SlideShare a Scribd company logo
Physics Helpline
L K Satapathy
Maxima and Minima 1
Physics Helpline
L K Satapathy
Application of Derivative 5
Maxima and Minima
D
B
A C
E
F
maxf
minf
1c 2ca b
Maximum at B 1( )x c Minimum at E 2( )x c
Tangents at B and E are parallel to x-axis
 f (x) = 0 at B and E [ critical points ]
f changes from +ve  –ve across B  f  is –ve at B (max at B)
f changes from –ve  +ve across E  f  is +ve at E (min at E)
 is a Local maximum And is a Local minimum
In [ a , b ] , the maximum of = absolute maximum1 2( ) , ( ) , ( ) , ( )f a f c f c f b
and the minimum of = absolute minimum
1x c 2x c
1 2( ) , ( ) , ( ) , ( )f a f c f c f b
In the figure , the value of f(x) is
Physics Helpline
L K Satapathy
Application of Derivative 5
Maxima and Minima
Question : Find the maximum and minimum values of the function
in the interval [ 0 , 3 ] .4 3 2
( ) 3 8 12 48 25f x x x x x    
Answer :
4 3 2
( ) 3 8 12 48 25f x x x x x    
2
12( 2)( 2)x x  
2
( ) 36 48 24 . . . (1)f x x x   
The given function
Differentiating , we get 3 2 3 2
( ) 12 24 24 48 12( 2 2 4)f x x x x x x x        
Again differentiating , we get
We need tot find the absolute maximum and minimum values of f (x) in [0 , 3]
Physics Helpline
L K Satapathy
Application of Derivative 5
Maxima and Minima
2 2
2 0 2 ( )x x no soln     
(1) (2) 36 4 48 2 24Now f      
To get the critical points , we solve the equation f (x) = 0
2
( ) 12( 2)( 2) 0f x x x    
2 0 2or x x   
144 96 24 72   
We observe that is a local minimum(2) 0 2f x   
Physics Helpline
L K Satapathy
Application of Derivative 5
Maxima and Minima
We have One critical point at x = 2 and the closed interval is [ 0 , 3 ]
 We need to find f (0) , f (2) and f (3)
4 3 2
( ) 3 8 12 48 25f x x x x x    
(0) 25f 
(2) 3 16 8 8 12 4 48 2 25 48 64 48 96 25 39f                
(3) 3 81 8 27 12 9 48 3 25 243 216 108 144 25 16f               
max 25 [ ]f Ans
min 3 [ ]9f Ans 
 Absolute maximum
And absolute minimum
Physics Helpline
L K Satapathy
For More details:
www.physics-helpline.com
Subscribe our channel:
youtube.com/physics-helpline
Follow us on Facebook and Twitter:
facebook.com/physics-helpline
twitter.com/physics-helpline

More Related Content

PPTX
Application of Derivative 3
PDF
Evaluating functions
PPT
1 5 graphs of functions
PDF
Derivatives Lesson Oct 19
PPT
Composition Of Functions
PPTX
Bisection
PPTX
Inverse functions
PDF
Numerical Integration: Trapezoidal Rule
Application of Derivative 3
Evaluating functions
1 5 graphs of functions
Derivatives Lesson Oct 19
Composition Of Functions
Bisection
Inverse functions
Numerical Integration: Trapezoidal Rule

What's hot (20)

PPT
Composite functions
PPT
Math - Operations on Functions, Kinds of Functions
PPTX
1 representation of_functions
PPT
Operations on Functions
PPT
Functions limits and continuity
PPT
Numerical differentiation integration
PPTX
4.1 inverse functions t
PPT
Linear combination
PPT
5.1 Linear Functions And Graphs
PPTX
limits and continuity
PPT
PPT
DOCX
Application of derivatives
PPT
Lecture 10 chain rule - section 3.4
PPT
PDF
Operations With Functions May 25 2009
PPT
Maxima and minima
PDF
What is meaning of epsilon and delta in limits of a function by Arun Umrao
PPTX
2.4 operations on functions
Composite functions
Math - Operations on Functions, Kinds of Functions
1 representation of_functions
Operations on Functions
Functions limits and continuity
Numerical differentiation integration
4.1 inverse functions t
Linear combination
5.1 Linear Functions And Graphs
limits and continuity
Application of derivatives
Lecture 10 chain rule - section 3.4
Operations With Functions May 25 2009
Maxima and minima
What is meaning of epsilon and delta in limits of a function by Arun Umrao
2.4 operations on functions
Ad

Viewers also liked (16)

PDF
Secrects of Success
PPTX
Luzz
DOCX
Khaled Al Bannawi C.V
PPT
Configuració de la connexió d'un ordinador amb un telèfon mòbil.
PDF
2016_Monster_Small_Business_Hiring_Guide
PDF
Emperical study tanmay chakrabarty-14mb5058 (1)
PPTX
Paranormal activity ppt
PPT
elasticity lecture
PPTX
Contact lens -Dr Ferdous
PPTX
Application of Derivative 1
PPTX
Derivatives and their Applications
PPTX
(Inv. Mercados) Tema 12 - Preparación de los Datos
PPTX
(Inv. Mercados) Tema 13 - Preparación y presentación del Informe
PDF
A nyílt oktatás pedagógiai kultúrája
PDF
Boomerang-ConsumerElectronics-RAR
Secrects of Success
Luzz
Khaled Al Bannawi C.V
Configuració de la connexió d'un ordinador amb un telèfon mòbil.
2016_Monster_Small_Business_Hiring_Guide
Emperical study tanmay chakrabarty-14mb5058 (1)
Paranormal activity ppt
elasticity lecture
Contact lens -Dr Ferdous
Application of Derivative 1
Derivatives and their Applications
(Inv. Mercados) Tema 12 - Preparación de los Datos
(Inv. Mercados) Tema 13 - Preparación y presentación del Informe
A nyílt oktatás pedagógiai kultúrája
Boomerang-ConsumerElectronics-RAR
Ad

Similar to Application of Derivative 5 (20)

PDF
Solutions for Problems: Engineering Optimization by Ranjan Ganguli
PPT
MT T4 (Bab 3: Fungsi Kuadratik)
PPT
functions limits and continuity
PPT
Application of derivatives 2 maxima and minima
PPT
LÍMITES Y DERIVADAS aplicados a ingenieria
PPT
Calculusseveralvariables.ppt
PDF
Mac2311 study guide-tcm6-49721
PDF
Applications of Differentiation
PDF
Amth250 octave matlab some solutions (2)
PPTX
QUADRATIC FUNCTIONS
PPT
Composite functions
PPT
Riemann sumsdefiniteintegrals
PPTX
Indefinite Integral
PPT
Bonus math project
PDF
Unit2.polynomials.algebraicfractions
PPTX
Project in Mathematics. Functions
PDF
5.1 Quadratic Functions
PPTX
Lesson 3a_operations of Functions.pptx
PPT
19 min max-saddle-points
PDF
Calculus - Functions Review
Solutions for Problems: Engineering Optimization by Ranjan Ganguli
MT T4 (Bab 3: Fungsi Kuadratik)
functions limits and continuity
Application of derivatives 2 maxima and minima
LÍMITES Y DERIVADAS aplicados a ingenieria
Calculusseveralvariables.ppt
Mac2311 study guide-tcm6-49721
Applications of Differentiation
Amth250 octave matlab some solutions (2)
QUADRATIC FUNCTIONS
Composite functions
Riemann sumsdefiniteintegrals
Indefinite Integral
Bonus math project
Unit2.polynomials.algebraicfractions
Project in Mathematics. Functions
5.1 Quadratic Functions
Lesson 3a_operations of Functions.pptx
19 min max-saddle-points
Calculus - Functions Review

More from Lakshmikanta Satapathy (20)

PPTX
Work Energy Power QA-4/ Force & Potential energy
PPTX
QA Work Energy and Power-3/ Work Energy Theorem
PPTX
QA Electromagnetism-1/ Magnetic Field & Lorentz force
PPTX
CBSE Electrostatics QA-5/ Electric Potential and Capacitance
PPTX
CBSE QA/ Electrostatics-4/ Electric Potential
PPTX
Wave Motion Theory 6/ Advanced Theory
PPTX
Wave Motion Theory 5/ Beats/ Doppler Effect
PPTX
Wave Motion Theory Part4
PPTX
Wave Motion Theory Part3
PPTX
Wave Motion theory-2
PPTX
Wave Motion Theory Part1
PPTX
Definite Integrals 8/ Integration by Parts
PPTX
Vectors QA 2/ Resultant Displacement
PPTX
Quadratic Equation 2
PPTX
Probability QA 12
PPTX
Inverse Trigonometry QA.6
PPTX
Inverse Trigonometry QA 5
PPTX
Transient Current QA 1/ LR Circuit
PPTX
Rotational Motion QA 8
PPTX
Electromagnetism QA 7/ Ammeter
Work Energy Power QA-4/ Force & Potential energy
QA Work Energy and Power-3/ Work Energy Theorem
QA Electromagnetism-1/ Magnetic Field & Lorentz force
CBSE Electrostatics QA-5/ Electric Potential and Capacitance
CBSE QA/ Electrostatics-4/ Electric Potential
Wave Motion Theory 6/ Advanced Theory
Wave Motion Theory 5/ Beats/ Doppler Effect
Wave Motion Theory Part4
Wave Motion Theory Part3
Wave Motion theory-2
Wave Motion Theory Part1
Definite Integrals 8/ Integration by Parts
Vectors QA 2/ Resultant Displacement
Quadratic Equation 2
Probability QA 12
Inverse Trigonometry QA.6
Inverse Trigonometry QA 5
Transient Current QA 1/ LR Circuit
Rotational Motion QA 8
Electromagnetism QA 7/ Ammeter

Recently uploaded (20)

PPTX
Cell Types and Its function , kingdom of life
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PDF
Complications of Minimal Access Surgery at WLH
PDF
STATICS OF THE RIGID BODIES Hibbelers.pdf
PDF
Basic Mud Logging Guide for educational purpose
PDF
O7-L3 Supply Chain Operations - ICLT Program
PDF
102 student loan defaulters named and shamed – Is someone you know on the list?
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PPTX
PPH.pptx obstetrics and gynecology in nursing
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PDF
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
PPTX
master seminar digital applications in india
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PDF
Abdominal Access Techniques with Prof. Dr. R K Mishra
PDF
VCE English Exam - Section C Student Revision Booklet
PDF
RMMM.pdf make it easy to upload and study
PDF
Microbial disease of the cardiovascular and lymphatic systems
PPTX
BOWEL ELIMINATION FACTORS AFFECTING AND TYPES
Cell Types and Its function , kingdom of life
Module 4: Burden of Disease Tutorial Slides S2 2025
Complications of Minimal Access Surgery at WLH
STATICS OF THE RIGID BODIES Hibbelers.pdf
Basic Mud Logging Guide for educational purpose
O7-L3 Supply Chain Operations - ICLT Program
102 student loan defaulters named and shamed – Is someone you know on the list?
Microbial diseases, their pathogenesis and prophylaxis
Final Presentation General Medicine 03-08-2024.pptx
PPH.pptx obstetrics and gynecology in nursing
Supply Chain Operations Speaking Notes -ICLT Program
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
master seminar digital applications in india
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
Abdominal Access Techniques with Prof. Dr. R K Mishra
VCE English Exam - Section C Student Revision Booklet
RMMM.pdf make it easy to upload and study
Microbial disease of the cardiovascular and lymphatic systems
BOWEL ELIMINATION FACTORS AFFECTING AND TYPES

Application of Derivative 5

  • 1. Physics Helpline L K Satapathy Maxima and Minima 1
  • 2. Physics Helpline L K Satapathy Application of Derivative 5 Maxima and Minima D B A C E F maxf minf 1c 2ca b Maximum at B 1( )x c Minimum at E 2( )x c Tangents at B and E are parallel to x-axis  f (x) = 0 at B and E [ critical points ] f changes from +ve  –ve across B  f  is –ve at B (max at B) f changes from –ve  +ve across E  f  is +ve at E (min at E)  is a Local maximum And is a Local minimum In [ a , b ] , the maximum of = absolute maximum1 2( ) , ( ) , ( ) , ( )f a f c f c f b and the minimum of = absolute minimum 1x c 2x c 1 2( ) , ( ) , ( ) , ( )f a f c f c f b In the figure , the value of f(x) is
  • 3. Physics Helpline L K Satapathy Application of Derivative 5 Maxima and Minima Question : Find the maximum and minimum values of the function in the interval [ 0 , 3 ] .4 3 2 ( ) 3 8 12 48 25f x x x x x     Answer : 4 3 2 ( ) 3 8 12 48 25f x x x x x     2 12( 2)( 2)x x   2 ( ) 36 48 24 . . . (1)f x x x    The given function Differentiating , we get 3 2 3 2 ( ) 12 24 24 48 12( 2 2 4)f x x x x x x x         Again differentiating , we get We need tot find the absolute maximum and minimum values of f (x) in [0 , 3]
  • 4. Physics Helpline L K Satapathy Application of Derivative 5 Maxima and Minima 2 2 2 0 2 ( )x x no soln      (1) (2) 36 4 48 2 24Now f       To get the critical points , we solve the equation f (x) = 0 2 ( ) 12( 2)( 2) 0f x x x     2 0 2or x x    144 96 24 72    We observe that is a local minimum(2) 0 2f x   
  • 5. Physics Helpline L K Satapathy Application of Derivative 5 Maxima and Minima We have One critical point at x = 2 and the closed interval is [ 0 , 3 ]  We need to find f (0) , f (2) and f (3) 4 3 2 ( ) 3 8 12 48 25f x x x x x     (0) 25f  (2) 3 16 8 8 12 4 48 2 25 48 64 48 96 25 39f                 (3) 3 81 8 27 12 9 48 3 25 243 216 108 144 25 16f                max 25 [ ]f Ans min 3 [ ]9f Ans   Absolute maximum And absolute minimum
  • 6. Physics Helpline L K Satapathy For More details: www.physics-helpline.com Subscribe our channel: youtube.com/physics-helpline Follow us on Facebook and Twitter: facebook.com/physics-helpline twitter.com/physics-helpline