SlideShare a Scribd company logo
Chapter 1
D
B
G
F
Facc
A
E
f f
1 1
␪cr
␪
C
Impending motion to left
Fcr
Consider force F at G, reactions at B and D. Extend lines of action for fully-developed fric-
tion DE and BE to find the point of concurrency at E for impending motion to the left. The
critical angle is θcr. Resolve force F into components Facc and Fcr. Facc is related to mass and
acceleration. Pin accelerates to left for any angle 0 < θ < θcr. When θ > θcr, no magnitude
of F will move the pin.
D
B
G
FЈ
FЈacc
A
EЈ иE
f f
1 1
C
d
Impending motion to right
␪Ј
FcrЈ
␪crЈ
Consider force F at G, reactions at A and C. Extend lines of action for fully-developed fric-
tion AE and C E to find the point of concurrency at E for impending motion to the left. The
critical angle is θcr. Resolve force F into components Facc and Fcr. Facc is related to mass
and acceleration. Pin accelerates to right for any angle 0 < θ < θcr. When θ > θcr, no mag-
nitude of F will move the pin.
The intent of the question is to get the student to draw and understand the free body in
order to recognize what it teaches. The graphic approach accomplishes this quickly. It is im-
portant to point out that this understanding enables a mathematical model to be constructed,
and that there are two of them.
This is the simplest problem in mechanical engineering. Using it is a good way to begin a
course.
What is the role of pin diameter d?
Yes, changing the sense of F changes the response.
Problems 1-1 through 1-4 are for student research.
1-5
shi20396_ch01.qxd 6/5/03 12:11 PM Page 1
2 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design
1-6
(a) Fy = −F − f N cos θ + N sin θ = 0 (1)
Fx = f N sin θ + N cos θ −
T
r
= 0
F = N(sin θ − f cos θ) Ans.
T = Nr( f sin θ + cos θ)
Combining
T = Fr
1 + f tan θ
tan θ − f
= KFr Ans. (2)
(b) If T → ∞ detent self-locking tan θ − f = 0 ∴ θcr = tan−1
f Ans.
(Friction is fully developed.)
Check: If F = 10 lbf, f = 0.20, θ = 45◦, r = 2 in
N =
10
−0.20 cos 45◦ + sin 45◦
= 17.68 lbf
T
r
= 17.28(0.20 sin 45◦
+ cos 45◦
) = 15 lbf
f N = 0.20(17.28) = 3.54 lbf
θcr = tan−1
f = tan−1
(0.20) = 11.31◦
11.31° < θ < 90°
1-7
(a) F = F0 + k(0) = F0
T1 = F0r Ans.
(b) When teeth are about to clear
F = F0 + kx2
From Prob. 1-6
T2 = Fr
f tan θ + 1
tan θ − f
T2 = r
(F0 + kx2)( f tan θ + 1)
tan θ − f
Ans.
1-8
Given, F = 10 + 2.5x lbf, r = 2 in, h = 0.2 in, θ = 60◦
, f = 0.25, xi = 0, xf = 0.2
Fi = 10 lbf; Ff = 10 + 2.5(0.2) = 10.5 lbf Ans.
x
y
F
fN
N
␪
T
r
shi20396_ch01.qxd 6/5/03 12:11 PM Page 2
Chapter 1 3
From Eq. (1) of Prob. 1-6
N =
F
− f cos θ + sin θ
Ni =
10
−0.25 cos 60◦ + sin 60◦
= 13.49 lbf Ans.
Nf =
10.5
10
13.49 = 14.17 lbf Ans.
From Eq. (2) of Prob. 1-6
K =
1 + f tan θ
tan θ − f
=
1 + 0.25 tan 60◦
tan 60◦ − 0.25
= 0.967 Ans.
Ti = 0.967(10)(2) = 19.33 lbf · in
Tf = 0.967(10.5)(2) = 20.31 lbf · in
1-9
(a) Point vehicles
Q =
cars
hour
=
v
x
=
42.1v − v2
0.324
Seek stationary point maximum
dQ
dv
= 0 =
42.1 − 2v
0.324
∴ v* = 21.05 mph
Q* =
42.1(21.05) − 21.052
0.324
= 1367.6 cars/h Ans.
(b)
Q =
v
x + l
=
0.324
v(42.1) − v2
+
l
v
−1
Maximize Q with l = 10/5280 mi
v Q
22.18 1221.431
22.19 1221.433
22.20 1221.435 ←
22.21 1221.435
22.22 1221.434
% loss of throughput
1368 − 1221
1221
= 12% Ans.
xl
2
l
2
v
x
v
shi20396_ch01.qxd 6/5/03 12:11 PM Page 3
4 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design
(c) % increase in speed
22.2 − 21.05
21.05
= 5.5%
Modest change in optimal speed Ans.
1-10 This and the following problem may be the student’s first experience with a figure of merit.
• Formulate fom to reflect larger figure of merit for larger merit.
• Use a maximization optimization algorithm. When one gets into computer implementa-
tion and answers are not known, minimizing instead of maximizing is the largest error
one can make.
FV = F1 sin θ − W = 0
FH = −F1 cos θ − F2 = 0
From which
F1 = W/sin θ
F2 = −W cos θ/sin θ
fom = −S = −¢γ (volume)
.
= −¢γ(l1 A1 + l2 A2)
A1 =
F1
S
=
W
S sin θ
, l2 =
l1
cos θ
A2 =
F2
S
=
W cos θ
S sin θ
fom = −¢γ
l2
cos θ
W
S sin θ
+
l2W cos θ
S sin θ
=
−¢γ Wl2
S
1 + cos2
θ
cos θ sin θ
Set leading constant to unity
θ◦ fom
0 −∞
20 −5.86
30 −4.04
40 −3.22
45 −3.00
50 −2.87
54.736 −2.828
60 −2.886
Check second derivative to see if a maximum, minimum, or point of inflection has been
found. Or, evaluate fom on either side of θ*.
θ* = 54.736◦
Ans.
fom* = −2.828
Alternative:
d
dθ
1 + cos2
θ
cos θ sin θ
= 0
And solve resulting tran-
scendental for θ*.
shi20396_ch01.qxd 6/5/03 12:11 PM Page 4
Chapter 1 5
1-11
(a) x1 + x2 = X1 + e1 + X2 + e2
error = e = (x1 + x2) − (X1 + X2)
= e1 + e2 Ans.
(b) x1 − x2 = X1 + e1 − (X2 + e2)
e = (x1 − x2) − (X1 − X2) = e1 − e2 Ans.
(c) x1x2 = (X1 + e1)(X2 + e2)
e = x1x2 − X1 X2 = X1e2 + X2e1 + e1e2
.
= X1e2 + X2e1 = X1 X2
e1
X1
+
e2
X2
Ans.
(d)
x1
x2
=
X1 + e1
X2 + e2
=
X1
X2
1 + e1/X1
1 + e2/X2
1 +
e2
X2
−1
.
= 1 −
e2
X2
and 1 +
e1
X1
1 −
e2
X2
.
= 1 +
e1
X1
−
e2
X2
e =
x1
x2
−
X1
X2
.
=
X1
X2
e1
X1
−
e2
X2
Ans.
1-12
(a) x1 =
√
5 = 2.236 067 977 5
X1 = 2.23 3-correct digits
x2 =
√
6 = 2.449 487 742 78
X2 = 2.44 3-correct digits
x1 + x2 =
√
5 +
√
6 = 4.685 557 720 28
e1 = x1 − X1 =
√
5 − 2.23 = 0.006 067 977 5
e2 = x2 − X2 =
√
6 − 2.44 = 0.009 489 742 78
e = e1 + e2 =
√
5 − 2.23 +
√
6 − 2.44 = 0.015 557 720 28
Sum = x1 + x2 = X1 + X2 + e
= 2.23 + 2.44 + 0.015 557 720 28
= 4.685 557 720 28 (Checks) Ans.
(b) X1 = 2.24, X2 = 2.45
e1 =
√
5 − 2.24 = −0.003 932 022 50
e2 =
√
6 − 2.45 = −0.000 510 257 22
e = e1 + e2 = −0.004 442 279 72
Sum = X1 + X2 + e
= 2.24 + 2.45 + (−0.004 442 279 72)
= 4.685 557 720 28 Ans.
shi20396_ch01.qxd 6/5/03 12:11 PM Page 5
6 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design
1-13
(a) σ = 20(6.89) = 137.8 MPa
(b) F = 350(4.45) = 1558 N = 1.558 kN
(c) M = 1200 lbf · in (0.113) = 135.6 N · m
(d) A = 2.4(645) = 1548 mm2
(e) I = 17.4 in4
(2.54)4
= 724.2 cm4
(f) A = 3.6(1.610)2
= 9.332 km2
(g) E = 21(1000)(6.89) = 144.69(103
) MPa = 144.7 GPa
(h) v = 45 mi/h (1.61) = 72.45 km/h
(i) V = 60 in3
(2.54)3
= 983.2 cm3
= 0.983 liter
1-14
(a) l = 1.5/0.305 = 4.918 ft = 59.02 in
(b) σ = 600/6.89 = 86.96 kpsi
(c) p = 160/6.89 = 23.22 psi
(d) Z = 1.84(105
)/(25.4)3
= 11.23 in3
(e) w = 38.1/175 = 0.218 lbf/in
(f) δ = 0.05/25.4 = 0.00197 in
(g) v = 6.12/0.0051 = 1200 ft/min
(h) = 0.0021 in/in
(i) V = 30/(0.254)3
= 1831 in3
1-15
(a) σ =
200
15.3
= 13.1 MPa
(b) σ =
42(103
)
6(10−2)2
= 70(106
) N/m2
= 70 MPa
(c) y =
1200(800)3
(10−3
)3
3(207)(6.4)(109)(10−2)4
= 1.546(10−2
) m = 15.5 mm
(d) θ =
1100(250)(10−3
)
79.3(π/32)(25)4(109)(10−3)4
= 9.043(10−2
) rad = 5.18◦
1-16
(a) σ =
600
20(6)
= 5 MPa
(b) I =
1
12
8(24)3
= 9216 mm4
(c) I =
π
64
324
(10−1
)4
= 5.147 cm4
(d) τ =
16(16)
π(253)(10−3)3
= 5.215(106
) N/m2
= 5.215 MPa
shi20396_ch01.qxd 6/5/03 12:11 PM Page 6
Chapter 1 7
1-17
(a) τ =
120(103
)
(π/4)(202)
= 382 MPa
(b) σ =
32(800)(800)(10−3
)
π(32)3(10−3)3
= 198.9(106
) N/m2
= 198.9 MPa
(c) Z =
π
32(36)
(364
− 264
) = 3334 mm3
(d) k =
(1.6)4
(79.3)(10−3
)4
(109
)
8(19.2)3(32)(10−3)3
= 286.8 N/m
shi20396_ch01.qxd 6/5/03 12:11 PM Page 7

More Related Content

PDF
Solution shigley's
PDF
Solutions completo elementos de maquinas de shigley 8th edition
PDF
Capítulo 10 mola
PDF
Capítulo 16 embreagens
PDF
Capítulo 13 engrenagens
PPTX
Buisness Statistical Formula ppt
DOCX
สูตรในวิชาฟิสิกส์
DOCX
Truss examples
Solution shigley's
Solutions completo elementos de maquinas de shigley 8th edition
Capítulo 10 mola
Capítulo 16 embreagens
Capítulo 13 engrenagens
Buisness Statistical Formula ppt
สูตรในวิชาฟิสิกส์
Truss examples

What's hot (16)

PDF
Práctica nº 05
PPTX
Statistics Formulas ppt
PDF
2012 hsc-exam-physics
PDF
7 วิชา ฟิสิกส์ the brain
PDF
Sloshing-aware MPC for upper stage attitude control
PDF
Capitulo 2, 7ma edición
PDF
Helicopter rotor dynamics
PDF
Structural Analysis (Solutions) Chapter 9 by Wajahat
PDF
Capítulo 15 engrenagens cônicas e sem-fim
PPTX
Lecture notes in influence lines
PDF
Capítulo 08 parafusos
PDF
Chapter 6
PPTX
MAXIMUM SHEAR STRESS IN PARALLEL WELD AND TRANSVERSE FILLET WELD
PPTX
Direct current machine
PPT
Control and Guidance law for Guided Bomb
PDF
Chapter 6-structural-analysis-8th-edition-solution
Práctica nº 05
Statistics Formulas ppt
2012 hsc-exam-physics
7 วิชา ฟิสิกส์ the brain
Sloshing-aware MPC for upper stage attitude control
Capitulo 2, 7ma edición
Helicopter rotor dynamics
Structural Analysis (Solutions) Chapter 9 by Wajahat
Capítulo 15 engrenagens cônicas e sem-fim
Lecture notes in influence lines
Capítulo 08 parafusos
Chapter 6
MAXIMUM SHEAR STRESS IN PARALLEL WELD AND TRANSVERSE FILLET WELD
Direct current machine
Control and Guidance law for Guided Bomb
Chapter 6-structural-analysis-8th-edition-solution
Ad

Similar to Capítulo 01 introdução (20)

PDF
Shigley 13830681 solution mechanical engineering design shigley 7th edition
PDF
Solucionario_Diseno_en_Ingenieria_Mecani.pdf
PDF
Solucionario_Diseno_en_Ingenieria_Mecani (1).pdf
PDF
Budynas sm ch01
PDF
Budynas sm ch01
PDF
Shi20396 ch05
PDF
Capítulo 05 deflexão e rigidez
PDF
Capítulo 12 lubrificação e mancais de munhão
PDF
H c verma part 1 solution
PDF
1999 actual paper q
PDF
Shi20396 ch12
PDF
Shi20396 ch03
PDF
Capítulo 04 carga e análise de tensão
PDF
359 me-2009-gate-question-paper
PDF
Shi20396 ch04
PPT
Dynamic response to harmonic excitation
PDF
Capítulo 03 materiais
PDF
Shi20396 ch18
PDF
Shi20396 ch13
Shigley 13830681 solution mechanical engineering design shigley 7th edition
Solucionario_Diseno_en_Ingenieria_Mecani.pdf
Solucionario_Diseno_en_Ingenieria_Mecani (1).pdf
Budynas sm ch01
Budynas sm ch01
Shi20396 ch05
Capítulo 05 deflexão e rigidez
Capítulo 12 lubrificação e mancais de munhão
H c verma part 1 solution
1999 actual paper q
Shi20396 ch12
Shi20396 ch03
Capítulo 04 carga e análise de tensão
359 me-2009-gate-question-paper
Shi20396 ch04
Dynamic response to harmonic excitation
Capítulo 03 materiais
Shi20396 ch18
Shi20396 ch13
Ad

More from Jhayson Carvalho (7)

PDF
Capítulo 17 elementos mecânicos flexíveis
PDF
Capítulo 14 engrenagens cilíndricas
PDF
Capítulo 11 mancais de contato rolante
PDF
Capítulo 09 solda
PDF
Capítulo 07 falha por fadiga resultante de carregamento variável
PDF
Capítulo 06 falhas resultantes de carregamento estático
PDF
Capítulo 02 considerações estatísticas
Capítulo 17 elementos mecânicos flexíveis
Capítulo 14 engrenagens cilíndricas
Capítulo 11 mancais de contato rolante
Capítulo 09 solda
Capítulo 07 falha por fadiga resultante de carregamento variável
Capítulo 06 falhas resultantes de carregamento estático
Capítulo 02 considerações estatísticas

Recently uploaded (20)

PPTX
Geodesy 1.pptx...............................................
PPTX
UNIT 4 Total Quality Management .pptx
PPTX
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
PPTX
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
PDF
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
PPTX
Sustainable Sites - Green Building Construction
PPTX
Artificial Intelligence
PPT
Mechanical Engineering MATERIALS Selection
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
DOCX
573137875-Attendance-Management-System-original
PDF
composite construction of structures.pdf
PPTX
Foundation to blockchain - A guide to Blockchain Tech
PDF
R24 SURVEYING LAB MANUAL for civil enggi
PPTX
Construction Project Organization Group 2.pptx
PPTX
Current and future trends in Computer Vision.pptx
PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
PPTX
web development for engineering and engineering
PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PPTX
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
Geodesy 1.pptx...............................................
UNIT 4 Total Quality Management .pptx
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
Sustainable Sites - Green Building Construction
Artificial Intelligence
Mechanical Engineering MATERIALS Selection
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
573137875-Attendance-Management-System-original
composite construction of structures.pdf
Foundation to blockchain - A guide to Blockchain Tech
R24 SURVEYING LAB MANUAL for civil enggi
Construction Project Organization Group 2.pptx
Current and future trends in Computer Vision.pptx
Automation-in-Manufacturing-Chapter-Introduction.pdf
web development for engineering and engineering
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx

Capítulo 01 introdução

  • 1. Chapter 1 D B G F Facc A E f f 1 1 ␪cr ␪ C Impending motion to left Fcr Consider force F at G, reactions at B and D. Extend lines of action for fully-developed fric- tion DE and BE to find the point of concurrency at E for impending motion to the left. The critical angle is θcr. Resolve force F into components Facc and Fcr. Facc is related to mass and acceleration. Pin accelerates to left for any angle 0 < θ < θcr. When θ > θcr, no magnitude of F will move the pin. D B G FЈ FЈacc A EЈ иE f f 1 1 C d Impending motion to right ␪Ј FcrЈ ␪crЈ Consider force F at G, reactions at A and C. Extend lines of action for fully-developed fric- tion AE and C E to find the point of concurrency at E for impending motion to the left. The critical angle is θcr. Resolve force F into components Facc and Fcr. Facc is related to mass and acceleration. Pin accelerates to right for any angle 0 < θ < θcr. When θ > θcr, no mag- nitude of F will move the pin. The intent of the question is to get the student to draw and understand the free body in order to recognize what it teaches. The graphic approach accomplishes this quickly. It is im- portant to point out that this understanding enables a mathematical model to be constructed, and that there are two of them. This is the simplest problem in mechanical engineering. Using it is a good way to begin a course. What is the role of pin diameter d? Yes, changing the sense of F changes the response. Problems 1-1 through 1-4 are for student research. 1-5 shi20396_ch01.qxd 6/5/03 12:11 PM Page 1
  • 2. 2 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design 1-6 (a) Fy = −F − f N cos θ + N sin θ = 0 (1) Fx = f N sin θ + N cos θ − T r = 0 F = N(sin θ − f cos θ) Ans. T = Nr( f sin θ + cos θ) Combining T = Fr 1 + f tan θ tan θ − f = KFr Ans. (2) (b) If T → ∞ detent self-locking tan θ − f = 0 ∴ θcr = tan−1 f Ans. (Friction is fully developed.) Check: If F = 10 lbf, f = 0.20, θ = 45◦, r = 2 in N = 10 −0.20 cos 45◦ + sin 45◦ = 17.68 lbf T r = 17.28(0.20 sin 45◦ + cos 45◦ ) = 15 lbf f N = 0.20(17.28) = 3.54 lbf θcr = tan−1 f = tan−1 (0.20) = 11.31◦ 11.31° < θ < 90° 1-7 (a) F = F0 + k(0) = F0 T1 = F0r Ans. (b) When teeth are about to clear F = F0 + kx2 From Prob. 1-6 T2 = Fr f tan θ + 1 tan θ − f T2 = r (F0 + kx2)( f tan θ + 1) tan θ − f Ans. 1-8 Given, F = 10 + 2.5x lbf, r = 2 in, h = 0.2 in, θ = 60◦ , f = 0.25, xi = 0, xf = 0.2 Fi = 10 lbf; Ff = 10 + 2.5(0.2) = 10.5 lbf Ans. x y F fN N ␪ T r shi20396_ch01.qxd 6/5/03 12:11 PM Page 2
  • 3. Chapter 1 3 From Eq. (1) of Prob. 1-6 N = F − f cos θ + sin θ Ni = 10 −0.25 cos 60◦ + sin 60◦ = 13.49 lbf Ans. Nf = 10.5 10 13.49 = 14.17 lbf Ans. From Eq. (2) of Prob. 1-6 K = 1 + f tan θ tan θ − f = 1 + 0.25 tan 60◦ tan 60◦ − 0.25 = 0.967 Ans. Ti = 0.967(10)(2) = 19.33 lbf · in Tf = 0.967(10.5)(2) = 20.31 lbf · in 1-9 (a) Point vehicles Q = cars hour = v x = 42.1v − v2 0.324 Seek stationary point maximum dQ dv = 0 = 42.1 − 2v 0.324 ∴ v* = 21.05 mph Q* = 42.1(21.05) − 21.052 0.324 = 1367.6 cars/h Ans. (b) Q = v x + l = 0.324 v(42.1) − v2 + l v −1 Maximize Q with l = 10/5280 mi v Q 22.18 1221.431 22.19 1221.433 22.20 1221.435 ← 22.21 1221.435 22.22 1221.434 % loss of throughput 1368 − 1221 1221 = 12% Ans. xl 2 l 2 v x v shi20396_ch01.qxd 6/5/03 12:11 PM Page 3
  • 4. 4 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design (c) % increase in speed 22.2 − 21.05 21.05 = 5.5% Modest change in optimal speed Ans. 1-10 This and the following problem may be the student’s first experience with a figure of merit. • Formulate fom to reflect larger figure of merit for larger merit. • Use a maximization optimization algorithm. When one gets into computer implementa- tion and answers are not known, minimizing instead of maximizing is the largest error one can make. FV = F1 sin θ − W = 0 FH = −F1 cos θ − F2 = 0 From which F1 = W/sin θ F2 = −W cos θ/sin θ fom = −S = −¢γ (volume) . = −¢γ(l1 A1 + l2 A2) A1 = F1 S = W S sin θ , l2 = l1 cos θ A2 = F2 S = W cos θ S sin θ fom = −¢γ l2 cos θ W S sin θ + l2W cos θ S sin θ = −¢γ Wl2 S 1 + cos2 θ cos θ sin θ Set leading constant to unity θ◦ fom 0 −∞ 20 −5.86 30 −4.04 40 −3.22 45 −3.00 50 −2.87 54.736 −2.828 60 −2.886 Check second derivative to see if a maximum, minimum, or point of inflection has been found. Or, evaluate fom on either side of θ*. θ* = 54.736◦ Ans. fom* = −2.828 Alternative: d dθ 1 + cos2 θ cos θ sin θ = 0 And solve resulting tran- scendental for θ*. shi20396_ch01.qxd 6/5/03 12:11 PM Page 4
  • 5. Chapter 1 5 1-11 (a) x1 + x2 = X1 + e1 + X2 + e2 error = e = (x1 + x2) − (X1 + X2) = e1 + e2 Ans. (b) x1 − x2 = X1 + e1 − (X2 + e2) e = (x1 − x2) − (X1 − X2) = e1 − e2 Ans. (c) x1x2 = (X1 + e1)(X2 + e2) e = x1x2 − X1 X2 = X1e2 + X2e1 + e1e2 . = X1e2 + X2e1 = X1 X2 e1 X1 + e2 X2 Ans. (d) x1 x2 = X1 + e1 X2 + e2 = X1 X2 1 + e1/X1 1 + e2/X2 1 + e2 X2 −1 . = 1 − e2 X2 and 1 + e1 X1 1 − e2 X2 . = 1 + e1 X1 − e2 X2 e = x1 x2 − X1 X2 . = X1 X2 e1 X1 − e2 X2 Ans. 1-12 (a) x1 = √ 5 = 2.236 067 977 5 X1 = 2.23 3-correct digits x2 = √ 6 = 2.449 487 742 78 X2 = 2.44 3-correct digits x1 + x2 = √ 5 + √ 6 = 4.685 557 720 28 e1 = x1 − X1 = √ 5 − 2.23 = 0.006 067 977 5 e2 = x2 − X2 = √ 6 − 2.44 = 0.009 489 742 78 e = e1 + e2 = √ 5 − 2.23 + √ 6 − 2.44 = 0.015 557 720 28 Sum = x1 + x2 = X1 + X2 + e = 2.23 + 2.44 + 0.015 557 720 28 = 4.685 557 720 28 (Checks) Ans. (b) X1 = 2.24, X2 = 2.45 e1 = √ 5 − 2.24 = −0.003 932 022 50 e2 = √ 6 − 2.45 = −0.000 510 257 22 e = e1 + e2 = −0.004 442 279 72 Sum = X1 + X2 + e = 2.24 + 2.45 + (−0.004 442 279 72) = 4.685 557 720 28 Ans. shi20396_ch01.qxd 6/5/03 12:11 PM Page 5
  • 6. 6 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design 1-13 (a) σ = 20(6.89) = 137.8 MPa (b) F = 350(4.45) = 1558 N = 1.558 kN (c) M = 1200 lbf · in (0.113) = 135.6 N · m (d) A = 2.4(645) = 1548 mm2 (e) I = 17.4 in4 (2.54)4 = 724.2 cm4 (f) A = 3.6(1.610)2 = 9.332 km2 (g) E = 21(1000)(6.89) = 144.69(103 ) MPa = 144.7 GPa (h) v = 45 mi/h (1.61) = 72.45 km/h (i) V = 60 in3 (2.54)3 = 983.2 cm3 = 0.983 liter 1-14 (a) l = 1.5/0.305 = 4.918 ft = 59.02 in (b) σ = 600/6.89 = 86.96 kpsi (c) p = 160/6.89 = 23.22 psi (d) Z = 1.84(105 )/(25.4)3 = 11.23 in3 (e) w = 38.1/175 = 0.218 lbf/in (f) δ = 0.05/25.4 = 0.00197 in (g) v = 6.12/0.0051 = 1200 ft/min (h) = 0.0021 in/in (i) V = 30/(0.254)3 = 1831 in3 1-15 (a) σ = 200 15.3 = 13.1 MPa (b) σ = 42(103 ) 6(10−2)2 = 70(106 ) N/m2 = 70 MPa (c) y = 1200(800)3 (10−3 )3 3(207)(6.4)(109)(10−2)4 = 1.546(10−2 ) m = 15.5 mm (d) θ = 1100(250)(10−3 ) 79.3(π/32)(25)4(109)(10−3)4 = 9.043(10−2 ) rad = 5.18◦ 1-16 (a) σ = 600 20(6) = 5 MPa (b) I = 1 12 8(24)3 = 9216 mm4 (c) I = π 64 324 (10−1 )4 = 5.147 cm4 (d) τ = 16(16) π(253)(10−3)3 = 5.215(106 ) N/m2 = 5.215 MPa shi20396_ch01.qxd 6/5/03 12:11 PM Page 6
  • 7. Chapter 1 7 1-17 (a) τ = 120(103 ) (π/4)(202) = 382 MPa (b) σ = 32(800)(800)(10−3 ) π(32)3(10−3)3 = 198.9(106 ) N/m2 = 198.9 MPa (c) Z = π 32(36) (364 − 264 ) = 3334 mm3 (d) k = (1.6)4 (79.3)(10−3 )4 (109 ) 8(19.2)3(32)(10−3)3 = 286.8 N/m shi20396_ch01.qxd 6/5/03 12:11 PM Page 7