SlideShare a Scribd company logo
3
Most read
7
Most read
14
Most read
Cayley–Hamilton theorem - Eigenvalues,
Eigenvectors and Eigenspaces
Isaac Amornortey Yowetu
NIMS-GHANA
March 17, 2021
Cayley–Hamilton theorem Finding Eigenvalues EigenVectors and EigenSpaces
Content
1 Cayley–Hamilton theorem
2 Finding Eigenvalues
3 EigenVectors and EigenSpaces
Cayley–Hamilton theorem Finding Eigenvalues EigenVectors and EigenSpaces
Cayley–Hamilton theorem
Every square matrix satisfies its own characteristic equation.
Thus:
p(λ) = det(λI − A)
Substituting the matrix A for λ in the polynomial,
p(λ) = det(λI − A) results in a zero matrix.
Thus:
p(A) = 0
Cayley–Hamilton theorem Finding Eigenvalues EigenVectors and EigenSpaces
Example : Using Non-singular Matrix
Consider the given matrix:
A =


2 1 −1
1 2 −1
− −1 2


Find the characteristic equation of the square matrix and
hence find the eigenvalues, eigenvectors and eigenspaces.
Cayley–Hamilton theorem Finding Eigenvalues EigenVectors and EigenSpaces
Solution
p(λ) = det(λI − A) (1)
=
Cayley-Hamilton Theorem, Eigenvalues, Eigenvectors and Eigenspace.
Cayley-Hamilton Theorem, Eigenvalues, Eigenvectors and Eigenspace.
Cayley-Hamilton Theorem, Eigenvalues, Eigenvectors and Eigenspace.
Cayley-Hamilton Theorem, Eigenvalues, Eigenvectors and Eigenspace.
λ


1 0 0
0 1 0
0 0 1

 −


2 1 −1
1 2 −1
−1 −1 2


Cayley-Hamilton Theorem, Eigenvalues, Eigenvectors and Eigenspace.
Cayley-Hamilton Theorem, Eigenvalues, Eigenvectors and Eigenspace.
Cayley-Hamilton Theorem, Eigenvalues, Eigenvectors and Eigenspace.
Cayley-Hamilton Theorem, Eigenvalues, Eigenvectors and Eigenspace.
(2)
=

More Related Content

PPT
Eigen value , eigen vectors, caley hamilton theorem
PPTX
vector space and subspace
PPTX
Numerical differentiation and integration
PPTX
senior seminar
PPTX
Vector Spaces,subspaces,Span,Basis
PPTX
Maths-->>Eigenvalues and eigenvectors
PPTX
Diagonalization of Matrices
PPTX
Rank nullity theorem
Eigen value , eigen vectors, caley hamilton theorem
vector space and subspace
Numerical differentiation and integration
senior seminar
Vector Spaces,subspaces,Span,Basis
Maths-->>Eigenvalues and eigenvectors
Diagonalization of Matrices
Rank nullity theorem

What's hot (20)

PPTX
PPT
Vector calculus
PPT
Eigen values and eigen vectors
PPTX
Function and their graphs ppt
PDF
Integral exponent 1 (Instructional Material)
PPTX
Implicit function and Total derivative
PPTX
Power Series,Taylor's and Maclaurin's Series
PPT
Chapter 7.2 parabola
PPTX
Vector calculus
PPTX
taylors theorem
PPT
systems of linear equations & matrices
PPTX
Fourier series Introduction
PPTX
Limits and continuity powerpoint
PPTX
Divergence,curl,gradient
PPTX
Indefinite Integral
PPT
Power series convergence ,taylor & laurent's theorem
PPTX
Line integeral
PDF
Newton's Forward/Backward Difference Interpolation
PPTX
Linear transformation and application
Vector calculus
Eigen values and eigen vectors
Function and their graphs ppt
Integral exponent 1 (Instructional Material)
Implicit function and Total derivative
Power Series,Taylor's and Maclaurin's Series
Chapter 7.2 parabola
Vector calculus
taylors theorem
systems of linear equations & matrices
Fourier series Introduction
Limits and continuity powerpoint
Divergence,curl,gradient
Indefinite Integral
Power series convergence ,taylor & laurent's theorem
Line integeral
Newton's Forward/Backward Difference Interpolation
Linear transformation and application
Ad

Similar to Cayley-Hamilton Theorem, Eigenvalues, Eigenvectors and Eigenspace. (20)

PDF
DOC-20231230-WA0001..pdf
PDF
eigenvalueandeigenvector72-80-160505220126 (1).pdf
PPTX
Cayley_Hamilton_Theorem_Presentation.pptx
PPTX
Eigen value and eigen vector
PPTX
Cayley_Hamilton_Theorem_Presentation.pptx
PDF
Maths Adobe Scan 10 Sept 2024 (2)(1).pdf
PPTX
Sec 3.4 Eigen values and Eigen vectors.pptx
PPTX
Diagonalization of matrix
PDF
Note.pdf
PDF
Eigen Values & Eigen Vectors PPT.pdf
PDF
Partial midterm set7 soln linear algebra
PDF
Results on Linear Algebra
PDF
Eigen value and vectors
PDF
Module 1 Theory of Matrices.pdf
PPT
Eighan values and diagonalization
PPTX
Matrices ppt
PPTX
This a math presentation in engineering Matrix
PDF
cayley Hamilton ppt.pdf
PPTX
Cayley Hamilton Theorem
PPTX
5-eigenvalues_and_eigenvectors.pptx
DOC-20231230-WA0001..pdf
eigenvalueandeigenvector72-80-160505220126 (1).pdf
Cayley_Hamilton_Theorem_Presentation.pptx
Eigen value and eigen vector
Cayley_Hamilton_Theorem_Presentation.pptx
Maths Adobe Scan 10 Sept 2024 (2)(1).pdf
Sec 3.4 Eigen values and Eigen vectors.pptx
Diagonalization of matrix
Note.pdf
Eigen Values & Eigen Vectors PPT.pdf
Partial midterm set7 soln linear algebra
Results on Linear Algebra
Eigen value and vectors
Module 1 Theory of Matrices.pdf
Eighan values and diagonalization
Matrices ppt
This a math presentation in engineering Matrix
cayley Hamilton ppt.pdf
Cayley Hamilton Theorem
5-eigenvalues_and_eigenvectors.pptx
Ad

More from Isaac Yowetu (19)

PDF
Inverse-power-method.pdf
PDF
Approximating Dominant Eivenvalue By The Power Method
PDF
Singular Value Decompostion (SVD): Worked example 3
PDF
Singular Value Decompostion (SVD): Worked example 2
PDF
Singular Value Decompostion (SVD): Worked example 1
PDF
Singular Value Decompostion (SVD)
PDF
Givens rotation method
PDF
Sherman-Morrison Formula Proof
PDF
Householder transformation | Householder Reflection with QR Decomposition
PDF
Gram-Schmidt and QR Decomposition (Factorization) of Matrices
PDF
Gram schmidt orthogonalization | Orthonormal Process
PDF
Regula Falsi (False position) Method
PDF
Bisection method
PDF
Projectors and Projection Onto Subspaces
PDF
Projectors and Projection Onto a Line
PDF
Secant Iterative method
PDF
Aitken's Method
PDF
Newton Raphson iterative Method
PDF
Fixed point iteration
Inverse-power-method.pdf
Approximating Dominant Eivenvalue By The Power Method
Singular Value Decompostion (SVD): Worked example 3
Singular Value Decompostion (SVD): Worked example 2
Singular Value Decompostion (SVD): Worked example 1
Singular Value Decompostion (SVD)
Givens rotation method
Sherman-Morrison Formula Proof
Householder transformation | Householder Reflection with QR Decomposition
Gram-Schmidt and QR Decomposition (Factorization) of Matrices
Gram schmidt orthogonalization | Orthonormal Process
Regula Falsi (False position) Method
Bisection method
Projectors and Projection Onto Subspaces
Projectors and Projection Onto a Line
Secant Iterative method
Aitken's Method
Newton Raphson iterative Method
Fixed point iteration

Recently uploaded (20)

PDF
VCE English Exam - Section C Student Revision Booklet
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PDF
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
PPTX
Lesson notes of climatology university.
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PPTX
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
PPTX
human mycosis Human fungal infections are called human mycosis..pptx
PDF
Insiders guide to clinical Medicine.pdf
PDF
01-Introduction-to-Information-Management.pdf
PPTX
Pharma ospi slides which help in ospi learning
PDF
FourierSeries-QuestionsWithAnswers(Part-A).pdf
PPTX
Cell Structure & Organelles in detailed.
PDF
Abdominal Access Techniques with Prof. Dr. R K Mishra
PDF
Classroom Observation Tools for Teachers
PDF
TR - Agricultural Crops Production NC III.pdf
PPTX
Institutional Correction lecture only . . .
PDF
Microbial disease of the cardiovascular and lymphatic systems
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
VCE English Exam - Section C Student Revision Booklet
2.FourierTransform-ShortQuestionswithAnswers.pdf
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
Lesson notes of climatology university.
Module 4: Burden of Disease Tutorial Slides S2 2025
Pharmacology of Heart Failure /Pharmacotherapy of CHF
Final Presentation General Medicine 03-08-2024.pptx
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
human mycosis Human fungal infections are called human mycosis..pptx
Insiders guide to clinical Medicine.pdf
01-Introduction-to-Information-Management.pdf
Pharma ospi slides which help in ospi learning
FourierSeries-QuestionsWithAnswers(Part-A).pdf
Cell Structure & Organelles in detailed.
Abdominal Access Techniques with Prof. Dr. R K Mishra
Classroom Observation Tools for Teachers
TR - Agricultural Crops Production NC III.pdf
Institutional Correction lecture only . . .
Microbial disease of the cardiovascular and lymphatic systems
Chapter 2 Heredity, Prenatal Development, and Birth.pdf

Cayley-Hamilton Theorem, Eigenvalues, Eigenvectors and Eigenspace.

  • 1. Cayley–Hamilton theorem - Eigenvalues, Eigenvectors and Eigenspaces Isaac Amornortey Yowetu NIMS-GHANA March 17, 2021
  • 2. Cayley–Hamilton theorem Finding Eigenvalues EigenVectors and EigenSpaces Content 1 Cayley–Hamilton theorem 2 Finding Eigenvalues 3 EigenVectors and EigenSpaces
  • 3. Cayley–Hamilton theorem Finding Eigenvalues EigenVectors and EigenSpaces Cayley–Hamilton theorem Every square matrix satisfies its own characteristic equation. Thus: p(λ) = det(λI − A) Substituting the matrix A for λ in the polynomial, p(λ) = det(λI − A) results in a zero matrix. Thus: p(A) = 0
  • 4. Cayley–Hamilton theorem Finding Eigenvalues EigenVectors and EigenSpaces Example : Using Non-singular Matrix Consider the given matrix: A =   2 1 −1 1 2 −1 − −1 2   Find the characteristic equation of the square matrix and hence find the eigenvalues, eigenvectors and eigenspaces.
  • 5. Cayley–Hamilton theorem Finding Eigenvalues EigenVectors and EigenSpaces Solution p(λ) = det(λI − A) (1) =
  • 10. λ   1 0 0 0 1 0 0 0 1   −   2 1 −1 1 2 −1 −1 −1 2  
  • 15. (2) =
  • 20.   λ − 2 −1 1 −1 λ − 2 1 1 1 λ − 2  
  • 29. λ − 2 1 1 λ − 2
  • 37. −1 1 1 λ − 2
  • 45. −1 λ − 2 1 1
  • 50. Cayley–Hamilton theorem Finding Eigenvalues EigenVectors and EigenSpaces Solution Continue p(λ) = (λ − 2)[(λ − 2)2 − 1] + [(−1)(λ − 2) − 1] (5) +[(−1)(1) − 1(λ − 2)] = (λ − 2)(λ2 − 4λ + 3) − 2(λ − 1) (6) = (λ − 2)(λ − 3)(λ − 1) − 2(λ − 1) (7) = (λ − 1)[(λ − 3)(λ − 2) − 2] (8) = (λ − 1)[(λ2 − 5λ + 4] (9) = (λ − 1)(λ − 1)(λ − 4) (10) p(λ) = λ3 − 6λ2 + 9λ − 4 (11)
  • 51. Cayley–Hamilton theorem Finding Eigenvalues EigenVectors and EigenSpaces Considering our matrix: A =   2 1 −1 1 2 −1 −1 −1 2   Finding the Eigenvalues λ1 = 1, λ2 = 1 and λ3 = 4 Finding the trace of a matrix A tr(A) = 3 X i=1 λi = 3 X i=1 aii = 6
  • 52. Cayley–Hamilton theorem Finding Eigenvalues EigenVectors and EigenSpaces Determinant of the of a matrix A det(A) = 3 Y i=1 λi = 4
  • 53. Cayley–Hamilton theorem Finding Eigenvalues EigenVectors and EigenSpaces Eigenvectors Considering the eigenvalues, λ1 = 1 and λ2 = 1 and λ3 = 4 and the matrix.   λ − 2 −1 1 −1 λ − 2 1 1 1 λ − 2   When λ = 1:   −1 −1 1 0 −1 −1 1 0 1 1 −1 0   Using row reduction method, we have −1 −1 1 0 We consider expressing the argument matrix in terms of equation as;
  • 54. Cayley–Hamilton theorem Finding Eigenvalues EigenVectors and EigenSpaces −x − y + z = 0 (12) x = −y + z (13) The eigenspace Λ1 for λ = 1 becomes Λ1 =   x y z   =   −s + t s t   (14) =    s   −1 1 0   + t   1 0 1      (15) Let z = t and y = s and where t 6= 0 and s 6= 0
  • 55. Cayley–Hamilton theorem Finding Eigenvalues EigenVectors and EigenSpaces Eigenvectors .   λ − 2 −1 1 −1 λ − 2 1 1 1 λ − 2   When λ = 4:   2 −1 1 0 −1 2 1 0 1 1 2 0   Using row reduction method, we have   2 −1 1 0 3 3 0 −3 −3 0  
  • 56. Cayley–Hamilton theorem Finding Eigenvalues EigenVectors and EigenSpaces 2 −1 1 0 1 1 0 We consider expressing the argument matrix in terms of equation as; 2x − y + z = 0 (16) y + z = 0 (17) y = −z (18) y = −t (19) Let z = t x = −t (20)
  • 57. Cayley–Hamilton theorem Finding Eigenvalues EigenVectors and EigenSpaces The eigenspace Λ3 for λ = 4 becomes Λ3 =   x y z   =   −t −t t   =    t   −1 −1 1      Where t 6= 0
  • 58. Cayley–Hamilton theorem Finding Eigenvalues EigenVectors and EigenSpaces Conclusion Eigenvectors P =   −1 1 −1 1 0 −1 0 1 1   Eigenvalues D =   1 0 0 0 1 0 0 0 4   A = PDP−1
  • 59. Cayley–Hamilton theorem Finding Eigenvalues EigenVectors and EigenSpaces End THANK YOU