
Using “mathematical” notation this is,
( )Range: ,−∞ ∞
This is more generally a polynomial and we know that we can plug any value into a polynomial
and so the domain in this case is also all real numbers or,
( )Domain : or ,x− ∞ < < ∞ −∞ ∞
[Return to Problems]
(b) ( ) 4 7g t t= −
This is a square root and we know that square roots are always positive or zero and because we
can have the square root of zero in this case,
( ) ( )4 4
7 74 7 0 0g = − = =
We know then that the range will be,
[ )Range: 0,∞
For the domain we have a little bit of work to do, but not much. We need to make sure that we
don’t take square roots of any negative numbers and so we need to require that,
© 2007 Paul Dawkins 7 http://tutorial.math.lamar.edu/terms.aspx
Calculus I
4 4
7 7
4 7 0
4 7
t
t
t t
− ≥
≥
≥ ⇒ ≤
The domain is then,
(4 4
7 7Domain : or ,t ≤ −∞ 
[Return to Problems]
(c) ( ) 2
2 12 5h x x x=− + +
Here we have a quadratic which is a polynomial and so we again know that the domain is all real
numbers or,
( )Domain : or ,x− ∞ < < ∞ −∞ ∞
In this case the range requires a little bit of work. From an Algebra class we know that the graph
of this will be a parabola that opens down (because the coefficient of the 2
x is negative) and so
the vertex will be the highest point on the graph. If we know the vertex we can then get the
range. The vertex is then,
( )
( ) ( ) ( ) ( )
212
3 3 2 3 12 3 5 23 3,23
2 2
x y h=− = = =− + + = ⇒
−
So, as discussed, we know that this will be the highest point on the graph or the largest value of
the function and the parabola will take all values less than this so the range is then,
( ]Range: ,23−∞
[Return to Problems]
(d) ( ) 6 3f z z= − −
This function contains an absolute value and we know that absolute value will be either positive
or zero. In this case the absolute value will be zero if 6z = and so the absolute value portion of
this function will always be greater than or equal to zero. We are subtracting 3 from the absolute
value portion and so we then know that the range will be,
[ )Range: 3,− ∞
We can plug any value into an absolute value and so the domain is once again all real numbers or,
( )Domain : or ,x− ∞ < < ∞ −∞ ∞
[Return to Problems]
(e) ( ) 8g x =
This function may seem a little tricky at first but is actually the easiest one in this set of examples.
This is a constant function and so an value of x that we plug into the function will yield a value of
© 2007 Paul Dawkins 8 http://tutorial.math.lamar.edu/terms.aspx
Calculus I
8. This means that the range is a single value or,
Range: 8
The domain is all real numbers,
( )Domain : or ,x− ∞ < < ∞ −∞ ∞
[Return to Problems]
In general determining the range of a function can be somewhat difficult. As long as we restrict
ourselves down to “simple” functions, some of which we looked at in the previous example,
finding the range is not too bad, but for most functions it can be a difficult process.
Because of the difficulty in finding the range for a lot of functions we had to keep those in the
previous set somewhat simple, which also meant that we couldn’t really look at some of the more
complicated domain examples that are liable to be important in a Calculus course. So, let’s take a
look at another set of functions only this time we’ll just look for the domain.
Example 5 Find the domain of each of the following functions.
(a) ( ) 2
4
2 15
x
f x
x x
−
=
− −
[Solution]
(b) ( ) 2
6g t t t= + − [Solution]
(c) ( ) 2
9
x
h x
x
=
−
[Solution]
Solution
(a) ( ) 2
4
2 15
x
f x
x x
−
=
− −
Okay, with this problem we need to avoid division by zero and so we need to determine where
the denominator is zero which means solving,
( )( )2
2 15 5 3 0 3, 5x x x x x x− − = − + = ⇒ =− =
So, these are the only values of x that we need to avoid and so the domain is,
Domain : All real numbers except 3 & 5x x=− =
[Return to Problems]
(b) ( ) 2
6g t t t= + −
In this case we need to avoid square roots of negative numbers and so need to require that,
2 2
6 0 6 0t t t t+ − ≥ ⇒ − − ≤
Note that we multiplied the whole inequality by -1 (and remembered to switch the direction of the
inequality) to make this easier to deal with. You’ll need to be able to solve inequalities like this
more than a few times in a Calculus course so let’s make sure you can solve these.
© 2007 Paul Dawkins 9 http://tutorial.math.lamar.edu/terms.aspx
Calculus I
The first thing that we need to do is determine where the function is zero and that’s not too
difficult in this case.
( )( )2
6 3 2 0t t t t− − = − + =
So, the function will be zero at 2t = − and 3t = . Recall that these points will be the only place
where the function may change sign. It’s not required to change sign at these points, but these
will be the only points where the function can change sign. This means that all we need to do is
break up a number line into the three regions that avoid these two points and test the sign of the
function at a single point in each of the regions. If the function is positive at a single point in the
region it will be positive at all points in that region because it doesn’t contain the any of the
points where the function may change sign. We’ll have a similar situation if the function is
negative for the test point.
So, here is a number line showing these computations.
From this we can see that the only region in which the quadratic (in its modified form) will be
negative is in the middle region. Recalling that we got to the modified region by multiplying the
quadratic by a -1 this means that the quadratic under the root will only be positive in the middle
region and so the domain for this function is then,
[ ]Domain : 2 3 or 2,3t− ≤ ≤ −
[Return to Problems]
(c) ( ) 2
9
x
h x
x
=
−
In this case we have a mixture of the two previous parts. We have to worry about division by
zero and square roots of negative numbers. We can cover both issues by requiring that,
2
9 0x − >
Note that we need the inequality here to be strictly greater than zero to avoid the division by zero
issues. We can either solve this by the method from the previous example or, in this case, it is
easy enough to solve by inspection. The domain is this case is,
( ) ( )Domain : 3 & 3 or , 3 & 3,x x< − > −∞ − ∞
[Return to Problems]
© 2007 Paul Dawkins 10 http://tutorial.math.lamar.edu/terms.aspx
Calculus I
The next topic that we need to discuss here is that of function composition. The composition of
f(x) and g(x) is
( )( ) ( )( )f g x f g x=
In other words, compositions are evaluated by plugging the second function listed into the first
function listed. Note as well that order is important here. Interchanging the order will usually
result in a different answer.
Example 6 Given ( ) 2
3 10f x x x= − + and ( ) 1 20g x x= − find each of the following.
(a) ( )( )5f g [Solution]
(b) ( )( )f g x [Solution]
(c) ( )( )g f x [Solution]
(d) ( )( )g g x [Solution]
Solution
(a) ( )( )5f g
In this case we’ve got a number instead of an x but it works in exactly the same way.
( )( ) ( )( )
( )
5 5
99 29512
f g f g
f
=
= − =

[Return to Problems]
(b) ( )( )f g x
( )( ) ( )( )
( )
( ) ( )
( )
2
2
2
1 20
3 1 20 1 20 10
3 1 40 400 1 20 10
1200 100 12
f g x f g x
f x
x x
x x x
x x
=
= −
= − − − +
= − + − + +
= − +

Compare this answer to the next part and notice that answers are NOT the same. The order in
which the functions are listed is important!
[Return to Problems]
(c) ( )( )g f x
( )( ) ( )( )
( )
( )
2
2
2
3 10
1 20 3 10
60 20 199
g f x g f x
g x x
x x
x x
=
= − +
= − − +
=− + −

And just to make the point. This answer is different from the previous part. Order is important in
composition.
[Return to Problems]
© 2007 Paul Dawkins 11 http://tutorial.math.lamar.edu/terms.aspx
Calculus I
(d) ( )( )g g x
In this case do not get excited about the fact that it’s the same function. Composition still works
the same way.
( )( ) ( )( )
( )
( )
1 20
1 20 1 20
400 19
g g x g g x
g x
x
x
=
= −
=− −
= −

[Return to Problems]
Let’s work one more example that will lead us into the next section.
Example 7 Given ( ) 3 2f x x= − and ( )
1 2
3 3
g x x= + find each of the following.
(a) ( )( )f g x
(b) ( )( )g f x
Solution
(a)
( )( ) ( )( )
1 2
3 3
1 2
3 2
3 3
2 2
f g x f g x
f x
x
x x
=
 
= + 
 
 
= + − 
 
= + − =

(b)
( )( ) ( )( )
( )
( )
3 2
1 2
3 2
3 3
2 2
3 3
g f x g f x
g x
x
x x
=
= −
= − +
= − + =

In this case the two compositions were the same and in fact the answer was very simple.
( )( ) ( )( )f g x g f x x= = 
This will usually not happen. However, when the two compositions are the same, or more
specifically when the two compositions are both x there is a very nice relationship between the
two functions. We will take a look at that relationship in the next section.
© 2007 Paul Dawkins 12 http://tutorial.math.lamar.edu/terms.aspx

More Related Content

PDF
Module 4 exponential and logarithmic functions
PDF
Module 3 exponential and logarithmic functions
PDF
Module 2 exponential functions
PPT
factoring
PDF
Module1 exponential functions
PPTX
Relation and function pdf
PPTX
Lecture 11 systems of nonlinear equations
PDF
Average value by integral method
Module 4 exponential and logarithmic functions
Module 3 exponential and logarithmic functions
Module 2 exponential functions
factoring
Module1 exponential functions
Relation and function pdf
Lecture 11 systems of nonlinear equations
Average value by integral method

What's hot (19)

PPTX
Relations
PPT
Relations and functions
PDF
Alg complex numbers
PDF
Think Like Scilab and Become a Numerical Programming Expert- Notes for Beginn...
PPT
PDF
13 1 basics_integration
PPTX
Sim(mathematics 10 polynomial functions)
DOCX
FUNCTION AND RELATION
PDF
Decreasing and increasing functions by arun umrao
PPTX
Module 2 Lesson 2 Notes
PDF
Differential in several variables
PDF
Module 1 linear functions
PDF
2.3 Functions
PDF
Numarical values
PDF
rational expressions
PDF
2 5 zeros of poly fn
PDF
Module 3 polynomial functions
PPT
PDF
Introduction to Functions
Relations
Relations and functions
Alg complex numbers
Think Like Scilab and Become a Numerical Programming Expert- Notes for Beginn...
13 1 basics_integration
Sim(mathematics 10 polynomial functions)
FUNCTION AND RELATION
Decreasing and increasing functions by arun umrao
Module 2 Lesson 2 Notes
Differential in several variables
Module 1 linear functions
2.3 Functions
Numarical values
rational expressions
2 5 zeros of poly fn
Module 3 polynomial functions
Introduction to Functions
Ad

Similar to Calculus - Functions Review (20)

PDF
Note introductions of functions
PDF
Introduction to functions
PDF
Algebra factoring
PDF
1543 integration in mathematics b
PDF
mc-ty-polynomial-2009-1.pdf
PPTX
439_Applied_Mathematics_for_Civil_Engineering_LECTURE_1 Function.pptx
PDF
Solutions for Problems: Engineering Optimization by Ranjan Ganguli
PPTX
LIMIT OF A FUNCTIONs in mathematics 2017
PPTX
LIMIT OF A FUNCTIONs in mathematics 2017
PPTX
Algebra part 2
PPTX
Algebra
PPTX
CALCULUS 2.pptx
PPTX
Lesson 3a_operations of Functions.pptx
PPT
Fst ch3 notes
PDF
5.1 Quadratic Functions
DOC
Mathematics 9 Quadratic Functions (Module 1)
PDF
Module 1 quadratic functions
PPT
3 2 Polynomial Functions And Their Graphs
PPTX
Basic Cal - Quarter 1 Week 1-2.pptx
Note introductions of functions
Introduction to functions
Algebra factoring
1543 integration in mathematics b
mc-ty-polynomial-2009-1.pdf
439_Applied_Mathematics_for_Civil_Engineering_LECTURE_1 Function.pptx
Solutions for Problems: Engineering Optimization by Ranjan Ganguli
LIMIT OF A FUNCTIONs in mathematics 2017
LIMIT OF A FUNCTIONs in mathematics 2017
Algebra part 2
Algebra
CALCULUS 2.pptx
Lesson 3a_operations of Functions.pptx
Fst ch3 notes
5.1 Quadratic Functions
Mathematics 9 Quadratic Functions (Module 1)
Module 1 quadratic functions
3 2 Polynomial Functions And Their Graphs
Basic Cal - Quarter 1 Week 1-2.pptx
Ad

More from hassaanciit (12)

PPT
Circuits Lecture 5 with examples
PDF
ICP - Lecture 9
PDF
Introduction to Computer and Programing - Lecture 04
PDF
Introduction to Computer and Programing - Lab2
PDF
Introduction to Computer and Programming - Lecture 03
PDF
Ex 1 3_fsc_part1
DOC
Islamic Studies - Fundamental beliefs
DOC
Islamic Studies - Concepts About Religion
PPT
Islamic Studies - Lecture#1 (Religion)
PPT
Islamic Studies - Course Outline
PDF
Introduction to Computer and Programming - Lecture 02
PDF
Introduction to Computer and Programming - Lecture 01
Circuits Lecture 5 with examples
ICP - Lecture 9
Introduction to Computer and Programing - Lecture 04
Introduction to Computer and Programing - Lab2
Introduction to Computer and Programming - Lecture 03
Ex 1 3_fsc_part1
Islamic Studies - Fundamental beliefs
Islamic Studies - Concepts About Religion
Islamic Studies - Lecture#1 (Religion)
Islamic Studies - Course Outline
Introduction to Computer and Programming - Lecture 02
Introduction to Computer and Programming - Lecture 01

Recently uploaded (20)

PDF
cuic standard and advanced reporting.pdf
PPTX
Cloud computing and distributed systems.
PPTX
Programs and apps: productivity, graphics, security and other tools
PDF
Machine learning based COVID-19 study performance prediction
PDF
Dropbox Q2 2025 Financial Results & Investor Presentation
PDF
MIND Revenue Release Quarter 2 2025 Press Release
PDF
Encapsulation theory and applications.pdf
PPTX
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
PDF
Spectral efficient network and resource selection model in 5G networks
PDF
Building Integrated photovoltaic BIPV_UPV.pdf
PDF
The Rise and Fall of 3GPP – Time for a Sabbatical?
PPT
Teaching material agriculture food technology
PPTX
20250228 LYD VKU AI Blended-Learning.pptx
DOCX
The AUB Centre for AI in Media Proposal.docx
PDF
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PDF
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
PDF
Reach Out and Touch Someone: Haptics and Empathic Computing
PDF
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
cuic standard and advanced reporting.pdf
Cloud computing and distributed systems.
Programs and apps: productivity, graphics, security and other tools
Machine learning based COVID-19 study performance prediction
Dropbox Q2 2025 Financial Results & Investor Presentation
MIND Revenue Release Quarter 2 2025 Press Release
Encapsulation theory and applications.pdf
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
Spectral efficient network and resource selection model in 5G networks
Building Integrated photovoltaic BIPV_UPV.pdf
The Rise and Fall of 3GPP – Time for a Sabbatical?
Teaching material agriculture food technology
20250228 LYD VKU AI Blended-Learning.pptx
The AUB Centre for AI in Media Proposal.docx
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
Reach Out and Touch Someone: Haptics and Empathic Computing
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...

Calculus - Functions Review

  • 1. Calculus I Review : Functions In this section we’re going to make sure that you’re familiar with functions and function notation. Both will appear in almost every section in a Calculus class and so you will need to be able to deal with them. First, what exactly is a function? An equation will be a function if for any x in the domain of the equation (the domain is all the x’s that can be plugged into the equation) the equation will yield exactly one value of y. This is usually easier to understand with an example. Example 1 Determine if each of the following are functions. (a) 2 1y x= + (b) 2 1y x= + Solution (a) This first one is a function. Given an x, there is only one way to square it and then add 1 to the result. So, no matter what value of x you put into the equation, there is only one possible value of y. (b) The only difference between this equation and the first is that we moved the exponent off the x and onto the y. This small change is all that is required, in this case, to change the equation from a function to something that isn’t a function. To see that this isn’t a function is fairly simple. Choose a value of x, say x=3 and plug this into the equation. 2 3 1 4y = + = Now, there are two possible values of y that we could use here. We could use 2y = or 2y = − . Since there are two possible values of y that we get from a single x this equation isn’t a function. Note that this only needs to be the case for a single value of x to make an equation not be a function. For instance we could have used x=-1 and in this case we would get a single y (y=0). However, because of what happens at x=3 this equation will not be a function. Next we need to take a quick look at function notation. Function notation is nothing more than a fancy way of writing the y in a function that will allow us to simplify notation and some of our work a little. Let’s take a look at the following function. 2 2 5 3y x x= − + Using function notation we can write this as any of the following. © 2007 Paul Dawkins 3 http://tutorial.math.lamar.edu/terms.aspx
  • 2. Calculus I ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 2 2 2 2 5 3 2 5 3 2 5 3 2 5 3 2 5 3 2 5 3 f x x x g x x x h x x x R x x x w x x x y x x x = − + = − + = − + = − + = − + = − +  Recall that this is NOT a letter times x, this is just a fancy way of writing y. So, why is this useful? Well let’s take the function above and let’s get the value of the function at x=-3. Using function notation we represent the value of the function at x=-3 as f(-3). Function notation gives us a nice compact way of representing function values. Now, how do we actually evaluate the function? That’s really simple. Everywhere we see an x on the right side we will substitute whatever is in the parenthesis on the left side. For our function this gives, ( ) ( ) ( ) ( ) 2 3 2 3 5 3 3 2 9 15 3 36 f − = − − − + = + + = Let’s take a look at some more function evaluation. Example 2 Given ( ) 2 6 11f x x x=− + − find each of the following. (a) ( )2f [Solution] (b) ( )10f − [Solution] (c) ( )f t [Solution] (d) ( )3f t − [Solution] (e) ( )3f x − [Solution] (f) ( )4 1f x − [Solution] Solution (a) ( ) ( ) 2 2 2 6(2) 11 3f =− + − =− [Return to Problems] (b) ( ) ( ) ( ) 2 10 10 6 10 11 100 60 11 171f − =− − + − − =− − − =− Be careful when squaring negative numbers! [Return to Problems] (c) ( ) 2 6 11f t t t=− + − Remember that we substitute for the x’s WHATEVER is in the parenthesis on the left. Often this will be something other than a number. So, in this case we put t’s in for all the x’s on the left. [Return to Problems] © 2007 Paul Dawkins 4 http://tutorial.math.lamar.edu/terms.aspx
  • 3. Calculus I (d) ( ) ( ) ( ) 2 2 3 3 6 3 11 12 38f t t t t t− =− − + − − =− + − Often instead of evaluating functions at numbers or single letters we will have some fairly complex evaluations so make sure that you can do these kinds of evaluations. [Return to Problems] (e) ( ) ( ) ( ) 2 2 3 3 6 3 11 12 38f x x x x x− =− − + − − =− + − The only difference between this one and the previous one is that I changed the t to an x. Other than that there is absolutely no difference between the two! Don’t get excited if an x appears inside the parenthesis on the left. [Return to Problems] (f) ( ) ( ) ( ) 2 2 4 1 4 1 6 4 1 11 16 32 18f x x x x x− =− − + − − =− + − This one is not much different from the previous part. All we did was change the equation that we were plugging into the function. [Return to Problems] All throughout a calculus course we will be finding roots of functions. A root of a function is nothing more than a number for which the function is zero. In other words, finding the roots of a function, g(x), is equivalent to solving ( ) 0g x = Example 3 Determine all the roots of ( ) 3 2 9 18 6f t t t t= − + Solution So we will need to solve, 3 2 9 18 6 0t t t− + = First, we should factor the equation as much as possible. Doing this gives, ( )2 3 3 6 2 0t t t− + = Next recall that if a product of two things are zero then one (or both) of them had to be zero. This means that, 2 3 0 OR, 3 6 2 0 t t t = − + = From the first it’s clear that one of the roots must then be t=0. To get the remaining roots we will need to use the quadratic formula on the second equation. Doing this gives, © 2007 Paul Dawkins 5 http://tutorial.math.lamar.edu/terms.aspx
  • 4. Calculus I ( ) ( ) ( )( ) ( ) ( )( ) 2 6 6 4 3 2 2 3 6 12 6 6 4 3 6 6 2 3 6 3 3 3 1 1 3 3 1 1 3 t − − ± − − = ± = ± = ± = ± = = ± = ± In order to remind you how to simplify radicals we gave several forms of the answer. To complete the problem, here is a complete list of all the roots of this function. 3 3 3 3 0, , 3 3 t t t + − = = = Note we didn’t use the final form for the roots from the quadratic. This is usually where we’ll stop with the simplification for these kinds of roots. Also note that, for the sake of the practice, we broke up the compact form for the two roots of the quadratic. You will need to be able to do this so make sure that you can. This example had a couple of points other than finding roots of functions. The first was to remind you of the quadratic formula. This won’t be the last time that you’ll need it in this class. The second was to get you used to seeing “messy” answers. In fact, the answers in the above list are not that messy. However, most students come out of an Algebra class very used to seeing only integers and the occasional “nice” fraction as answers. So, here is fair warning. In this class I often will intentionally make the answers look “messy” just to get you out of the habit of always expecting “nice” answers. In “real life” (whatever that is) the answer is rarely a simple integer such as two. In most problems the answer will be a decimal that came about from a messy fraction and/or an answer that involved radicals. © 2007 Paul Dawkins 6 http://tutorial.math.lamar.edu/terms.aspx
  • 5. Calculus I One of the more important ideas about functions is that of the domain and range of a function. In simplest terms the domain of a function is the set of all values that can be plugged into a function and have the function exist and have a real number for a value. So, for the domain we need to avoid division by zero, square roots of negative numbers, logarithms of zero and logarithms of negative numbers (if not familiar with logarithms we’ll take a look at them a little later), etc. The range of a function is simply the set of all possible values that a function can take. Let’s find the domain and range of a few functions. Example 4 Find the domain and range of each of the following functions. (a) ( ) 5 3f x x= − [Solution] (b) ( ) 4 7g t t= − [Solution] (c) ( ) 2 2 12 5h x x x=− + + [Solution] (d) ( ) 6 3f z z= − − [Solution] (e) ( ) 8g x = [Solution] Solution (a) ( ) 5 3f x x= − We know that this is a line and that it’s not a horizontal line (because the slope is 5 and not zero…). This means that this function can take on any value and so the range is all real numbers. Using “mathematical” notation this is, ( )Range: ,−∞ ∞ This is more generally a polynomial and we know that we can plug any value into a polynomial and so the domain in this case is also all real numbers or, ( )Domain : or ,x− ∞ < < ∞ −∞ ∞ [Return to Problems] (b) ( ) 4 7g t t= − This is a square root and we know that square roots are always positive or zero and because we can have the square root of zero in this case, ( ) ( )4 4 7 74 7 0 0g = − = = We know then that the range will be, [ )Range: 0,∞ For the domain we have a little bit of work to do, but not much. We need to make sure that we don’t take square roots of any negative numbers and so we need to require that, © 2007 Paul Dawkins 7 http://tutorial.math.lamar.edu/terms.aspx
  • 6. Calculus I 4 4 7 7 4 7 0 4 7 t t t t − ≥ ≥ ≥ ⇒ ≤ The domain is then, (4 4 7 7Domain : or ,t ≤ −∞  [Return to Problems] (c) ( ) 2 2 12 5h x x x=− + + Here we have a quadratic which is a polynomial and so we again know that the domain is all real numbers or, ( )Domain : or ,x− ∞ < < ∞ −∞ ∞ In this case the range requires a little bit of work. From an Algebra class we know that the graph of this will be a parabola that opens down (because the coefficient of the 2 x is negative) and so the vertex will be the highest point on the graph. If we know the vertex we can then get the range. The vertex is then, ( ) ( ) ( ) ( ) ( ) 212 3 3 2 3 12 3 5 23 3,23 2 2 x y h=− = = =− + + = ⇒ − So, as discussed, we know that this will be the highest point on the graph or the largest value of the function and the parabola will take all values less than this so the range is then, ( ]Range: ,23−∞ [Return to Problems] (d) ( ) 6 3f z z= − − This function contains an absolute value and we know that absolute value will be either positive or zero. In this case the absolute value will be zero if 6z = and so the absolute value portion of this function will always be greater than or equal to zero. We are subtracting 3 from the absolute value portion and so we then know that the range will be, [ )Range: 3,− ∞ We can plug any value into an absolute value and so the domain is once again all real numbers or, ( )Domain : or ,x− ∞ < < ∞ −∞ ∞ [Return to Problems] (e) ( ) 8g x = This function may seem a little tricky at first but is actually the easiest one in this set of examples. This is a constant function and so an value of x that we plug into the function will yield a value of © 2007 Paul Dawkins 8 http://tutorial.math.lamar.edu/terms.aspx
  • 7. Calculus I 8. This means that the range is a single value or, Range: 8 The domain is all real numbers, ( )Domain : or ,x− ∞ < < ∞ −∞ ∞ [Return to Problems] In general determining the range of a function can be somewhat difficult. As long as we restrict ourselves down to “simple” functions, some of which we looked at in the previous example, finding the range is not too bad, but for most functions it can be a difficult process. Because of the difficulty in finding the range for a lot of functions we had to keep those in the previous set somewhat simple, which also meant that we couldn’t really look at some of the more complicated domain examples that are liable to be important in a Calculus course. So, let’s take a look at another set of functions only this time we’ll just look for the domain. Example 5 Find the domain of each of the following functions. (a) ( ) 2 4 2 15 x f x x x − = − − [Solution] (b) ( ) 2 6g t t t= + − [Solution] (c) ( ) 2 9 x h x x = − [Solution] Solution (a) ( ) 2 4 2 15 x f x x x − = − − Okay, with this problem we need to avoid division by zero and so we need to determine where the denominator is zero which means solving, ( )( )2 2 15 5 3 0 3, 5x x x x x x− − = − + = ⇒ =− = So, these are the only values of x that we need to avoid and so the domain is, Domain : All real numbers except 3 & 5x x=− = [Return to Problems] (b) ( ) 2 6g t t t= + − In this case we need to avoid square roots of negative numbers and so need to require that, 2 2 6 0 6 0t t t t+ − ≥ ⇒ − − ≤ Note that we multiplied the whole inequality by -1 (and remembered to switch the direction of the inequality) to make this easier to deal with. You’ll need to be able to solve inequalities like this more than a few times in a Calculus course so let’s make sure you can solve these. © 2007 Paul Dawkins 9 http://tutorial.math.lamar.edu/terms.aspx
  • 8. Calculus I The first thing that we need to do is determine where the function is zero and that’s not too difficult in this case. ( )( )2 6 3 2 0t t t t− − = − + = So, the function will be zero at 2t = − and 3t = . Recall that these points will be the only place where the function may change sign. It’s not required to change sign at these points, but these will be the only points where the function can change sign. This means that all we need to do is break up a number line into the three regions that avoid these two points and test the sign of the function at a single point in each of the regions. If the function is positive at a single point in the region it will be positive at all points in that region because it doesn’t contain the any of the points where the function may change sign. We’ll have a similar situation if the function is negative for the test point. So, here is a number line showing these computations. From this we can see that the only region in which the quadratic (in its modified form) will be negative is in the middle region. Recalling that we got to the modified region by multiplying the quadratic by a -1 this means that the quadratic under the root will only be positive in the middle region and so the domain for this function is then, [ ]Domain : 2 3 or 2,3t− ≤ ≤ − [Return to Problems] (c) ( ) 2 9 x h x x = − In this case we have a mixture of the two previous parts. We have to worry about division by zero and square roots of negative numbers. We can cover both issues by requiring that, 2 9 0x − > Note that we need the inequality here to be strictly greater than zero to avoid the division by zero issues. We can either solve this by the method from the previous example or, in this case, it is easy enough to solve by inspection. The domain is this case is, ( ) ( )Domain : 3 & 3 or , 3 & 3,x x< − > −∞ − ∞ [Return to Problems] © 2007 Paul Dawkins 10 http://tutorial.math.lamar.edu/terms.aspx
  • 9. Calculus I The next topic that we need to discuss here is that of function composition. The composition of f(x) and g(x) is ( )( ) ( )( )f g x f g x= In other words, compositions are evaluated by plugging the second function listed into the first function listed. Note as well that order is important here. Interchanging the order will usually result in a different answer. Example 6 Given ( ) 2 3 10f x x x= − + and ( ) 1 20g x x= − find each of the following. (a) ( )( )5f g [Solution] (b) ( )( )f g x [Solution] (c) ( )( )g f x [Solution] (d) ( )( )g g x [Solution] Solution (a) ( )( )5f g In this case we’ve got a number instead of an x but it works in exactly the same way. ( )( ) ( )( ) ( ) 5 5 99 29512 f g f g f = = − =  [Return to Problems] (b) ( )( )f g x ( )( ) ( )( ) ( ) ( ) ( ) ( ) 2 2 2 1 20 3 1 20 1 20 10 3 1 40 400 1 20 10 1200 100 12 f g x f g x f x x x x x x x x = = − = − − − + = − + − + + = − +  Compare this answer to the next part and notice that answers are NOT the same. The order in which the functions are listed is important! [Return to Problems] (c) ( )( )g f x ( )( ) ( )( ) ( ) ( ) 2 2 2 3 10 1 20 3 10 60 20 199 g f x g f x g x x x x x x = = − + = − − + =− + −  And just to make the point. This answer is different from the previous part. Order is important in composition. [Return to Problems] © 2007 Paul Dawkins 11 http://tutorial.math.lamar.edu/terms.aspx
  • 10. Calculus I (d) ( )( )g g x In this case do not get excited about the fact that it’s the same function. Composition still works the same way. ( )( ) ( )( ) ( ) ( ) 1 20 1 20 1 20 400 19 g g x g g x g x x x = = − =− − = −  [Return to Problems] Let’s work one more example that will lead us into the next section. Example 7 Given ( ) 3 2f x x= − and ( ) 1 2 3 3 g x x= + find each of the following. (a) ( )( )f g x (b) ( )( )g f x Solution (a) ( )( ) ( )( ) 1 2 3 3 1 2 3 2 3 3 2 2 f g x f g x f x x x x =   = +      = + −    = + − =  (b) ( )( ) ( )( ) ( ) ( ) 3 2 1 2 3 2 3 3 2 2 3 3 g f x g f x g x x x x = = − = − + = − + =  In this case the two compositions were the same and in fact the answer was very simple. ( )( ) ( )( )f g x g f x x= =  This will usually not happen. However, when the two compositions are the same, or more specifically when the two compositions are both x there is a very nice relationship between the two functions. We will take a look at that relationship in the next section. © 2007 Paul Dawkins 12 http://tutorial.math.lamar.edu/terms.aspx