Exercice 13
    (a) x > −3   →   x ∈] − 3; +∞[
    (b) 5 > x ≥ −2   →   x ∈ [−2; 5[
    (c) −3 ≤ x < 5   →   x ∈ [−3; 5[

More Related Content

PPTX
Application of Derivative 5
PPTX
4.1 inverse functions t
PDF
素数は孤独じゃない(番外編) 第13回 数学カフェ「素数!!」
PPTX
Evaluating a function
DOCX
เซต
PPT
Linear combination
PDF
Worksheet 3 addition & subtraction
PPTX
Exercise 2
Application of Derivative 5
4.1 inverse functions t
素数は孤独じゃない(番外編) 第13回 数学カフェ「素数!!」
Evaluating a function
เซต
Linear combination
Worksheet 3 addition & subtraction
Exercise 2

What's hot (20)

PDF
Guia 1
DOCX
Gambar Grafik Suatu fungsi
PPSX
INVERSE FUNCTION
PDF
Iit jee question_paper
PDF
Day 4 examples
PDF
Evaluating functions
PDF
Day 7 examples u6w14
PDF
09 a1bs04 mathematical methods
PDF
Day 1 examples
PDF
Day 3 examples
PDF
Day 1 examples u8f13
PDF
Day 1 examples u6w14
PPT
5.1 Linear Functions And Graphs
PPTX
Quadratic functions
PDF
ロマンティックな9つの数 #ロマ数ボーイズ
PPT
8.4 Rules For Linear Functions
DOCX
Increasing and decreasing functions
PPT
New Properties
PDF
Irs gan doc
PPTX
Application of recursive perturbation approach for multimodal optimization
Guia 1
Gambar Grafik Suatu fungsi
INVERSE FUNCTION
Iit jee question_paper
Day 4 examples
Evaluating functions
Day 7 examples u6w14
09 a1bs04 mathematical methods
Day 1 examples
Day 3 examples
Day 1 examples u8f13
Day 1 examples u6w14
5.1 Linear Functions And Graphs
Quadratic functions
ロマンティックな9つの数 #ロマ数ボーイズ
8.4 Rules For Linear Functions
Increasing and decreasing functions
New Properties
Irs gan doc
Application of recursive perturbation approach for multimodal optimization
Ad

More from schibu20 (20)

PDF
Ch39 23
PDF
Ch39 20
PDF
Ch39 17
PDF
Ch39 15
PDF
Ch39 11
PDF
Ch38 35
PDF
Ch38 31
PDF
Ch38 26
PDF
Ch38 24
PDF
Ch38 22
PDF
Ch38 19
PDF
Ch38 17
PDF
Ch38 15
PDF
Ch37 34
PDF
Ch37 29
PDF
Ch37 28
PDF
Ch37 25
PDF
Ch37 23
PDF
Ch37 19
PDF
Ch37 16
Ch39 23
Ch39 20
Ch39 17
Ch39 15
Ch39 11
Ch38 35
Ch38 31
Ch38 26
Ch38 24
Ch38 22
Ch38 19
Ch38 17
Ch38 15
Ch37 34
Ch37 29
Ch37 28
Ch37 25
Ch37 23
Ch37 19
Ch37 16
Ad

Ch07 13

  • 1. Exercice 13 (a) x > −3 → x ∈] − 3; +∞[ (b) 5 > x ≥ −2 → x ∈ [−2; 5[ (c) −3 ≤ x < 5 → x ∈ [−3; 5[