SlideShare a Scribd company logo
Discrete
Mathematics
Chapter 3
Mathematical Reasoning, Induction,
and Recursion
大葉大學 資訊工程系 黃鈴玲
3.2 Sequences and Summations
※Sequence (數列)
Def 1. A sequence is a function f from A  Z+
(or A  N) to a set S. We use an to denote f(n),
and call an a term (項) of the sequence.
Example 1. {an} , where an = 1/n , n  Z+
 a1 =1, a2 =1/2 , a3 =1/3, …
Example 2. {bn} , where bn= (-1)n, n  N
 b0 = 1, b1 = -1 , b2 = 1, …
3.2.1
Special Integer Sequence
Example 6. What is a rule that can produce the term of
a sequence if the first 10 terms are
1, 2, 2, 3, 3, 3, 4, 4, 4, 4?
Sol :
規則:數字 i 出現 i 次
數字 i 出現之前共有 1+2+3…….+(i -1) = i(i -1)/2 項
ai(i-1)/2 +1= ai(i-1)/2 +2 =… = ai(i+1)/2 = i
3.2.2
A common problem in discrete mathematics is
finding a formula for constructing the term of a sequence.
方法:找出 ai  ai+1的變化;加減某數或者乘除某數?
Example 7. How can we produce the terms of a
sequence if the first 10 terms are
5, 11, 17, 23, 29, 35,41, 47, 53, 59?
Sol :
a1 = 5
a2 =11 = 5 + 6
a3 =17 = 11 + 6 = 5 + 6  2
:
:
 an= 5 + 6  (n-1) = 6n-1
3.2.3
Example 8. Conjecture a simple formula for an if
the first 10 terms of the sequence {an} are
1, 7, 25, 79, 241, 727, 2185, 6559, 19681,59047?
Sol:
顯然非等差數列
後項除以前項的值接近3
 猜測數列為 3n  …
比較:
{3n} : 3, 9, 27, 81, 243, 729, 2187,…
{an} : 1, 7, 25, 79, 241, 727, 2185,…
 an = 3n - 2 , n  1
3.2.4
 Summations
Here, the variable j is call the index of summation,
m is the lower limit, and n is the upper limit.
3.2.5
n
m
m
n
m
j
j a
a
a
a 


 

 
1
Example 10.
Example 13. (Double summation)
55
25
16
9
4
1
5
1
2








j
j
60
)
4
3
2
1
(
6
6
)
3
2
(
4
1
4
1
4
1
3
1








 

 

  i
i
i j
i
i
i
i
ij
Example 14.
Table 2. Some useful summation formulae
3.2.6
6
4
2
0
}
4
,
2
,
0
{






S
S
1
,
1
)
1
(
)
1
(
1
0

-
-



 r
r
r
a
ar
n
n
k
k
2
)
1
(
)
2
(
1




n
n
k
n
k
6
)
1
2
)(
1
(
)
3
(
1
2 




n
n
n
k
n
k
Cardinality
Def 4. The sets A and B have the same cardinality
(size) if and only if there is a one-to-one
correspondence (1-1,onto 的function) from A to B.
Def 5. A set that is either finite or has the same
cardinality as Z+ (or N) is called countable (可數).
A set that is not countable is called uncountable.
3.2.7
3.2.8
Example 18. Show that the set of odd positive
integers is a countable set.
Pf: (Figure 1)
Z+ : 1 2 3 4 5 6 7 8 …
……
{ 正奇數 } : 1 3 5 7 9 11 13 15 …
f : Z+  {正奇數}
f (n) = 2n – 1 is 1-1 & onto.
Example 19. Show that the set of positive rational number (Q+)
is countable.
...
,
,
,
,
,
,
,
,
1
4
2
3
3
2
4
1
3
1
1
3
1
2
2
1
1
1
∴ Z+ : 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 …
Q+ :
(注意,因 等於 ,故 不算)
※Note. R is uncountable. (Example 20)
Exercise :
9,13,17,38
3.2.9
Pf: Q+ = { a / b | a, b Z+ }
5
1

2
2
1
1
2
2
(Figure 2)
1
2
1
3
1
4
1
5
1
1

2
1
2
2
2
3
2
4
2
5

3
2
3
1
3
3
3
4
3
5

4
2
4
1


3.3 Mathematical Induction(數學歸納法)
Note : Mathematical induction can be used only to
prove results obtained in some other way. It is
not a tool for discovering formulae or theorems.
(p.239)
P(n) : a propositional function (e.g. n ≦ 2n)
A proof by mathematical induction (MI) that P(n) is
true for every nZ+ consists of two steps :
1. Basis step : The proposition P(1) is shown to be
true.(若 n 從 0 開始則證 P(0)為真 )
2. Inductive step : the implication P(k) → P(k+1) is
shown to be true for every kZ+
3.3.1
Example 1. Use MI to prove that the sum of the first n odd
positive integers is n2.
Note. 不用MI就可以得証:
Pf : Let P(n) denote the proposition that
Basis step : P(1) is true , since 1=12
Inductive step : Suppose that P(k) is true for a positive
integer k,
i.e., 1+3+5+…+(2k-1)=k2
Note that 1+3+5+…+(2k-1)+(2k+1) = k2+2k+1= (k+1)2
∴ P(k+1) is true
By induction, P(n) is true for all nZ+
2
1
1
)
1
(
2
)
1
2
( n
n
n
n
n
i
i
n
i
n
i

 


-


-

-
2
1
)
1
2
( n
i
n
i



-
3.3.2
Example 2. Use MI to prove the inequality
n<2n for all nZ+
pf : Let P(n) be the proposition “ n < 2n ”.
Basis step : P(1) is true since 1 < 21 .
Inductive step :
Assume that P(k) is true for a positive integer k,
i.e., k < 2k.
Consider P(k+1) :
k + 1 < 2k + 1  2k + 2k =2k + 1
∴ P(k+1) is true.
By MI, P(n) is true for all nZ+.
3.3.3
k
Hk
1
...
3
1
2
1
1 




2
1
2
n
H n 

Example 6. The harmonic numbers Hk, k =1,2,3,…, are
defined by . Use MI to show that
Pf : Let P(n) be the proposition that “ ”.
Basis step : P(0) is true, since .
Inductive step : Assume that P(k) is true for some k,
i.e.,
Consider P(k+1) :
3.3.4
whenever n is a nonnegative integer.
2
/
1
2
n
H n 

2
/
0
1
1
1
20 


 H
H
2
/
1
2
k
H k 

∴P(k+1) is true.
By MI, P(n) is true for all nZ+.
3.3.5
1
2
2
1
2
2
1
1
2
1
2
1
3
1
2
1
1
1













k
k
k
k
k
H 

1
2
2
1
2
2
1
1
2
1







 k
k
k
k
H 
1
2
1
2
2
1
1
2
1
)
2
1
( 







 k
k
k
k

k
k
k
k
k
k
k
2
2
1
2
2
1
2
2
1
)
2
1
(








 
k
k
k
k
2
2
2
)
2
1
(




2
1
1



k
※The 2nd principle of mathematical induction:
( 又稱為強數學歸納法 strong induction)
 Basis step 相同
 Inductive step : Assume P(k) is true for all k  n
Show that P(n+1) is also true.
3.3.6
Example 14. Show that if nZ and n >1, then n can be written
as the product of primes.
Pf : Let P(n) be the proposition that n can be written as the
product of primes.
Basis : P(2) is true, since 2 is a prime number
Inductive : Assume P(k) is true for all k  n.
Consider P(n+1) :
Case 1 : n+1 is prime  P(n+1) is true
Case 2 : n+1 is composite,
i.e., n+1=ab where 2  a  b < n+1
By the induction hypothesis, both a and b can be
written as the product of primes.
 P(n+1) is true.
By 2nd MI, P(n) is true if nZ and n >1.
Note: 此題無法用 1st MI 證 Exercise : 3,11,17
3.3.7
3.4 Recursive Definitions.
Def. The process of defining an object in terms of itself
is called recursion(遞迴).
e.g. We specify the terms of a sequence using
(1) an explicit formula:
an=2n, n=0,1,2,…
(2) a recursive form:
a0=1,
an+1=2an , n=0,1,2,…
Example 1. Suppose that f is defined recursively by
f(0)=3 , f(n+1)=2f(n)+3
Find f(1), f(2), f(3), f(4).
3.4.1
Example 2. Give an inductive (recursive) definition of
the factorial function F(n) = n!.
Sol :
initial value : F(0) = 1
recursive form : F(n+1) = (n+1)! = n!  (n+1)
= F(n)  (n+1)
Example 5. The Fibonacci numbers f0, f1, f2…,are
defined by : f0 = 0 ,
f1 = 1 ,
fn = fn-1 + fn-2 , for n = 2,3,4,…
what is f4 ?
Sol :
f4 = f3 + f2 = (f2 + f1) + (f1 + f0) = f2 + 2
= (f1 + f0) + 2 = 3
3.4.2
Example 6. Show that fn > a n-2 , where 3
2
5
1


 n
,
a
Pf: ( By 2nd MI )
Let P(n) be the statement fn >a n-2 .
Basis: f3 = 2 > a
so that P(3) and P(4) are true.
Inductive: Assume that P(k) is true, 3 k  n, n  4.
We must show that P(n+1) is true.
fn+1 = fn + fn-1 > a n-2 + a n-3
= a n-3(a +1)
∵ a +1= a 2
∴ fn+1 > a n-3  a 2 = a n-1
We get that P(n+1) is true.
By 2nd MI , P(n) is true for all n  3
2
5
3
3 2
4



 a
f
3.4.3
※Recursively defined sets.
Example 7. Let S be defined recursively by
3S
x+yS if xS and yS.
Show that S is the of positive integers divisible by 3
(i.e., S = { 3, 6, 9, 12, 15, 18, … }
Pf:
Let A be the set of all positive integers divisible by 3.
We need to prove that A=S.
(i) A  S : (By MI)
Let P(n) be the statement that 3nS
…
(ii) S  A : (利用S的定義)
(1) 3  A ,
(2) if xA,yA, then 3|x and 3|y.
 3|(x+y)  x+yA
∴S  A
S = A
3.4.4
Example 8. The set of strings over an alphabet 
is denoted by *. The empty string is denoted
by l, and wx* whenever w* and x.
eg.  = { a, b, c }
* = { l, a , b , c , aa , ab , ac , ba , bb , bc, …
abcabccba, …}
Example 9. Give a recursive definition of l(w),
the length of the string w*
Sol :
initial value : l(l)=0
recursive def : l(wx)=l(w)+1 if w*, x.
la lb lc
3.4.5
Exercise 3,13, 25, 49
Exercise 39. When does a string belong to the
set A of bit strings defined recursively by
lA
0x1A if xA.
Sol :
A={l, 01 , 0011, 000111, …}
∴當bit string a = 000…011…1 時
aA n個 n個
0l1
3.4.6
 Ackermann’s function
A(m, n) = 2n if m = 0
0 if m  1 and n = 0
2 if m  1 and n = 1
A(m-1, A(m, n-1)) if m  1 and n  2
Exercise 49 Show that A(m,2)=4 whenever m  1
Pf :
A(m,2) = A(m-1, A(m,1)) = A(m-1,2) whenever m  1.
A(m,2) = A(m-1,2) = A(m-2,2) = … = A(0,2) = 4.
3.4.7
3.5 Recursive algorithms.
※ Sometimes we can reduce the solution to a
problem with a particular set of input to the
solution of the same problem with smaller
input values.
eg. gcd(a,b) = gcd(b mod a, a) (when a < b)
Def 1. An algorithm is called recursive if it
solves a problem by reducing it to an instance
of the same problem with smaller input.
3.5.1
Example 1. Give a recursive algorithm for
computing an, where aR  {0}, nN.
Sol :
recursive definition of an :
initial value : a0=1
recursive def : an = a  an-1.
Algorithm 1.
Procedure power( a : nonzero real number,
n : nonnegative integer )
if n = 0 then power(a, n):=1
else power(a, n):= a * power(a, n-1).
∴
3.5.2
Example 4. Find gcd(a,b) with 0a<b
Sol :
Algorithm 3.
procedure gcd(a,b : nonnegative integers with a<b)
if a=0 then gcd(a,b) := b
else gcd(a,b) := gcd(b mod a, a).
Example 5. Search x in a1, a2,…,an by Linear Search
Sol : Alg. 4
procedure search (i, j, x)
if ai = x then location := i
else if i = j then location := 0
else search(i+1, j, x)
從ai,ai+1,…aj 中找 x
call
search(1, n, x)
3.5.3
Example 6. Search x from a1,a2,…,an by binary
search.
Sol : Alg. 5
procedure binary_search (x , i , j)
m := (i+j) / 2
if x = am then location := m
else if (x < am and i < m) then
binary_search(x, i, m-1)
else if (x > am and j > m) then
binary_search(x, m+1, j)
else location := 0
call binary_search(x, 1, n)
search x from ai, ai+1, …, aj
3.5.4
表示左半邊
ai, ai+1, …, am-1
至少還有一個元素
Example 7. Give the value of n!, nZ+
Sol :
Note : n! = n  (n-1)!
Alg. 6 (Recursive Procedure)
procedure factorial (n: positive integer)
if n = 1 then factorial (n) := 1
else factorial (n) := n  factorial (n-1)
Alg. 7 (Iterative Procedure)
procedure iterative_factorial (n : positive integer)
x := 1
for i := 1 to n
x := i  x
{ x = n! }
3.5.5
※ iterative alg. 的計算次數通常比 recursive alg.少
※ Find Fibonacci numbers
(Note : f0=0, f1=1, fn=fn-1+fn-2 for n2)
Alg. 8 (Recursive Fibonacci)
procedure Fibonacci (n : nonnegative integer)
if n = 0 then Fibonacci (0) := 0
else if n = 1 then Fibonacci (1) := 1
else Fibonacci (n) := Fibonacci (n-1)+Fibonacci (n-2)
3.5.6
Alg.9 (Iterative Fibonacci)
procedure iterative_fibonacci (n: nonnegative integer)
if n = 0 then y := 0 // y = f0
else begin
x := 0
y := 1 // y = f1
for i := 1 to n-1
begin
z := x + y
x := y
y := z
end
end
{y is fn }
Exercise : 5 , 27
i = 1 i = 2 i = 3
z f2 f3 f4
x f1 f2 f3
y f2 f3 f4
3.5.7

More Related Content

PPT
6e-ch4.ppt
PPTX
Mathematical Reasoning in Discrete Mathmatics.pptx
PPT
countablesets Sequences summations proof by induction lecture.ppt
PPT
Per4 induction
DOCX
2.4 edited1
PDF
17-recursive-definitions-and-structural-induction.pdf
PDF
Induction.pdf
PPTX
Sequences
6e-ch4.ppt
Mathematical Reasoning in Discrete Mathmatics.pptx
countablesets Sequences summations proof by induction lecture.ppt
Per4 induction
2.4 edited1
17-recursive-definitions-and-structural-induction.pdf
Induction.pdf
Sequences

Similar to ch3.ppt (20)

DOC
Chapter 4 dis 2011
PDF
11 x1 t14 08 mathematical induction 1 (2012)
PDF
11X1 T14 08 mathematical induction 1 (2010)
PDF
11X1 T14 08 mathematical induction 1 (2011)
PDF
mathematical induction
PDF
Solutions Manual for An Introduction To Abstract Algebra With Notes To The Fu...
PDF
11X1 T10 08 mathematical induction 1
PPTX
Precalculus 10 Sequences and Series.pptx
PDF
P1-07-Recurrences.pdf
PPT
04-Induction and Recursion.ppt ppt bai tap
PPTX
Week 4 Mathematical Induction Mathematical Induction
PDF
CPSC 125 Ch 2 Sec 2
PPT
Lec-4-2-Recurrence Relation-Iteration Method.ppt
PPTX
Chapter5.pptx
PPTX
CMSC 56 | Lecture 12: Recursive Definition & Algorithms, and Program Correctness
PPT
tutorial5.ppt
PDF
Chapter 1_Sets. Operation sets, Principle of inclusion and exclusion etc.
PDF
ABSTRACT ALGEBRA A STUDY GUIDE FOR BEGINNERS
PPT
Recurrences
PDF
CPSC 125 Ch 2 Sec 1
Chapter 4 dis 2011
11 x1 t14 08 mathematical induction 1 (2012)
11X1 T14 08 mathematical induction 1 (2010)
11X1 T14 08 mathematical induction 1 (2011)
mathematical induction
Solutions Manual for An Introduction To Abstract Algebra With Notes To The Fu...
11X1 T10 08 mathematical induction 1
Precalculus 10 Sequences and Series.pptx
P1-07-Recurrences.pdf
04-Induction and Recursion.ppt ppt bai tap
Week 4 Mathematical Induction Mathematical Induction
CPSC 125 Ch 2 Sec 2
Lec-4-2-Recurrence Relation-Iteration Method.ppt
Chapter5.pptx
CMSC 56 | Lecture 12: Recursive Definition & Algorithms, and Program Correctness
tutorial5.ppt
Chapter 1_Sets. Operation sets, Principle of inclusion and exclusion etc.
ABSTRACT ALGEBRA A STUDY GUIDE FOR BEGINNERS
Recurrences
CPSC 125 Ch 2 Sec 1
Ad

More from HaiderAli252366 (6)

PPT
UNIT III -Measures of Central Tendency 2.ppt
PPT
d4f75823-31dc-404e-b6ed-60c5488cf9a7.ppt
PPTX
SE-03.pptx
PPT
6.SE_Requirements Modeling.ppt
PPT
5. SE RequirementEngineering task.ppt
PPTX
Cleanliness
UNIT III -Measures of Central Tendency 2.ppt
d4f75823-31dc-404e-b6ed-60c5488cf9a7.ppt
SE-03.pptx
6.SE_Requirements Modeling.ppt
5. SE RequirementEngineering task.ppt
Cleanliness
Ad

Recently uploaded (20)

PPTX
Week 4 Term 3 Study Techniques revisited.pptx
PDF
102 student loan defaulters named and shamed – Is someone you know on the list?
PDF
Abdominal Access Techniques with Prof. Dr. R K Mishra
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PPTX
Cell Structure & Organelles in detailed.
PPTX
Pharma ospi slides which help in ospi learning
PDF
Anesthesia in Laparoscopic Surgery in India
PDF
Classroom Observation Tools for Teachers
PPTX
Introduction to Child Health Nursing – Unit I | Child Health Nursing I | B.Sc...
PPTX
Institutional Correction lecture only . . .
PDF
Insiders guide to clinical Medicine.pdf
PDF
01-Introduction-to-Information-Management.pdf
PDF
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
PDF
Microbial disease of the cardiovascular and lymphatic systems
PPTX
master seminar digital applications in india
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
O5-L3 Freight Transport Ops (International) V1.pdf
PDF
STATICS OF THE RIGID BODIES Hibbelers.pdf
Week 4 Term 3 Study Techniques revisited.pptx
102 student loan defaulters named and shamed – Is someone you know on the list?
Abdominal Access Techniques with Prof. Dr. R K Mishra
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
Module 4: Burden of Disease Tutorial Slides S2 2025
Cell Structure & Organelles in detailed.
Pharma ospi slides which help in ospi learning
Anesthesia in Laparoscopic Surgery in India
Classroom Observation Tools for Teachers
Introduction to Child Health Nursing – Unit I | Child Health Nursing I | B.Sc...
Institutional Correction lecture only . . .
Insiders guide to clinical Medicine.pdf
01-Introduction-to-Information-Management.pdf
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
Microbial disease of the cardiovascular and lymphatic systems
master seminar digital applications in india
Final Presentation General Medicine 03-08-2024.pptx
O5-L3 Freight Transport Ops (International) V1.pdf
STATICS OF THE RIGID BODIES Hibbelers.pdf

ch3.ppt

  • 1. Discrete Mathematics Chapter 3 Mathematical Reasoning, Induction, and Recursion 大葉大學 資訊工程系 黃鈴玲
  • 2. 3.2 Sequences and Summations ※Sequence (數列) Def 1. A sequence is a function f from A  Z+ (or A  N) to a set S. We use an to denote f(n), and call an a term (項) of the sequence. Example 1. {an} , where an = 1/n , n  Z+  a1 =1, a2 =1/2 , a3 =1/3, … Example 2. {bn} , where bn= (-1)n, n  N  b0 = 1, b1 = -1 , b2 = 1, … 3.2.1
  • 3. Special Integer Sequence Example 6. What is a rule that can produce the term of a sequence if the first 10 terms are 1, 2, 2, 3, 3, 3, 4, 4, 4, 4? Sol : 規則:數字 i 出現 i 次 數字 i 出現之前共有 1+2+3…….+(i -1) = i(i -1)/2 項 ai(i-1)/2 +1= ai(i-1)/2 +2 =… = ai(i+1)/2 = i 3.2.2 A common problem in discrete mathematics is finding a formula for constructing the term of a sequence. 方法:找出 ai  ai+1的變化;加減某數或者乘除某數?
  • 4. Example 7. How can we produce the terms of a sequence if the first 10 terms are 5, 11, 17, 23, 29, 35,41, 47, 53, 59? Sol : a1 = 5 a2 =11 = 5 + 6 a3 =17 = 11 + 6 = 5 + 6  2 : :  an= 5 + 6  (n-1) = 6n-1 3.2.3
  • 5. Example 8. Conjecture a simple formula for an if the first 10 terms of the sequence {an} are 1, 7, 25, 79, 241, 727, 2185, 6559, 19681,59047? Sol: 顯然非等差數列 後項除以前項的值接近3  猜測數列為 3n  … 比較: {3n} : 3, 9, 27, 81, 243, 729, 2187,… {an} : 1, 7, 25, 79, 241, 727, 2185,…  an = 3n - 2 , n  1 3.2.4
  • 6.  Summations Here, the variable j is call the index of summation, m is the lower limit, and n is the upper limit. 3.2.5 n m m n m j j a a a a         1 Example 10. Example 13. (Double summation) 55 25 16 9 4 1 5 1 2         j j 60 ) 4 3 2 1 ( 6 6 ) 3 2 ( 4 1 4 1 4 1 3 1                 i i i j i i i i ij
  • 7. Example 14. Table 2. Some useful summation formulae 3.2.6 6 4 2 0 } 4 , 2 , 0 {       S S 1 , 1 ) 1 ( ) 1 ( 1 0  - -     r r r a ar n n k k 2 ) 1 ( ) 2 ( 1     n n k n k 6 ) 1 2 )( 1 ( ) 3 ( 1 2      n n n k n k
  • 8. Cardinality Def 4. The sets A and B have the same cardinality (size) if and only if there is a one-to-one correspondence (1-1,onto 的function) from A to B. Def 5. A set that is either finite or has the same cardinality as Z+ (or N) is called countable (可數). A set that is not countable is called uncountable. 3.2.7
  • 9. 3.2.8 Example 18. Show that the set of odd positive integers is a countable set. Pf: (Figure 1) Z+ : 1 2 3 4 5 6 7 8 … …… { 正奇數 } : 1 3 5 7 9 11 13 15 … f : Z+  {正奇數} f (n) = 2n – 1 is 1-1 & onto.
  • 10. Example 19. Show that the set of positive rational number (Q+) is countable. ... , , , , , , , , 1 4 2 3 3 2 4 1 3 1 1 3 1 2 2 1 1 1 ∴ Z+ : 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 … Q+ : (注意,因 等於 ,故 不算) ※Note. R is uncountable. (Example 20) Exercise : 9,13,17,38 3.2.9 Pf: Q+ = { a / b | a, b Z+ } 5 1  2 2 1 1 2 2 (Figure 2) 1 2 1 3 1 4 1 5 1 1  2 1 2 2 2 3 2 4 2 5  3 2 3 1 3 3 3 4 3 5  4 2 4 1  
  • 11. 3.3 Mathematical Induction(數學歸納法) Note : Mathematical induction can be used only to prove results obtained in some other way. It is not a tool for discovering formulae or theorems. (p.239) P(n) : a propositional function (e.g. n ≦ 2n) A proof by mathematical induction (MI) that P(n) is true for every nZ+ consists of two steps : 1. Basis step : The proposition P(1) is shown to be true.(若 n 從 0 開始則證 P(0)為真 ) 2. Inductive step : the implication P(k) → P(k+1) is shown to be true for every kZ+ 3.3.1
  • 12. Example 1. Use MI to prove that the sum of the first n odd positive integers is n2. Note. 不用MI就可以得証: Pf : Let P(n) denote the proposition that Basis step : P(1) is true , since 1=12 Inductive step : Suppose that P(k) is true for a positive integer k, i.e., 1+3+5+…+(2k-1)=k2 Note that 1+3+5+…+(2k-1)+(2k+1) = k2+2k+1= (k+1)2 ∴ P(k+1) is true By induction, P(n) is true for all nZ+ 2 1 1 ) 1 ( 2 ) 1 2 ( n n n n n i i n i n i      -   -  - 2 1 ) 1 2 ( n i n i    - 3.3.2
  • 13. Example 2. Use MI to prove the inequality n<2n for all nZ+ pf : Let P(n) be the proposition “ n < 2n ”. Basis step : P(1) is true since 1 < 21 . Inductive step : Assume that P(k) is true for a positive integer k, i.e., k < 2k. Consider P(k+1) : k + 1 < 2k + 1  2k + 2k =2k + 1 ∴ P(k+1) is true. By MI, P(n) is true for all nZ+. 3.3.3
  • 14. k Hk 1 ... 3 1 2 1 1      2 1 2 n H n   Example 6. The harmonic numbers Hk, k =1,2,3,…, are defined by . Use MI to show that Pf : Let P(n) be the proposition that “ ”. Basis step : P(0) is true, since . Inductive step : Assume that P(k) is true for some k, i.e., Consider P(k+1) : 3.3.4 whenever n is a nonnegative integer. 2 / 1 2 n H n   2 / 0 1 1 1 20     H H 2 / 1 2 k H k  
  • 15. ∴P(k+1) is true. By MI, P(n) is true for all nZ+. 3.3.5 1 2 2 1 2 2 1 1 2 1 2 1 3 1 2 1 1 1              k k k k k H   1 2 2 1 2 2 1 1 2 1         k k k k H  1 2 1 2 2 1 1 2 1 ) 2 1 (          k k k k  k k k k k k k 2 2 1 2 2 1 2 2 1 ) 2 1 (           k k k k 2 2 2 ) 2 1 (     2 1 1    k
  • 16. ※The 2nd principle of mathematical induction: ( 又稱為強數學歸納法 strong induction)  Basis step 相同  Inductive step : Assume P(k) is true for all k  n Show that P(n+1) is also true. 3.3.6
  • 17. Example 14. Show that if nZ and n >1, then n can be written as the product of primes. Pf : Let P(n) be the proposition that n can be written as the product of primes. Basis : P(2) is true, since 2 is a prime number Inductive : Assume P(k) is true for all k  n. Consider P(n+1) : Case 1 : n+1 is prime  P(n+1) is true Case 2 : n+1 is composite, i.e., n+1=ab where 2  a  b < n+1 By the induction hypothesis, both a and b can be written as the product of primes.  P(n+1) is true. By 2nd MI, P(n) is true if nZ and n >1. Note: 此題無法用 1st MI 證 Exercise : 3,11,17 3.3.7
  • 18. 3.4 Recursive Definitions. Def. The process of defining an object in terms of itself is called recursion(遞迴). e.g. We specify the terms of a sequence using (1) an explicit formula: an=2n, n=0,1,2,… (2) a recursive form: a0=1, an+1=2an , n=0,1,2,… Example 1. Suppose that f is defined recursively by f(0)=3 , f(n+1)=2f(n)+3 Find f(1), f(2), f(3), f(4). 3.4.1
  • 19. Example 2. Give an inductive (recursive) definition of the factorial function F(n) = n!. Sol : initial value : F(0) = 1 recursive form : F(n+1) = (n+1)! = n!  (n+1) = F(n)  (n+1) Example 5. The Fibonacci numbers f0, f1, f2…,are defined by : f0 = 0 , f1 = 1 , fn = fn-1 + fn-2 , for n = 2,3,4,… what is f4 ? Sol : f4 = f3 + f2 = (f2 + f1) + (f1 + f0) = f2 + 2 = (f1 + f0) + 2 = 3 3.4.2
  • 20. Example 6. Show that fn > a n-2 , where 3 2 5 1    n , a Pf: ( By 2nd MI ) Let P(n) be the statement fn >a n-2 . Basis: f3 = 2 > a so that P(3) and P(4) are true. Inductive: Assume that P(k) is true, 3 k  n, n  4. We must show that P(n+1) is true. fn+1 = fn + fn-1 > a n-2 + a n-3 = a n-3(a +1) ∵ a +1= a 2 ∴ fn+1 > a n-3  a 2 = a n-1 We get that P(n+1) is true. By 2nd MI , P(n) is true for all n  3 2 5 3 3 2 4     a f 3.4.3
  • 21. ※Recursively defined sets. Example 7. Let S be defined recursively by 3S x+yS if xS and yS. Show that S is the of positive integers divisible by 3 (i.e., S = { 3, 6, 9, 12, 15, 18, … } Pf: Let A be the set of all positive integers divisible by 3. We need to prove that A=S. (i) A  S : (By MI) Let P(n) be the statement that 3nS … (ii) S  A : (利用S的定義) (1) 3  A , (2) if xA,yA, then 3|x and 3|y.  3|(x+y)  x+yA ∴S  A S = A 3.4.4
  • 22. Example 8. The set of strings over an alphabet  is denoted by *. The empty string is denoted by l, and wx* whenever w* and x. eg.  = { a, b, c } * = { l, a , b , c , aa , ab , ac , ba , bb , bc, … abcabccba, …} Example 9. Give a recursive definition of l(w), the length of the string w* Sol : initial value : l(l)=0 recursive def : l(wx)=l(w)+1 if w*, x. la lb lc 3.4.5
  • 23. Exercise 3,13, 25, 49 Exercise 39. When does a string belong to the set A of bit strings defined recursively by lA 0x1A if xA. Sol : A={l, 01 , 0011, 000111, …} ∴當bit string a = 000…011…1 時 aA n個 n個 0l1 3.4.6
  • 24.  Ackermann’s function A(m, n) = 2n if m = 0 0 if m  1 and n = 0 2 if m  1 and n = 1 A(m-1, A(m, n-1)) if m  1 and n  2 Exercise 49 Show that A(m,2)=4 whenever m  1 Pf : A(m,2) = A(m-1, A(m,1)) = A(m-1,2) whenever m  1. A(m,2) = A(m-1,2) = A(m-2,2) = … = A(0,2) = 4. 3.4.7
  • 25. 3.5 Recursive algorithms. ※ Sometimes we can reduce the solution to a problem with a particular set of input to the solution of the same problem with smaller input values. eg. gcd(a,b) = gcd(b mod a, a) (when a < b) Def 1. An algorithm is called recursive if it solves a problem by reducing it to an instance of the same problem with smaller input. 3.5.1
  • 26. Example 1. Give a recursive algorithm for computing an, where aR {0}, nN. Sol : recursive definition of an : initial value : a0=1 recursive def : an = a  an-1. Algorithm 1. Procedure power( a : nonzero real number, n : nonnegative integer ) if n = 0 then power(a, n):=1 else power(a, n):= a * power(a, n-1). ∴ 3.5.2
  • 27. Example 4. Find gcd(a,b) with 0a<b Sol : Algorithm 3. procedure gcd(a,b : nonnegative integers with a<b) if a=0 then gcd(a,b) := b else gcd(a,b) := gcd(b mod a, a). Example 5. Search x in a1, a2,…,an by Linear Search Sol : Alg. 4 procedure search (i, j, x) if ai = x then location := i else if i = j then location := 0 else search(i+1, j, x) 從ai,ai+1,…aj 中找 x call search(1, n, x) 3.5.3
  • 28. Example 6. Search x from a1,a2,…,an by binary search. Sol : Alg. 5 procedure binary_search (x , i , j) m := (i+j) / 2 if x = am then location := m else if (x < am and i < m) then binary_search(x, i, m-1) else if (x > am and j > m) then binary_search(x, m+1, j) else location := 0 call binary_search(x, 1, n) search x from ai, ai+1, …, aj 3.5.4 表示左半邊 ai, ai+1, …, am-1 至少還有一個元素
  • 29. Example 7. Give the value of n!, nZ+ Sol : Note : n! = n  (n-1)! Alg. 6 (Recursive Procedure) procedure factorial (n: positive integer) if n = 1 then factorial (n) := 1 else factorial (n) := n  factorial (n-1) Alg. 7 (Iterative Procedure) procedure iterative_factorial (n : positive integer) x := 1 for i := 1 to n x := i  x { x = n! } 3.5.5
  • 30. ※ iterative alg. 的計算次數通常比 recursive alg.少 ※ Find Fibonacci numbers (Note : f0=0, f1=1, fn=fn-1+fn-2 for n2) Alg. 8 (Recursive Fibonacci) procedure Fibonacci (n : nonnegative integer) if n = 0 then Fibonacci (0) := 0 else if n = 1 then Fibonacci (1) := 1 else Fibonacci (n) := Fibonacci (n-1)+Fibonacci (n-2) 3.5.6
  • 31. Alg.9 (Iterative Fibonacci) procedure iterative_fibonacci (n: nonnegative integer) if n = 0 then y := 0 // y = f0 else begin x := 0 y := 1 // y = f1 for i := 1 to n-1 begin z := x + y x := y y := z end end {y is fn } Exercise : 5 , 27 i = 1 i = 2 i = 3 z f2 f3 f4 x f1 f2 f3 y f2 f3 f4 3.5.7