SlideShare a Scribd company logo
30/1 1 P.T.O.
narjmWu H$moS >H$mo CÎma-nwpñVH$m Ho$ _wI-n¥ð
>na Adí` {bIo§ &
Candidates must write the Code on the
title page of the answer-book.
Series HRK H$moS> Z§.
Code No.
amob Z§.
Roll No.
g§H${bV narjm – II
SUMMATIVE ASSESSMENT – II
J{UV
MATHEMATICS
{ZYm©[aV g_` : 3 KÊQ>o A{YH$V_ A§H$ : 90
Time allowed : 3 hours Maximum Marks : 90
 H¥$n`m Om±M H$a b| {H$ Bg àíZ-nÌ _o§ _w{ÐV n¥ð> 11 h¢ &
 àíZ-nÌ _| Xm{hZo hmW H$s Amoa {XE JE H$moS >Zå~a H$mo N>mÌ CÎma-nwpñVH$m Ho$ _wI-n¥ð> na
{bI| &
 H¥$n`m Om±M H$a b| {H$ Bg àíZ-nÌ _| >31 àíZ h¢ &
 H¥$n`m àíZ H$m CÎma {bIZm ewê$ H$aZo go nhbo, àíZ H$m H«$_m§H$ Adí` {bI| &
 Bg àíZ-nÌ H$mo n‹T>Zo Ho$ {bE 15 {_ZQ >H$m g_` {X`m J`m h¡ & àíZ-nÌ H$m {dVaU nydm©•
_| 10.15 ~Oo {H$`m OmEJm & 10.15 ~Oo go 10.30 ~Oo VH$ N>mÌ Ho$db àíZ-nÌ H$mo n‹T>|Jo
Am¡a Bg Ad{Y Ho$ Xm¡amZ do CÎma-nwpñVH$m na H$moB© CÎma Zht {bI|Jo &
 Please check that this question paper contains 11 printed pages.
 Code number given on the right hand side of the question paper should be
written on the title page of the answer-book by the candidate.
 Please check that this question paper contains 31 questions.
 Please write down the Serial Number of the question before
attempting it.
 15 minute time has been allotted to read this question paper. The question
paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the
students will read the question paper only and will not write any answer on
the answer-book during this period.
SET-1
30/1
30/1 2
gm_mÝ` {ZX}e :
(i) g^r àíZ A{Zdm`© h¢ &
(ii) Bg àíZ-nÌ _| 31 àíZ h¢ Omo Mma IÊS>m|  A, ~, g Am¡a X _| {d^m{OV h¢ &
(iii) IÊS> A _| EH$-EH$ A§H$ dmbo 4 àíZ h¢ & IÊS> ~ _| 6 àíZ h¢ {OZ_| go àË`oH$ 2 A§H$
H$m h¡ & IÊS> g _| 10 àíZ VrZ-VrZ A§H$m| Ho$ h¢ & IÊS> X _| 11 àíZ h¢ {OZ_| go àË`oH$
4 A§H$ H$m h¡ &
(iv) H¡$bHw$boQ>am| Ho$ à`moJ H$s AZw_{V Zht h¡ &
General Instructions :
(i) All questions are compulsory.
(ii) The question paper consists of 31 questions divided into four sections  A,
B, C and D.
(iii) Section A contains 4 questions of 1 mark each. Section B contains
6 questions of 2 marks each, Section C contains 10 questions of 3 marks
each and Section D contains 11 questions of 4 marks each.
(iv) Use of calculators is not permitted.
IÊS> A
SECTION A
àíZ g§»`m 1 go 4 VH$ àË`oH$ àíZ 1 A§H$ H$m h¡ &
Question numbers 1 to 4 carry 1 mark each.
1. EH$ g_m§Va lo‹T>r, {Og_| a21
 a7
= 84 h¡, H$m gmd© A§Va Š`m h¡ ?
What is the common difference of an A.P. in which a21
 a7
= 84 ?
30/1 3 P.T.O.
2. `{X EH$ ~mø q~Xþ P go a {ÌÁ`m VWm O Ho$ÝÐ dmbo d¥Îm na ItMr JB© Xmo ñne©-aoImAm| Ho$
~rM H$m H$moU 60 hmo, Vmo OP H$s b§~mB© kmV H$s{OE &
If the angle between two tangents drawn from an external point P to a
circle of radius a and centre O, is 60, then find the length of OP.
3. `{X 30 _r. D±$Mr EH$ _rZma, ^y{_ na 10 3 _r. b§~r N>m`m ~ZmVr h¡, Vmo gy`© H$m CÞ`Z
H$moU Š`m h¡ ?
If a tower 30 m high, casts a shadow 10 3 m long on the ground, then
what is the angle of elevation of the sun ?
4. 900 go~m| Ho$ EH$ T>oa _| go `mÑÀN>`m EH$ go~ MwZZo na g‹S>m hþAm go~ {ZH$bZo H$s
àm{`H$Vm 0·18 h¡ & T>oa _| g‹S>o hþE go~m| H$s g§»`m Š`m h¡ ?
The probability of selecting a rotten apple randomly from a heap of
900 apples is 0·18. What is the number of rotten apples in the heap ?
IÊS> ~
SECTION B
àíZ g§»`m 5 go 10 VH$ àË`oH$ àíZ Ho$ 2 A§H h¢ &
Question numbers 5 to 10 carry 2 marks each.
5. p H$m dh _mZ kmV H$s{OE {OgHo$ {bE {ÛKmV g_rH$aU px2
 14x + 8 = 0 H$m EH$ _yb
Xÿgao H$m 6 JwZm h¡ &
Find the value of p, for which one root of the quadratic equation
px2
 14x + 8 = 0 is 6 times the other.
6. lo‹T>r 20, 19
4
1
, 18
2
1
, 17
4
3
, ... H$m H$m¡Z-gm nX àW_ G$UmË_H$ nX h¡ ?
Which term of the progression 20, 19
4
1
, 18
2
1
, 17
4
3
, ... is the first negative
term ?
30/1 4
7. {gÕ H$s{OE {H$ d¥Îm H$s {H$gr Ordm Ho$ A§V q~XþAm| na ItMr JB© ñne©-aoImE± Ordm Ho$
gmW g_mZ H$moU ~ZmVr h¢ &
Prove that the tangents drawn at the end points of a chord of a circle
make equal angles with the chord.
8. EH$ d¥Îm {H$gr MVw^©wO ABCD H$s g^r Mmam| ^wOmAm| H$mo ñne© H$aVm h¡ & {gÕ H$s{OE {H$
AB + CD = BC + DA
A circle touches all the four sides of a quadrilateral ABCD. Prove that
AB + CD = BC + DA
9. EH$ aoIm y-Aj VWm x-Aj H$mo H«$_e: q~XþAm| P VWm Q na à{VÀN>oX H$aVr h¡ & `{X
(2,  5), PQ H$m _Ü`-q~Xþ hmo, Vmo P VWm Q Ho$ {ZX}em§H$ kmV H$s{OE &
A line intersects the y-axis and x-axis at the points P and Q respectively.
If (2,  5) is the mid-point of PQ, then find the coordinates of P and Q.
10. `{X P(x, y) H$s A(5, 1) VWm B( 1, 5) go Xÿ[a`m± g_mZ hm|, Vmo {gÕ H$s{OE {H$
3x = 2y.
If the distances of P(x, y) from A(5, 1) and B( 1, 5) are equal, then prove
that 3x = 2y.
IÊS> g
SECTION C
àíZ g§»`m 11 go 20 VH$ àË`oH$ àíZ Ho$ 3 A§H$ h¢ &
Question numbers 11 to 20 carry 3 marks each.
11. `{X ad  bc h¡, Vmo {gÕ H$s{OE {H$ g_rH$aU
(a2
+ b2
) x2
+ 2 (ac + bd) x + (c2
+ d2
) = 0 H$m H$moB© dmñV{dH$ _yb Zht h¡ &
If ad  bc, then prove that the equation
(a2
+ b2
) x2
+ 2 (ac + bd) x + (c2
+ d2
) = 0 has no real roots.
12. EH$ g_m§Va lo‹T>r H$m àW_ nX 5, A§{V_ nX 45 VWm BgHo$ g^r nXm| H$m `moJ$b 400 h¡ &
Bg g_m§Va lo‹T>r Ho$ nXm| H$s g§»`m VWm gmd© A§Va kmV H$s{OE &
The first term of an A.P. is 5, the last term is 45 and the sum of all its
terms is 400. Find the number of terms and the common difference of the
A.P.
30/1 5 P.T.O.
13. EH$ _rZma Ho$ nmX go JwµOaZo dmbr grYr aoIm na nmX go H«$_e: 4 _r. VWm 16 _r. H$s
Xÿ[a`m| na Xmo q~Xþ C d D pñWV h¢ & `{X C d D go _rZma Ho$ {eIa Ho$ CÞ`Z H$moU
EH$-Xÿgao Ho$ nyaH$ hm|, Vmo _rZma H$s D±$MmB© kmV H$s{OE &
On a straight line passing through the foot of a tower, two points C and D
are at distances of 4 m and 16 m from the foot respectively. If the angles
of elevation from C and D of the top of the tower are complementary, then
find the height of the tower.
14. EH$ W¡bo _| 15 gµo$X VWm Hw$N> H$mbr J|X| h¢ & `{X W¡bo _| go EH$ H$mbr J|X {ZH$mbZo H$s
àm{`H$Vm EH$ gµo$X J|X {ZH$mbZo H$s àm{`H$Vm H$s VrZ JwZr hmo, Vmo W¡bo _| H$mbr J|Xm| H$s
g§»`m kmV H$s{OE &
A bag contains 15 white and some black balls. If the probability of
drawing a black ball from the bag is thrice that of drawing a white ball,
find the number of black balls in the bag.
15. q~Xþ 





y,
11
24
, q~XþAm| P(2, 2) VWm Q(3, 7) H$mo {_bmZo dmbo aoImI§S> H$mo {H$g
AZwnmV _| {d^m{OV H$aVm h¡ ? y H$m _mZ ^r kmV H$s{OE &
In what ratio does the point 





y,
11
24
divide the line segment joining the
points P(2,  2) and Q(3, 7) ? Also find the value of y.
16. Xr JB© AmH¥${V _|, àË`oH$ 3 go_r ì`mg Ho$ VrZ AY©d¥Îm, 4·5 go_r ì`mg H$m EH$ d¥Îm VWm
4·5 go_r {ÌÁ`m H$m EH$ AY©d¥Îm ~ZmE JE h¢ & N>m`m§{H$V ^mJ H$m joÌ$b kmV H$s{OE &
30/1 6
Three semicircles each of diameter 3 cm, a circle of diameter 4·5 cm and a
semicircle of radius 4·5 cm are drawn in the given figure. Find the area of
the shaded region.
17. Xr JB© AmH¥${V _|, O H|$Ð dmbo Xmo g§H|$Ðr` d¥Îmm| H$s {ÌÁ`mE± 21 go_r VWm 42 go_r h¢ &
`{X  AOB = 60 h¡, Vmo N>m`m§{H$V ^mJ H$m joÌ$b kmV H$s{OE &
[  =
7
22
à`moJ H$s{OE ]
In the given figure, two concentric circles with centre O have radii 21 cm
and 42 cm. If  AOB = 60, find the area of the shaded region.
[ Use  =
7
22
]
30/1 7 P.T.O.
18. 5·4 _r. Mm¡‹S>r Am¡a 1·8 _r. Jhar EH$ Zha _| nmZr 25 {H$_r/KÊQ>m H$s J{V go ~h ahm h¡ &
Bggo 40 {_ZQ> _| {H$VZo joÌ$b H$s qgMmB© hmo gH$Vr h¡, `{X qgMmB© Ho$ {bE 10 go_r
Jhao nmZr H$s Amdí`H$Vm h¡ ?
Water in a canal, 5·4 m wide and 1·8 m deep, is flowing with a speed of
25 km/hour. How much area can it irrigate in 40 minutes, if 10 cm of
standing water is required for irrigation ?
19. EH$ e§Hw$ Ho$ {N>ÞH$ H$s {V`©H²$ D±$MmB© 4 go_r h¡ VWm BgHo$ d¥Îmr` {gam| Ho$ n[a_mn 18 go_r
Am¡a 6 go_r h¢ & Bg {N>ÞH$ H$m dH«$ n¥îR>r` joÌ$b kmV H$s{OE &
The slant height of a frustum of a cone is 4 cm and the perimeters of its
circular ends are 18 cm and 6 cm. Find the curved surface area of the
frustum.
20. EH$ R>mog bmoho Ho$ KZm^ H$s {d_mE± 4·4 _r.  2·6 _r.  1·0 _r. h¢ & Bgo {nKbmH$a
30 go_r Am§V[aH$ {ÌÁ`m Am¡a 5 go_r _moQ>mB© H$m EH$ ImoIbm ~obZmH$ma nmBn ~Zm`m J`m
h¡ & nmBn H$s b§~mB© kmV H$s{OE &
The dimensions of a solid iron cuboid are 4·4 m  2·6 m  1·0 m. It is
melted and recast into a hollow cylindrical pipe of 30 cm inner radius and
thickness 5 cm. Find the length of the pipe.
IÊS> X
SECTION D
àíZ g§»`m 21 go 31 VH$ àË`oH$ àíZ Ho$ 4 A§H$ h¢ &
Question numbers 21 to 31 carry 4 marks each.
21. x Ho$ {bE hb H$s{OE :
1x
1

+
1x5
3

=
4x
5

, x   1, 
5
1
,  4
Solve for x :
1x
1

+
1x5
3

=
4x
5

, x   1, 
5
1
,  4
30/1 8
22. Xmo Zb EH$ gmW EH$ Q>¢H$ H$mo 3
13
1
KÊQ>o _| ^a gH$Vo h¢ & `{X EH$ Zb Q>¢H$ H$mo ^aZo _|
Xÿgao Zb go 3 KÊQ>o A{YH$ boVm h¡, Vmo àË`oH$ Zb Q>¢H$ H$mo ^aZo _| {H$VZm g_` boJm ?
Two taps running together can fill a tank in 3
13
1
hours. If one tap takes
3 hours more than the other to fill the tank, then how much time will
each tap take to fill the tank ?
23. `{X Xmo g_m§Va lo{‹T>`m| Ho$ àW_ n nXm| Ho$ `moJ$bm| H$m AZwnmV (7n + 1) : (4n + 27) h¡,
Vmo CZHo$ 9d| nXm| H$m AZwnmV kmV H$s{OE &
If the ratio of the sum of the first n terms of two A.Ps is (7n + 1) : (4n + 27),
then find the ratio of their 9th
terms.
24. {gÕ H$s{OE {H$ d¥Îm Ho$ {H$gr ~mø q~Xþ go d¥Îm na ItMr JB© Xmo ñne©-aoImAm| H$s b§~mB`m±
g_mZ hmoVr h¢ &
Prove that the lengths of two tangents drawn from an external point to a
circle are equal.
25. Xr JB© AmH¥${V _|, XY VWm XY, O H|$Ð dmbo d¥Îm H$s Xmo g_m§Va ñne©-aoImE± h¢ VWm EH$
AÝ` ñne©-aoIm AB, {OgH$m ñne© q~Xþ C h¡, XY H$mo A VWm XY H$mo B na à{VÀN>oX
H$aVr h¡ & {gÕ H$s{OE {H$  AOB = 90.
30/1 9 P.T.O.
In the given figure, XY and XY are two parallel tangents to a circle with
centre O and another tangent AB with point of contact C, is intersecting
XY at A and XY at B. Prove that  AOB = 90.
26. EH$ {Ì^wO ABC H$s aMZm H$s{OE {Og_| ^wOm BC = 7 go_r,  B = 45,  A = 105
hmo & V~ EH$ AÝ` {Ì^wO H$s aMZm H$s{OE {OgH$s ^wOmE±  ABC H$s g§JV ^wOmAm| H$s
4
3
JwZr hm| &
Construct a triangle ABC with side BC = 7 cm,  B = 45,  A = 105.
Then construct another triangle whose sides are
4
3
times the
corresponding sides of the  ABC.
27. EH$ hdmB© OhmµO ^yVb go D$na 300 _r. H$s D±$MmB© na C‹S> ahm h¡ & Bg D±$MmB© na C‹S>Vo
hþE hdmB© OhmµO go EH$ ZXr Ho$ XmoZm| {H$Zmam| na nañna {dnarV {XemAm| _| pñWV Xmo q~XþAm|
Ho$ AdZ_Z H$moU H«$_e: 45 VWm 60 h¢ & ZXr H$s Mm¡‹S>mB© kmV H$s{OE &
[ 3 = 1·732 à`moJ H$s{OE ]
An aeroplane is flying at a height of 300 m above the ground. Flying at
this height, the angles of depression from the aeroplane of two points on
both banks of a river in opposite directions are 45 and 60 respectively.
Find the width of the river. [Use 3 = 1·732]
28. `{X q~Xþ A(k + 1, 2k), B(3k, 2k + 3) VWm C(5k  1, 5k) ñ§maoI hm|, Vmo k H$m _mZ
kmV H$s{OE &
If the points A(k + 1, 2k), B(3k, 2k + 3) and C(5k  1, 5k) are collinear,
then find the value of k.
30/1 10
29. Xmo {d{^Þ nmgm| H$mo EH$ gmW |$H$m J`m & àm{`H$Vm kmV H$s{OE {H$ àmßV g§»`mAm| H$m
(i) `moJ$b g_ hmoJm, Am¡a
(ii) JwUZ$b g_ hmoJm &
Two different dice are thrown together. Find the probability that the
numbers obtained have
(i) even sum, and
(ii) even product.
30. Xr JB© AmH¥${V _|, ABCD EH$ Am`V h¡ {OgH$s {d_mE± 21 go_r  14 go_r h¡§ & BC H$mo
ì`mg _mZ H$a EH$ AY©d¥Îm ItMm J`m h¡ & AmH¥${V _| N>m`m§{H$V ^mJ H$m joÌ$b VWm
n[a_mn kmV H$s{OE &
In the given figure, ABCD is a rectangle of dimensions 21 cm  14 cm. A
semicircle is drawn with BC as diameter. Find the area and the
perimeter of the shaded region in the figure.
30/1 11 P.T.O.
31. {H$gr dfm©-Ob g§J«hU VÝÌ _|, 22 _r.  20 _r. H$s N>V go dfm©-Ob ~hH$a 2 _r. AmYma
Ho$ ì`mg VWm 3·5 _r. D±$MmB© Ho$ EH$ ~obZmH$ma Q>¢H$ _| AmVm h¡ & `{X Q>¢H$ ^a J`m hmo, Vmo
kmV H$s{OE {H$ go_r _| {H$VZr dfm© hþB© & Ob g§ajU na AnZo {dMma ì`º$ H$s{OE &
In a rain-water harvesting system, the rain-water from a roof of
22 m  20 m drains into a cylindrical tank having diameter of base 2 m
and height 3·5 m. If the tank is full, find the rainfall in cm. Write your
views on water conservation.

More Related Content

PDF
CBSE Class 10 Mathematics 2014 Summative Assesments 2 (SA 2 ) Question Papers...
PDF
Delhi math sample paper set 1
PDF
PDF
2015 12 lyp_mathematics_trivandrum_chennai_set1_outside_qp
PDF
Eng hin 093_p_visual_pf
PDF
2015 lyp class_10_social_science_set1_delhi_foreign_qp
PDF
इस्लाम में परदा और नारी की हैसियत
PDF
Accountancy Question Papers-SET-1, 2017
CBSE Class 10 Mathematics 2014 Summative Assesments 2 (SA 2 ) Question Papers...
Delhi math sample paper set 1
2015 12 lyp_mathematics_trivandrum_chennai_set1_outside_qp
Eng hin 093_p_visual_pf
2015 lyp class_10_social_science_set1_delhi_foreign_qp
इस्लाम में परदा और नारी की हैसियत
Accountancy Question Papers-SET-1, 2017

What's hot (6)

PDF
DOC
Answer key
PDF
S 01-hindi
PDF
Jensen, sue site
Answer key
S 01-hindi
Jensen, sue site
Ad

Similar to Cbse class-10-mathematics-question-paper-2017 (20)

PDF
CBSE Class XII -2015 Mathematics
PDF
2015 12 lyp_mathematics_allahabad_dehradun_set1_qp
PDF
2015 12 lyp_mathematics_patna_set1_outside_qp
PDF
April ki ek udas raaat kahani pankaj subeer
PDF
April ki ek udas raaat kahani pankaj subeer
PDF
The social and economic history of ancient india
PDF
The social and economic history ofancient india
PDF
SS-42-BIOLOGY.pdf
PDF
Manan Lines For All
PDF
SS-41-CHEMISTRY.pdf
PDF
Pavitra samay 15_december_2017_to_14_january__2018
PDF
Jc july2018-hindi
PDF
Pawari boli पवारी बोली. .
PDF
Moro Gao Gunje Pawari 2023 गूंज उठे पवारी ज्ञानेश्वर टेंभरे
PDF
Day 1 Hindi PDF
PDF
CBSE Class 10 Sanskrit Question Paper 2023.pdf
PDF
Anna letter reply digvijay-singh
PDF
Navsarni Bulletin - October 2014
PDF
6254 e02-june-2020
CBSE Class XII -2015 Mathematics
2015 12 lyp_mathematics_allahabad_dehradun_set1_qp
2015 12 lyp_mathematics_patna_set1_outside_qp
April ki ek udas raaat kahani pankaj subeer
April ki ek udas raaat kahani pankaj subeer
The social and economic history of ancient india
The social and economic history ofancient india
SS-42-BIOLOGY.pdf
Manan Lines For All
SS-41-CHEMISTRY.pdf
Pavitra samay 15_december_2017_to_14_january__2018
Jc july2018-hindi
Pawari boli पवारी बोली. .
Moro Gao Gunje Pawari 2023 गूंज उठे पवारी ज्ञानेश्वर टेंभरे
Day 1 Hindi PDF
CBSE Class 10 Sanskrit Question Paper 2023.pdf
Anna letter reply digvijay-singh
Navsarni Bulletin - October 2014
6254 e02-june-2020
Ad

Recently uploaded (20)

PPTX
UV-Visible spectroscopy..pptx UV-Visible Spectroscopy – Electronic Transition...
PPTX
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
PDF
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
PDF
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PPTX
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PPTX
Cell Structure & Organelles in detailed.
PDF
Weekly quiz Compilation Jan -July 25.pdf
PPTX
History, Philosophy and sociology of education (1).pptx
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PDF
Anesthesia in Laparoscopic Surgery in India
PDF
RMMM.pdf make it easy to upload and study
PDF
01-Introduction-to-Information-Management.pdf
PPTX
master seminar digital applications in india
PDF
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PPTX
Final Presentation General Medicine 03-08-2024.pptx
UV-Visible spectroscopy..pptx UV-Visible Spectroscopy – Electronic Transition...
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
Module 4: Burden of Disease Tutorial Slides S2 2025
Final Presentation General Medicine 03-08-2024.pptx
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
Cell Structure & Organelles in detailed.
Weekly quiz Compilation Jan -July 25.pdf
History, Philosophy and sociology of education (1).pptx
Microbial diseases, their pathogenesis and prophylaxis
Anesthesia in Laparoscopic Surgery in India
RMMM.pdf make it easy to upload and study
01-Introduction-to-Information-Management.pdf
master seminar digital applications in india
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
Final Presentation General Medicine 03-08-2024.pptx

Cbse class-10-mathematics-question-paper-2017

  • 1. 30/1 1 P.T.O. narjmWu H$moS >H$mo CÎma-nwpñVH$m Ho$ _wI-n¥ð >na Adí` {bIo§ & Candidates must write the Code on the title page of the answer-book. Series HRK H$moS> Z§. Code No. amob Z§. Roll No. g§H${bV narjm – II SUMMATIVE ASSESSMENT – II J{UV MATHEMATICS {ZYm©[aV g_` : 3 KÊQ>o A{YH$V_ A§H$ : 90 Time allowed : 3 hours Maximum Marks : 90  H¥$n`m Om±M H$a b| {H$ Bg àíZ-nÌ _o§ _w{ÐV n¥ð> 11 h¢ &  àíZ-nÌ _| Xm{hZo hmW H$s Amoa {XE JE H$moS >Zå~a H$mo N>mÌ CÎma-nwpñVH$m Ho$ _wI-n¥ð> na {bI| &  H¥$n`m Om±M H$a b| {H$ Bg àíZ-nÌ _| >31 àíZ h¢ &  H¥$n`m àíZ H$m CÎma {bIZm ewê$ H$aZo go nhbo, àíZ H$m H«$_m§H$ Adí` {bI| &  Bg àíZ-nÌ H$mo n‹T>Zo Ho$ {bE 15 {_ZQ >H$m g_` {X`m J`m h¡ & àíZ-nÌ H$m {dVaU nydm©• _| 10.15 ~Oo {H$`m OmEJm & 10.15 ~Oo go 10.30 ~Oo VH$ N>mÌ Ho$db àíZ-nÌ H$mo n‹T>|Jo Am¡a Bg Ad{Y Ho$ Xm¡amZ do CÎma-nwpñVH$m na H$moB© CÎma Zht {bI|Jo &  Please check that this question paper contains 11 printed pages.  Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.  Please check that this question paper contains 31 questions.  Please write down the Serial Number of the question before attempting it.  15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period. SET-1 30/1
  • 2. 30/1 2 gm_mÝ` {ZX}e : (i) g^r àíZ A{Zdm`© h¢ & (ii) Bg àíZ-nÌ _| 31 àíZ h¢ Omo Mma IÊS>m|  A, ~, g Am¡a X _| {d^m{OV h¢ & (iii) IÊS> A _| EH$-EH$ A§H$ dmbo 4 àíZ h¢ & IÊS> ~ _| 6 àíZ h¢ {OZ_| go àË`oH$ 2 A§H$ H$m h¡ & IÊS> g _| 10 àíZ VrZ-VrZ A§H$m| Ho$ h¢ & IÊS> X _| 11 àíZ h¢ {OZ_| go àË`oH$ 4 A§H$ H$m h¡ & (iv) H¡$bHw$boQ>am| Ho$ à`moJ H$s AZw_{V Zht h¡ & General Instructions : (i) All questions are compulsory. (ii) The question paper consists of 31 questions divided into four sections  A, B, C and D. (iii) Section A contains 4 questions of 1 mark each. Section B contains 6 questions of 2 marks each, Section C contains 10 questions of 3 marks each and Section D contains 11 questions of 4 marks each. (iv) Use of calculators is not permitted. IÊS> A SECTION A àíZ g§»`m 1 go 4 VH$ àË`oH$ àíZ 1 A§H$ H$m h¡ & Question numbers 1 to 4 carry 1 mark each. 1. EH$ g_m§Va lo‹T>r, {Og_| a21  a7 = 84 h¡, H$m gmd© A§Va Š`m h¡ ? What is the common difference of an A.P. in which a21  a7 = 84 ?
  • 3. 30/1 3 P.T.O. 2. `{X EH$ ~mø q~Xþ P go a {ÌÁ`m VWm O Ho$ÝÐ dmbo d¥Îm na ItMr JB© Xmo ñne©-aoImAm| Ho$ ~rM H$m H$moU 60 hmo, Vmo OP H$s b§~mB© kmV H$s{OE & If the angle between two tangents drawn from an external point P to a circle of radius a and centre O, is 60, then find the length of OP. 3. `{X 30 _r. D±$Mr EH$ _rZma, ^y{_ na 10 3 _r. b§~r N>m`m ~ZmVr h¡, Vmo gy`© H$m CÞ`Z H$moU Š`m h¡ ? If a tower 30 m high, casts a shadow 10 3 m long on the ground, then what is the angle of elevation of the sun ? 4. 900 go~m| Ho$ EH$ T>oa _| go `mÑÀN>`m EH$ go~ MwZZo na g‹S>m hþAm go~ {ZH$bZo H$s àm{`H$Vm 0·18 h¡ & T>oa _| g‹S>o hþE go~m| H$s g§»`m Š`m h¡ ? The probability of selecting a rotten apple randomly from a heap of 900 apples is 0·18. What is the number of rotten apples in the heap ? IÊS> ~ SECTION B àíZ g§»`m 5 go 10 VH$ àË`oH$ àíZ Ho$ 2 A§H h¢ & Question numbers 5 to 10 carry 2 marks each. 5. p H$m dh _mZ kmV H$s{OE {OgHo$ {bE {ÛKmV g_rH$aU px2  14x + 8 = 0 H$m EH$ _yb Xÿgao H$m 6 JwZm h¡ & Find the value of p, for which one root of the quadratic equation px2  14x + 8 = 0 is 6 times the other. 6. lo‹T>r 20, 19 4 1 , 18 2 1 , 17 4 3 , ... H$m H$m¡Z-gm nX àW_ G$UmË_H$ nX h¡ ? Which term of the progression 20, 19 4 1 , 18 2 1 , 17 4 3 , ... is the first negative term ?
  • 4. 30/1 4 7. {gÕ H$s{OE {H$ d¥Îm H$s {H$gr Ordm Ho$ A§V q~XþAm| na ItMr JB© ñne©-aoImE± Ordm Ho$ gmW g_mZ H$moU ~ZmVr h¢ & Prove that the tangents drawn at the end points of a chord of a circle make equal angles with the chord. 8. EH$ d¥Îm {H$gr MVw^©wO ABCD H$s g^r Mmam| ^wOmAm| H$mo ñne© H$aVm h¡ & {gÕ H$s{OE {H$ AB + CD = BC + DA A circle touches all the four sides of a quadrilateral ABCD. Prove that AB + CD = BC + DA 9. EH$ aoIm y-Aj VWm x-Aj H$mo H«$_e: q~XþAm| P VWm Q na à{VÀN>oX H$aVr h¡ & `{X (2,  5), PQ H$m _Ü`-q~Xþ hmo, Vmo P VWm Q Ho$ {ZX}em§H$ kmV H$s{OE & A line intersects the y-axis and x-axis at the points P and Q respectively. If (2,  5) is the mid-point of PQ, then find the coordinates of P and Q. 10. `{X P(x, y) H$s A(5, 1) VWm B( 1, 5) go Xÿ[a`m± g_mZ hm|, Vmo {gÕ H$s{OE {H$ 3x = 2y. If the distances of P(x, y) from A(5, 1) and B( 1, 5) are equal, then prove that 3x = 2y. IÊS> g SECTION C àíZ g§»`m 11 go 20 VH$ àË`oH$ àíZ Ho$ 3 A§H$ h¢ & Question numbers 11 to 20 carry 3 marks each. 11. `{X ad  bc h¡, Vmo {gÕ H$s{OE {H$ g_rH$aU (a2 + b2 ) x2 + 2 (ac + bd) x + (c2 + d2 ) = 0 H$m H$moB© dmñV{dH$ _yb Zht h¡ & If ad  bc, then prove that the equation (a2 + b2 ) x2 + 2 (ac + bd) x + (c2 + d2 ) = 0 has no real roots. 12. EH$ g_m§Va lo‹T>r H$m àW_ nX 5, A§{V_ nX 45 VWm BgHo$ g^r nXm| H$m `moJ$b 400 h¡ & Bg g_m§Va lo‹T>r Ho$ nXm| H$s g§»`m VWm gmd© A§Va kmV H$s{OE & The first term of an A.P. is 5, the last term is 45 and the sum of all its terms is 400. Find the number of terms and the common difference of the A.P.
  • 5. 30/1 5 P.T.O. 13. EH$ _rZma Ho$ nmX go JwµOaZo dmbr grYr aoIm na nmX go H«$_e: 4 _r. VWm 16 _r. H$s Xÿ[a`m| na Xmo q~Xþ C d D pñWV h¢ & `{X C d D go _rZma Ho$ {eIa Ho$ CÞ`Z H$moU EH$-Xÿgao Ho$ nyaH$ hm|, Vmo _rZma H$s D±$MmB© kmV H$s{OE & On a straight line passing through the foot of a tower, two points C and D are at distances of 4 m and 16 m from the foot respectively. If the angles of elevation from C and D of the top of the tower are complementary, then find the height of the tower. 14. EH$ W¡bo _| 15 gµo$X VWm Hw$N> H$mbr J|X| h¢ & `{X W¡bo _| go EH$ H$mbr J|X {ZH$mbZo H$s àm{`H$Vm EH$ gµo$X J|X {ZH$mbZo H$s àm{`H$Vm H$s VrZ JwZr hmo, Vmo W¡bo _| H$mbr J|Xm| H$s g§»`m kmV H$s{OE & A bag contains 15 white and some black balls. If the probability of drawing a black ball from the bag is thrice that of drawing a white ball, find the number of black balls in the bag. 15. q~Xþ       y, 11 24 , q~XþAm| P(2, 2) VWm Q(3, 7) H$mo {_bmZo dmbo aoImI§S> H$mo {H$g AZwnmV _| {d^m{OV H$aVm h¡ ? y H$m _mZ ^r kmV H$s{OE & In what ratio does the point       y, 11 24 divide the line segment joining the points P(2,  2) and Q(3, 7) ? Also find the value of y. 16. Xr JB© AmH¥${V _|, àË`oH$ 3 go_r ì`mg Ho$ VrZ AY©d¥Îm, 4·5 go_r ì`mg H$m EH$ d¥Îm VWm 4·5 go_r {ÌÁ`m H$m EH$ AY©d¥Îm ~ZmE JE h¢ & N>m`m§{H$V ^mJ H$m joÌ$b kmV H$s{OE &
  • 6. 30/1 6 Three semicircles each of diameter 3 cm, a circle of diameter 4·5 cm and a semicircle of radius 4·5 cm are drawn in the given figure. Find the area of the shaded region. 17. Xr JB© AmH¥${V _|, O H|$Ð dmbo Xmo g§H|$Ðr` d¥Îmm| H$s {ÌÁ`mE± 21 go_r VWm 42 go_r h¢ & `{X  AOB = 60 h¡, Vmo N>m`m§{H$V ^mJ H$m joÌ$b kmV H$s{OE & [  = 7 22 à`moJ H$s{OE ] In the given figure, two concentric circles with centre O have radii 21 cm and 42 cm. If  AOB = 60, find the area of the shaded region. [ Use  = 7 22 ]
  • 7. 30/1 7 P.T.O. 18. 5·4 _r. Mm¡‹S>r Am¡a 1·8 _r. Jhar EH$ Zha _| nmZr 25 {H$_r/KÊQ>m H$s J{V go ~h ahm h¡ & Bggo 40 {_ZQ> _| {H$VZo joÌ$b H$s qgMmB© hmo gH$Vr h¡, `{X qgMmB© Ho$ {bE 10 go_r Jhao nmZr H$s Amdí`H$Vm h¡ ? Water in a canal, 5·4 m wide and 1·8 m deep, is flowing with a speed of 25 km/hour. How much area can it irrigate in 40 minutes, if 10 cm of standing water is required for irrigation ? 19. EH$ e§Hw$ Ho$ {N>ÞH$ H$s {V`©H²$ D±$MmB© 4 go_r h¡ VWm BgHo$ d¥Îmr` {gam| Ho$ n[a_mn 18 go_r Am¡a 6 go_r h¢ & Bg {N>ÞH$ H$m dH«$ n¥îR>r` joÌ$b kmV H$s{OE & The slant height of a frustum of a cone is 4 cm and the perimeters of its circular ends are 18 cm and 6 cm. Find the curved surface area of the frustum. 20. EH$ R>mog bmoho Ho$ KZm^ H$s {d_mE± 4·4 _r.  2·6 _r.  1·0 _r. h¢ & Bgo {nKbmH$a 30 go_r Am§V[aH$ {ÌÁ`m Am¡a 5 go_r _moQ>mB© H$m EH$ ImoIbm ~obZmH$ma nmBn ~Zm`m J`m h¡ & nmBn H$s b§~mB© kmV H$s{OE & The dimensions of a solid iron cuboid are 4·4 m  2·6 m  1·0 m. It is melted and recast into a hollow cylindrical pipe of 30 cm inner radius and thickness 5 cm. Find the length of the pipe. IÊS> X SECTION D àíZ g§»`m 21 go 31 VH$ àË`oH$ àíZ Ho$ 4 A§H$ h¢ & Question numbers 21 to 31 carry 4 marks each. 21. x Ho$ {bE hb H$s{OE : 1x 1  + 1x5 3  = 4x 5  , x   1,  5 1 ,  4 Solve for x : 1x 1  + 1x5 3  = 4x 5  , x   1,  5 1 ,  4
  • 8. 30/1 8 22. Xmo Zb EH$ gmW EH$ Q>¢H$ H$mo 3 13 1 KÊQ>o _| ^a gH$Vo h¢ & `{X EH$ Zb Q>¢H$ H$mo ^aZo _| Xÿgao Zb go 3 KÊQ>o A{YH$ boVm h¡, Vmo àË`oH$ Zb Q>¢H$ H$mo ^aZo _| {H$VZm g_` boJm ? Two taps running together can fill a tank in 3 13 1 hours. If one tap takes 3 hours more than the other to fill the tank, then how much time will each tap take to fill the tank ? 23. `{X Xmo g_m§Va lo{‹T>`m| Ho$ àW_ n nXm| Ho$ `moJ$bm| H$m AZwnmV (7n + 1) : (4n + 27) h¡, Vmo CZHo$ 9d| nXm| H$m AZwnmV kmV H$s{OE & If the ratio of the sum of the first n terms of two A.Ps is (7n + 1) : (4n + 27), then find the ratio of their 9th terms. 24. {gÕ H$s{OE {H$ d¥Îm Ho$ {H$gr ~mø q~Xþ go d¥Îm na ItMr JB© Xmo ñne©-aoImAm| H$s b§~mB`m± g_mZ hmoVr h¢ & Prove that the lengths of two tangents drawn from an external point to a circle are equal. 25. Xr JB© AmH¥${V _|, XY VWm XY, O H|$Ð dmbo d¥Îm H$s Xmo g_m§Va ñne©-aoImE± h¢ VWm EH$ AÝ` ñne©-aoIm AB, {OgH$m ñne© q~Xþ C h¡, XY H$mo A VWm XY H$mo B na à{VÀN>oX H$aVr h¡ & {gÕ H$s{OE {H$  AOB = 90.
  • 9. 30/1 9 P.T.O. In the given figure, XY and XY are two parallel tangents to a circle with centre O and another tangent AB with point of contact C, is intersecting XY at A and XY at B. Prove that  AOB = 90. 26. EH$ {Ì^wO ABC H$s aMZm H$s{OE {Og_| ^wOm BC = 7 go_r,  B = 45,  A = 105 hmo & V~ EH$ AÝ` {Ì^wO H$s aMZm H$s{OE {OgH$s ^wOmE±  ABC H$s g§JV ^wOmAm| H$s 4 3 JwZr hm| & Construct a triangle ABC with side BC = 7 cm,  B = 45,  A = 105. Then construct another triangle whose sides are 4 3 times the corresponding sides of the  ABC. 27. EH$ hdmB© OhmµO ^yVb go D$na 300 _r. H$s D±$MmB© na C‹S> ahm h¡ & Bg D±$MmB© na C‹S>Vo hþE hdmB© OhmµO go EH$ ZXr Ho$ XmoZm| {H$Zmam| na nañna {dnarV {XemAm| _| pñWV Xmo q~XþAm| Ho$ AdZ_Z H$moU H«$_e: 45 VWm 60 h¢ & ZXr H$s Mm¡‹S>mB© kmV H$s{OE & [ 3 = 1·732 à`moJ H$s{OE ] An aeroplane is flying at a height of 300 m above the ground. Flying at this height, the angles of depression from the aeroplane of two points on both banks of a river in opposite directions are 45 and 60 respectively. Find the width of the river. [Use 3 = 1·732] 28. `{X q~Xþ A(k + 1, 2k), B(3k, 2k + 3) VWm C(5k  1, 5k) ñ§maoI hm|, Vmo k H$m _mZ kmV H$s{OE & If the points A(k + 1, 2k), B(3k, 2k + 3) and C(5k  1, 5k) are collinear, then find the value of k.
  • 10. 30/1 10 29. Xmo {d{^Þ nmgm| H$mo EH$ gmW |$H$m J`m & àm{`H$Vm kmV H$s{OE {H$ àmßV g§»`mAm| H$m (i) `moJ$b g_ hmoJm, Am¡a (ii) JwUZ$b g_ hmoJm & Two different dice are thrown together. Find the probability that the numbers obtained have (i) even sum, and (ii) even product. 30. Xr JB© AmH¥${V _|, ABCD EH$ Am`V h¡ {OgH$s {d_mE± 21 go_r  14 go_r h¡§ & BC H$mo ì`mg _mZ H$a EH$ AY©d¥Îm ItMm J`m h¡ & AmH¥${V _| N>m`m§{H$V ^mJ H$m joÌ$b VWm n[a_mn kmV H$s{OE & In the given figure, ABCD is a rectangle of dimensions 21 cm  14 cm. A semicircle is drawn with BC as diameter. Find the area and the perimeter of the shaded region in the figure.
  • 11. 30/1 11 P.T.O. 31. {H$gr dfm©-Ob g§J«hU VÝÌ _|, 22 _r.  20 _r. H$s N>V go dfm©-Ob ~hH$a 2 _r. AmYma Ho$ ì`mg VWm 3·5 _r. D±$MmB© Ho$ EH$ ~obZmH$ma Q>¢H$ _| AmVm h¡ & `{X Q>¢H$ ^a J`m hmo, Vmo kmV H$s{OE {H$ go_r _| {H$VZr dfm© hþB© & Ob g§ajU na AnZo {dMma ì`º$ H$s{OE & In a rain-water harvesting system, the rain-water from a roof of 22 m  20 m drains into a cylindrical tank having diameter of base 2 m and height 3·5 m. If the tank is full, find the rainfall in cm. Write your views on water conservation.