SlideShare a Scribd company logo
Silberschatz and Galvin19996.1
Operating System Concepts Silberschatz and Galvin19995.1Operating System Concepts Silberschatz and Galvin 19994.1
1 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
O P E R A T I N G S Y S T E M S
Chapter 5 : Process Synchronization
 Background
 The Critical-Section Problem
 Synchronization Hardware
 Semaphores
 Classical Problems of Synchronization
 Critical Regions
 Monitors
 Synchronization in Solaris 2
 Atomic Transactions
Operating System Concepts
Silberschatz and Galvin19996.2
Operating System Concepts Silberschatz and Galvin19995.2Operating System Concepts Silberschatz and Galvin 19994.2
2 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Chapter 5: Process Synchronization
• Background
• The Critical-Section Problem
• Synchronization Hardware
• Semaphores
• Classical Problems of Synchronization
• Critical Regions
• Monitors
• Synchronization in Solaris 2
• Atomic Transactions
Operating System Concepts
Silberschatz and Galvin19996.3
Operating System Concepts Silberschatz and Galvin19995.3Operating System Concepts Silberschatz and Galvin 19994.3
3 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Background
• Concurrent access to shared data may result in data inconsistency.
• Maintaining data consistency requires mechanisms to ensure the
orderly execution of cooperating processes.
• Shared-memory solution to bounded-butter problem (Chapter 4) allows
at most n – 1 items in buffer at the same time. A solution, where all N
buffers are used is not simple.
– Suppose that we modify the producer-consumer code by adding a
variable counter, initialized to 0 and incremented each time a new
item is added to the buffer
Operating System Concepts
Silberschatz and Galvin19996.4
Operating System Concepts Silberschatz and Galvin19995.4Operating System Concepts Silberschatz and Galvin 19994.4
4 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Bounded-Buffer
• Shared data type item = … ;
var buffer array [0..n-1] of item;
in, out: 0..n-1;
counter: 0..n;
in, out, counter := 0;
• Producer process
repeat
…
produce an item in nextp
…
while counter = n do no-op;
buffer [in] := nextp;
in := in + 1 mod n;
counter := counter +1;
until false;
Operating System Concepts
Silberschatz and Galvin19996.5
Operating System Concepts Silberschatz and Galvin19995.5Operating System Concepts Silberschatz and Galvin 19994.5
5 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Bounded-Buffer (Cont.)
• Consumer process
repeat
while counter = 0 do no-op;
nextc := buffer [out];
out := out + 1 mod n;
counter := counter – 1;
…
consume the item in nextc
…
until false;
• The statements:
– counter := counter + 1;
– counter := counter - 1;
must be executed atomically.
Operating System Concepts
Silberschatz and Galvin19996.6
Operating System Concepts Silberschatz and Galvin19995.6Operating System Concepts Silberschatz and Galvin 19994.6
6 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
The Critical-Section Problem
• n processes all competing to use some shared data
• Each process has a code segment, called critical section, in
which the shared data is accessed.
• Problem – ensure that when one process is executing in its
critical section, no other process is allowed to execute in its
critical section.
• Structure of process Pi
repeat
entry section
critical section
exit section
reminder section
until false;
Operating System Concepts
Silberschatz and Galvin19996.7
Operating System Concepts Silberschatz and Galvin19995.7Operating System Concepts Silberschatz and Galvin 19994.7
7 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Solution to Critical-Section Problem
1. Mutual Exclusion. If process Pi is executing in its critical
section, then no other processes can be executing in their critical
sections.
2. Progress. If no process is executing in its critical section and
there exist some processes that wish to enter their critical
section, then the selection of the processes that will enter the
critical section next cannot be postponed indefinitely.
3. Bounded Waiting. A bound must exist on the number of times
that other processes are allowed to enter their critical sections
after a process has made a request to enter its critical section
and before that request is granted.
 Assume that each process executes at a nonzero speed
 No assumption concerning relative speed of the n
processes.
Operating System Concepts
Silberschatz and Galvin19996.8
Operating System Concepts Silberschatz and Galvin19995.8Operating System Concepts Silberschatz and Galvin 19994.8
8 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Initial Attempts to Solve Problem
• Only 2 processes, P0 and P1
• General structure of process Pi (other process Pj)
repeat
entry section
critical section
exit section
reminder section
until false;
• Processes may share some common variables to synchronize
their actions.
Operating System Concepts
Silberschatz and Galvin19996.9
Operating System Concepts Silberschatz and Galvin19995.9Operating System Concepts Silberschatz and Galvin 19994.9
9 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Algorithm 1
• Shared variables:
– var turn: (0..1);
initially turn = 0
– turn - i  Pi can enter its critical section
• Process Pi
repeat
while turn  i do no-op;
critical section
turn := j;
reminder section
until false;
• Satisfies mutual exclusion, but not progress
Operating System Concepts
Silberschatz and Galvin19996.10
Operating System Concepts Silberschatz and Galvin19995.10Operating System Concepts Silberschatz and Galvin 19994.10
10 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Algorithm 2
• Shared variables
– var flag: array [0..1] of boolean;
initially flag [0] = flag [1] = false.
– flag [i] = true  Pi ready to enter its critical section
• Process Pi
repeat
flag[i] := true;
while flag[j] do no-op;
critical section
flag [i] := false;
remainder section
until false;
• Satisfies mutual exclusion, but not progress requirement.
Operating System Concepts
Silberschatz and Galvin19996.11
Operating System Concepts Silberschatz and Galvin19995.11Operating System Concepts Silberschatz and Galvin 19994.11
11 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Algorithm 3
• Combined shared variables of algorithms 1 and 2.
• Process Pi
repeat
flag [i] := true;
turn := j;
while (flag [j] and turn = j) do no-op;
critical section
flag [i] := false;
remainder section
until false;
• Meets all three requirements; solves the critical-section problem
for two processes.
Operating System Concepts
Silberschatz and Galvin19996.12
Operating System Concepts Silberschatz and Galvin19995.12Operating System Concepts Silberschatz and Galvin 19994.12
12 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Bakery Algorithm
• Before entering its critical section, process receives a number.
Holder of the smallest number enters the critical section.
• If processes Pi and Pj receive the same number, if i < j, then Pi is
served first; else Pj is served first.
• The numbering scheme always generates numbers in increasing
order of enumeration; i.e., 1,2,3,3,3,3,4,5...
Critical section for n processes
Operating System Concepts
Silberschatz and Galvin19996.13
Operating System Concepts Silberschatz and Galvin19995.13Operating System Concepts Silberschatz and Galvin 19994.13
13 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Bakery Algorithm (Cont.)
• Notation < lexicographical order (ticket #, process id #)
– (a,b) < c,d) if a < c or if a = c and b < d
– max (a0,…, an-1) is a number, k, such that k  ai for i - 0,
…, n – 1
• Shared data
var choosing: array [0..n – 1] of boolean;
number: array [0..n – 1] of integer,
Data structures are initialized to false and 0 respectively
Operating System Concepts
Silberschatz and Galvin19996.14
Operating System Concepts Silberschatz and Galvin19995.14Operating System Concepts Silberschatz and Galvin 19994.14
14 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Bakery Algorithm (Cont.)
repeat
choosing[i] := true;
number[i] := max(number[0], number[1], …, number [n – 1])+1;
choosing[i] := false;
for j := 0 to n – 1
do begin
while choosing[j] do no-op;
while number[j]  0
and (number[j],j) < (number[i], i) do no-op;
end;
critical section
number[i] := 0;
remainder section
until false;
Operating System Concepts
Silberschatz and Galvin19996.15
Operating System Concepts Silberschatz and Galvin19995.15Operating System Concepts Silberschatz and Galvin 19994.15
15 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Synchronization Hardware
• Test and modify the content of a word atomically.
function Test-and-Set (var target: boolean): boolean;
begin
Test-and-Set := target;
target := true;
end;
Operating System Concepts
Silberschatz and Galvin19996.16
Operating System Concepts Silberschatz and Galvin19995.16Operating System Concepts Silberschatz and Galvin 19994.16
16 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Mutual Exclusion with Test-and-Set
• Shared data: var lock: boolean (initially false)
• Process Pi
repeat
while Test-and-Set (lock) do no-op;
critical section
lock := false;
remainder section
until false;
Operating System Concepts
Silberschatz and Galvin19996.17
Operating System Concepts Silberschatz and Galvin19995.17Operating System Concepts Silberschatz and Galvin 19994.17
17 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Semaphore
• Synchronization tool that does not require busy waiting.
• Semaphore S – integer variable
• can only be accessed via two indivisible (atomic) operations
wait (S): while S 0 do no-op;
S := S – 1;
signal (S): S := S + 1;
Operating System Concepts
Silberschatz and Galvin19996.18
Operating System Concepts Silberschatz and Galvin19995.18Operating System Concepts Silberschatz and Galvin 19994.18
18 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Example: Critical Section of n Processes
• Shared variables
– var mutex : semaphore
– initially mutex = 1
• Process Pi
repeat
wait(mutex);
critical section
signal(mutex);
remainder section
until false;
Operating System Concepts
Silberschatz and Galvin19996.19
Operating System Concepts Silberschatz and Galvin19995.19Operating System Concepts Silberschatz and Galvin 19994.19
19 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Semaphore Implementation
• Define a semaphore as a record
type semaphore = record
value: integer
L: list of process;
end;
• Assume two simple operations:
– block suspends the process that invokes it.
– wakeup(P) resumes the execution of a blocked process P.
Operating System Concepts
Silberschatz and Galvin19996.20
Operating System Concepts Silberschatz and Galvin19995.20Operating System Concepts Silberschatz and Galvin 19994.20
20 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Implementation (Cont.)
• Semaphore operations now defined as
wait(S): S.value := S.value – 1;
if S.value < 0
then begin
add this process to S.L;
block;
end;
signal(S): S.value := S.value = 1;
if S.value  0
then begin
remove a process P from S.L;
wakeup(P);
end;
Operating System Concepts
Silberschatz and Galvin19996.21
Operating System Concepts Silberschatz and Galvin19995.21Operating System Concepts Silberschatz and Galvin 19994.21
21 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Semaphore as General Synchronization Tool
• Execute B in Pj only after A executed in Pi
• Use semaphore flag initialized to 0
• Code:
Pi Pj
 
A wait(flag)
signal(flag) B
Operating System Concepts
Silberschatz and Galvin19996.22
Operating System Concepts Silberschatz and Galvin19995.22Operating System Concepts Silberschatz and Galvin 19994.22
22 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Deadlock and Starvation
• Deadlock – two or more processes are waiting indefinitely for an
event that can be caused by only one of the waiting processes.
• Let S and Q be two semaphores initialized to 1
P0 P1
wait(S); wait(Q);
wait(Q); wait(S);
 
signal(S); signal(Q);
signal(Q) signal(S);
• Starvation – indefinite blocking. A process may never be
removed from the semaphore queue in which it is suspended.
Operating System Concepts
Silberschatz and Galvin19996.23
Operating System Concepts Silberschatz and Galvin19995.23Operating System Concepts Silberschatz and Galvin 19994.23
23 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Two Types of Semaphores
• Counting semaphore – integer value can range over an
unrestricted domain.
• Binary semaphore – integer value can range only between 0
and 1; can be simpler to implement.
• Can implement a counting semaphore S as a binary
semaphore.
Operating System Concepts
Silberschatz and Galvin19996.24
Operating System Concepts Silberschatz and Galvin19995.24Operating System Concepts Silberschatz and Galvin 19994.24
24 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Implementing S as a Binary Semaphore
• Data structures:
var S1: binary-semaphore;
S2: binary-semaphore;
S3: binary-semaphore;
C: integer;
• Initialization:
S1 = S3 = 1
S2 = 0
C = initial value of semaphore S
Operating System Concepts
Silberschatz and Galvin19996.25
Operating System Concepts Silberschatz and Galvin19995.25Operating System Concepts Silberschatz and Galvin 19994.25
25 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Implementing S (Cont.)
• wait operation
wait(S3);
wait(S1);
C := C – 1;
if C < 0
then begin
signal(S1);
wait(S2);
end
else signal(S1);
signal(S3);
• signal operation
wait(S1);
C := C + 1;
if C  0 then signal(S2);
signal(S)1;
Operating System Concepts
Silberschatz and Galvin19996.26
Operating System Concepts Silberschatz and Galvin19995.26Operating System Concepts Silberschatz and Galvin 19994.26
26 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Classical Problems of Synchronization
• Bounded-Buffer Problem
• Readers and Writers Problem
• Dining-Philosophers Problem
Operating System Concepts
Silberschatz and Galvin19996.27
Operating System Concepts Silberschatz and Galvin19995.27Operating System Concepts Silberschatz and Galvin 19994.27
27 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Bounded-Buffer Problem
• Shared data
type item = …
var buffer = …
full, empty, mutex: semaphore;
nextp, nextc: item;
full :=0; empty := n; mutex :=1;
Operating System Concepts
Silberschatz and Galvin19996.28
Operating System Concepts Silberschatz and Galvin19995.28Operating System Concepts Silberschatz and Galvin 19994.28
28 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Bounded-Buffer Problem (Cont.)
• Producer process
repeat
…
produce an item in nextp
…
wait(empty);
wait(mutex);
…
signal(mutex);
signal(full);
until false;
Operating System Concepts
Silberschatz and Galvin19996.29
Operating System Concepts Silberschatz and Galvin19995.29Operating System Concepts Silberschatz and Galvin 19994.29
29 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Bounded-Buffer Problem (Cont.)
• Consumer process
repeat
wait(full)
wait(mutex);
…
remove an item from buffer to nextc
…
signal(mutex);
signal(empty);
…
consume the item in nextc
…
until false;
Operating System Concepts
Silberschatz and Galvin19996.30
Operating System Concepts Silberschatz and Galvin19995.30Operating System Concepts Silberschatz and Galvin 19994.30
30 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Readers-Writers Problem
• Shared data
var mutex, wrt: semaphore (=1);
readcount : integer (=0);
• Writer process
wait(wrt);
…
writing is performed
…
signal(wrt);
Operating System Concepts
Silberschatz and Galvin19996.31
Operating System Concepts Silberschatz and Galvin19995.31Operating System Concepts Silberschatz and Galvin 19994.31
31 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Readers-Writers Problem (Cont.)
• Reader process
wait(mutex);
readcount := readcount +1;
if readcount = 1 then wait(wrt);
signal(mutex);
…
reading is performed
…
wait(mutex);
readcount := readcount – 1;
if readcount = 0 then signal(wrt);
signal(mutex):
Operating System Concepts
Silberschatz and Galvin19996.32
Operating System Concepts Silberschatz and Galvin19995.32Operating System Concepts Silberschatz and Galvin 19994.32
32 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Dining-Philosophers Problem
• Shared data
var chopstick: array [0..4] of semaphore;
(=1 initially)
Operating System Concepts
Silberschatz and Galvin19996.33
Operating System Concepts Silberschatz and Galvin19995.33Operating System Concepts Silberschatz and Galvin 19994.33
33 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Dining-Philosophers Problem (Cont.)
• Philosopher i:
repeat
wait(chopstick[i])
wait(chopstick[i+1 mod 5])
…
eat
…
signal(chopstick[i]);
signal(chopstick[i+1 mod 5]);
…
think
…
until false;
Operating System Concepts
Silberschatz and Galvin19996.34
Operating System Concepts Silberschatz and Galvin19995.34Operating System Concepts Silberschatz and Galvin 19994.34
34 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Critical Regions
• High-level synchronization construct
• A shared variable v of type T, is declared as:
var v: shared T
• Variable v accessed only inside statement
region v when B do S
where B is a Boolean expression.
While statement S is being executed, no other process can
access variable v.
Operating System Concepts
Silberschatz and Galvin19996.35
Operating System Concepts Silberschatz and Galvin19995.35Operating System Concepts Silberschatz and Galvin 19994.35
35 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Critical Regions (Cont.)
• Regions referring to the same shared variable exclude each
other in time.
• When a process tries to execute the region statement, the
Boolean expression B is evaluated. If B is true, statement S is
executed. If it is false, the process is delayed until B becomes
true and no other process is in the region associated with v.
Operating System Concepts
Silberschatz and Galvin19996.36
Operating System Concepts Silberschatz and Galvin19995.36Operating System Concepts Silberschatz and Galvin 19994.36
36 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Example – Bounded Buffer
• Shared variables:
var buffer: shared record
pool: array [0..n–1] of item;
count,in,out: integer
end;
• Producer process inserts nextp into the shared buffer
region buffer when count < n
do begin
pool[in] := nextp;
in:= in+1 mod n;
count := count + 1;
end;
Operating System Concepts
Silberschatz and Galvin19996.37
Operating System Concepts Silberschatz and Galvin19995.37Operating System Concepts Silberschatz and Galvin 19994.37
37 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Bounded Buffer Example (Cont.)
• Consumer process removes an item from the shared buffer and
puts it in nextc
region buffer when count > 0
do begin
nextc := pool[out];
out := out+1 mod n;
count := count – 1;
end;
Operating System Concepts
Silberschatz and Galvin19996.38
Operating System Concepts Silberschatz and Galvin19995.38Operating System Concepts Silberschatz and Galvin 19994.38
38 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Implementation: region x when B do S
• Associate with the shared variable x, the following variables:
var mutex, first-delay, second-delay: semaphore;
first-count, second-count: integer,
• Mutually exclusive access to the critical section is provided by
mutex.
• If a process cannot enter the critical section because the Boolean
expression B is false, it initially waits on the first-delay
semaphore; moved to the second-delay semaphore before it is
allowed to reevaluate B.
Operating System Concepts
Silberschatz and Galvin19996.39
Operating System Concepts Silberschatz and Galvin19995.39Operating System Concepts Silberschatz and Galvin 19994.39
39 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Implementation (Cont.)
• Keep track of the number of processes waiting on first-delay and
second-delay, with first-count and second-count respectively.
• The algorithm assumes a FIFO ordering in the queuing of
processes for a semaphore.
• For an arbitrary queuing discipline, a more complicated
implementation is required.
Operating System Concepts
Silberschatz and Galvin19996.40
Operating System Concepts Silberschatz and Galvin19995.40Operating System Concepts Silberschatz and Galvin 19994.40
40 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
wait(mutex);
while not B
do begin first-count := first-count + 1;
if second-count > 0
then signal(second-delay)
else signal(mutex);
wait(first-delay):
first-count := first-count – 1;
if first-count > 0 then signal(first-delay)
else signal(second-delay);
wait(second-delay);
second-count := second-count – 1;
end;
S;
if first-count >0
then signal(first-delay);
else if second-count >0
then signal(second-delay);
else signal(mutex);
Operating System Concepts
Silberschatz and Galvin19996.41
Operating System Concepts Silberschatz and Galvin19995.41Operating System Concepts Silberschatz and Galvin 19994.41
41 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Monitors
• High-level synchronization construct that allows the safe sharing
of an abstract data type among concurrent processes.
type monitor-name = monitor
variable declarations
procedure entry P1 :(…);
begin … end;
procedure entry P2(…);
begin … end;

procedure entry Pn (…);
begin…end;
begin
initialization code
end
Operating System Concepts
Silberschatz and Galvin19996.42
Operating System Concepts Silberschatz and Galvin19995.42Operating System Concepts Silberschatz and Galvin 19994.42
42 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Monitors (Cont.)
• To allow a process to wait within the monitor, a condition
variable must be declared, as
var x, y: condition
• Condition variable can only be used with the operations wait
and signal.
– The operation
x.wait;
means that the process invoking this opeation is
suspended until another process invokes
x.signal;
– The x.signal operation resumes exactly one suspended
process. If no process is suspended, then the signal
operation has no effect.
Operating System Concepts
Silberschatz and Galvin19996.43
Operating System Concepts Silberschatz and Galvin19995.43Operating System Concepts Silberschatz and Galvin 19994.43
43 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Schematic view of a monitor
Operating System Concepts
Silberschatz and Galvin19996.44
Operating System Concepts Silberschatz and Galvin19995.44Operating System Concepts Silberschatz and Galvin 19994.44
44 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Monitor with condition variables
Operating System Concepts
Silberschatz and Galvin19996.45
Operating System Concepts Silberschatz and Galvin19995.45Operating System Concepts Silberschatz and Galvin 19994.45
45 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Dining Philosophers Example
type dining-philosophers = monitor
var state : array [0..4] of :(thinking, hungry, eating);
var self : array [0..4] of condition;
procedure entry pickup (i: 0..4);
begin
state[i] := hungry,
test (i);
if state[i]  eating then self[i], wait,
end;
procedure entry putdown (i: 0..4);
begin
state[i] := thinking;
test (i+4 mod 5);
test (i+1 mod 5);
end;
Operating System Concepts
Silberschatz and Galvin19996.46
Operating System Concepts Silberschatz and Galvin19995.46Operating System Concepts Silberschatz and Galvin 19994.46
46 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Dining Philosophers (Cont.)
procedure test(k: 0..4);
begin
if state[k+4 mod 5]  eating
and state[k] = hungry
and state[k+1 mod 5] ]  eating
then begin
state[k] := eating;
self[k].signal;
end;
end;
begin
for i := 0 to 4
do state[i] := thinking;
end.
Operating System Concepts
Silberschatz and Galvin19996.47
Operating System Concepts Silberschatz and Galvin19995.47Operating System Concepts Silberschatz and Galvin 19994.47
47 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Monitor Implementation Using Semaphores
• Variables
var mutex: semaphore (init = 1)
next: semaphore (init = 0)
next-count: integer (init = 0)
• Each external procedure F will be replaced by
wait(mutex);
…
body of F;
…
if next-count > 0
then signal(next)
else signal(mutex);
• Mutual exclusion within a monitor is ensured.
Operating System Concepts
Silberschatz and Galvin19996.48
Operating System Concepts Silberschatz and Galvin19995.48Operating System Concepts Silberschatz and Galvin 19994.48
48 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Monitor Implementation (Cont.)
• For each condition variable x, we have:
var x-sem: semaphore (init = 0)
x-count: integer (init = 0)
• The operation x.wait can be implemented as:
x-count := x-count + 1;
if next-count >0
then signal(next)
else signal(mutex);
wait(x-sem);
x-count := x-count – 1;
Operating System Concepts
Silberschatz and Galvin19996.49
Operating System Concepts Silberschatz and Galvin19995.49Operating System Concepts Silberschatz and Galvin 19994.49
49 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Monitor Implementation (Cont.)
• The operation x.signal can be implemented as:
if x-count > 0
then begin
next-count := next-count + 1;
signal(x-sem);
wait(next);
next-count := next-count – 1;
end;
Operating System Concepts
Silberschatz and Galvin19996.50
Operating System Concepts Silberschatz and Galvin19995.50Operating System Concepts Silberschatz and Galvin 19994.50
50 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Monitor Implementation (Cont.)
• Conditional-wait construct: x.wait(c);
– c – integer expression evaluated when the wait opertion is
executed.
– value of c (priority number) stored with the name of the
process that is suspended.
– when x.signal is executed, process with smallest associated
priority number is resumed next.
• Check tow conditions to establish correctness of system:
– User processes must always make their calls on the monitor
in a correct sequence.
– Must ensure that an uncooperative process does not ignore
the mutual-exclusion gateway provided by the monitor, and
try to access the shared resource directly, without using the
access protocols.
Operating System Concepts
Silberschatz and Galvin19996.51
Operating System Concepts Silberschatz and Galvin19995.51Operating System Concepts Silberschatz and Galvin 19994.51
51 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Solaris 2 Operating System
• Implements a variety of locks to support multitasking,
multithreading (including real-time threads), and multiprocessing.
• Uses adaptive mutexes for efficiency when protecting data from
short code segments.
• Uses condition variables and readers-writers locks when longer
sections of code need access to data.
Operating System Concepts

More Related Content

PPTX
Process synchronization in Operating Systems
PDF
Ch4 threads
PDF
ITFT_Semaphores and bounded buffer
PPTX
Process synchronization
PDF
Operating System : Ch19 protection
PDF
Semaphores
PPTX
Operating Systems Chapter 6 silberschatz
PPT
Galvin-operating System(Ch7)
Process synchronization in Operating Systems
Ch4 threads
ITFT_Semaphores and bounded buffer
Process synchronization
Operating System : Ch19 protection
Semaphores
Operating Systems Chapter 6 silberschatz
Galvin-operating System(Ch7)

What's hot (20)

PPT
Galvin-operating System(Ch6)
PPT
Galvin-operating System(Ch4)
PPT
Lec11 semaphores
PPT
Galvin-operating System(Ch8)
PPTX
Operating system 24 mutex locks and semaphores
PPT
Process synchonization : operating system ( Btech cse )
PPT
Deadlock : operating system ( BTECH CSE )
PPT
Lecture#5
PDF
Lecture 5 process synchronization
PDF
Operating System : Ch18 distributed coordination
PPT
Semaphores and Monitors
PPT
Memory : operating system ( Btech cse )
PDF
Ch5 process synchronization
PPT
Galvin-operating System(Ch10)
PPTX
Semaphore
PDF
Ch4 threads
PDF
Introduction to Raft algorithm
PPTX
Semophores and it's types
PPTX
B5_Flame_Safety_Complete
PDF
Kernel Recipes 2018 - Live (Kernel) Patching: status quo and status futurus -...
Galvin-operating System(Ch6)
Galvin-operating System(Ch4)
Lec11 semaphores
Galvin-operating System(Ch8)
Operating system 24 mutex locks and semaphores
Process synchonization : operating system ( Btech cse )
Deadlock : operating system ( BTECH CSE )
Lecture#5
Lecture 5 process synchronization
Operating System : Ch18 distributed coordination
Semaphores and Monitors
Memory : operating system ( Btech cse )
Ch5 process synchronization
Galvin-operating System(Ch10)
Semaphore
Ch4 threads
Introduction to Raft algorithm
Semophores and it's types
B5_Flame_Safety_Complete
Kernel Recipes 2018 - Live (Kernel) Patching: status quo and status futurus -...
Ad

Similar to Ch5 process synchronization (20)

PDF
Operating System-Ch6 process synchronization
PPT
Operating System memory management CH6-OS (2).PPT
PPT
Chapter 5-Process Synchronization 22.ppt
PPT
Operating Systems Chapter-6 power PointT
PDF
Module-3-Operating system process-COE.pdf
PDF
ch6_EN_BK_syn1.pdf
PPT
ch6.ppt
PPT
Comsats University Islamabad OS lab 05.pptx
PPT
Process synchronization in operating systems
PPT
ch05.ppt
PPT
ch5 [Autosaved].ppt
PPT
Process Synchronization
PDF
ch5-Process_Synchronization.pdf
PPT
chapter5 processes of synchronizatio ppt
PPT
ch5.ppt
PPT
ch5.ppt
PPT
ch5.ppt operating system
PDF
Process synchronisation. Chapter .......
PDF
Unit II - 3 - Operating System - Process Synchronization
PPT
Operating System-Process Synchronization
Operating System-Ch6 process synchronization
Operating System memory management CH6-OS (2).PPT
Chapter 5-Process Synchronization 22.ppt
Operating Systems Chapter-6 power PointT
Module-3-Operating system process-COE.pdf
ch6_EN_BK_syn1.pdf
ch6.ppt
Comsats University Islamabad OS lab 05.pptx
Process synchronization in operating systems
ch05.ppt
ch5 [Autosaved].ppt
Process Synchronization
ch5-Process_Synchronization.pdf
chapter5 processes of synchronizatio ppt
ch5.ppt
ch5.ppt
ch5.ppt operating system
Process synchronisation. Chapter .......
Unit II - 3 - Operating System - Process Synchronization
Operating System-Process Synchronization
Ad

More from Syaiful Ahdan (20)

PDF
Sertifikat EC00202128391
PDF
SP2JPB - Aplikasi Sistem Pelayanan Pemesanan Jasa Perbaikan Pada Bengkel Alam...
PDF
Sertifikat ec00202059774
PDF
Sertifikat ec00202059775
PDF
Sertifikat EC00202045078
PDF
Sertifikat EC00202044723
PDF
Sertifikat EC00202023523
PDF
Sertifikat EC00201826309
PDF
Sertifikat EC00202023149
PDF
Sertifikat EC00202022868
PDF
Sertifikat EC00202021343
PDF
Sertifikat EC00202022755
PDF
Sertifikat EC00201987196
PDF
Sertifikat EC00201856484
PDF
Sertifikat EC00201856352
PDF
Sertifikat EC00201856994
PDF
Sertifikat EC00201856895
PDF
Meeting 2 introdcution network administrator
PDF
Pertemuan 5
PDF
Pertemuan 4
Sertifikat EC00202128391
SP2JPB - Aplikasi Sistem Pelayanan Pemesanan Jasa Perbaikan Pada Bengkel Alam...
Sertifikat ec00202059774
Sertifikat ec00202059775
Sertifikat EC00202045078
Sertifikat EC00202044723
Sertifikat EC00202023523
Sertifikat EC00201826309
Sertifikat EC00202023149
Sertifikat EC00202022868
Sertifikat EC00202021343
Sertifikat EC00202022755
Sertifikat EC00201987196
Sertifikat EC00201856484
Sertifikat EC00201856352
Sertifikat EC00201856994
Sertifikat EC00201856895
Meeting 2 introdcution network administrator
Pertemuan 5
Pertemuan 4

Recently uploaded (20)

PDF
Classroom Observation Tools for Teachers
PDF
Weekly quiz Compilation Jan -July 25.pdf
PPTX
Lesson notes of climatology university.
PPTX
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
PDF
LDMMIA Reiki Yoga Finals Review Spring Summer
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PDF
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
PPTX
A powerpoint presentation on the Revised K-10 Science Shaping Paper
PDF
IGGE1 Understanding the Self1234567891011
PDF
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
PDF
1_English_Language_Set_2.pdf probationary
PDF
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
PDF
Computing-Curriculum for Schools in Ghana
PDF
LNK 2025 (2).pdf MWEHEHEHEHEHEHEHEHEHEHE
PDF
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
PPTX
UV-Visible spectroscopy..pptx UV-Visible Spectroscopy – Electronic Transition...
PPTX
History, Philosophy and sociology of education (1).pptx
PDF
Indian roads congress 037 - 2012 Flexible pavement
PPTX
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
Classroom Observation Tools for Teachers
Weekly quiz Compilation Jan -July 25.pdf
Lesson notes of climatology university.
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
LDMMIA Reiki Yoga Finals Review Spring Summer
Supply Chain Operations Speaking Notes -ICLT Program
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
A powerpoint presentation on the Revised K-10 Science Shaping Paper
IGGE1 Understanding the Self1234567891011
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
1_English_Language_Set_2.pdf probationary
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
Computing-Curriculum for Schools in Ghana
LNK 2025 (2).pdf MWEHEHEHEHEHEHEHEHEHEHE
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
UV-Visible spectroscopy..pptx UV-Visible Spectroscopy – Electronic Transition...
History, Philosophy and sociology of education (1).pptx
Indian roads congress 037 - 2012 Flexible pavement
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
202450812 BayCHI UCSC-SV 20250812 v17.pptx

Ch5 process synchronization

  • 1. Silberschatz and Galvin19996.1 Operating System Concepts Silberschatz and Galvin19995.1Operating System Concepts Silberschatz and Galvin 19994.1 1 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 O P E R A T I N G S Y S T E M S Chapter 5 : Process Synchronization  Background  The Critical-Section Problem  Synchronization Hardware  Semaphores  Classical Problems of Synchronization  Critical Regions  Monitors  Synchronization in Solaris 2  Atomic Transactions Operating System Concepts
  • 2. Silberschatz and Galvin19996.2 Operating System Concepts Silberschatz and Galvin19995.2Operating System Concepts Silberschatz and Galvin 19994.2 2 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Chapter 5: Process Synchronization • Background • The Critical-Section Problem • Synchronization Hardware • Semaphores • Classical Problems of Synchronization • Critical Regions • Monitors • Synchronization in Solaris 2 • Atomic Transactions Operating System Concepts
  • 3. Silberschatz and Galvin19996.3 Operating System Concepts Silberschatz and Galvin19995.3Operating System Concepts Silberschatz and Galvin 19994.3 3 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Background • Concurrent access to shared data may result in data inconsistency. • Maintaining data consistency requires mechanisms to ensure the orderly execution of cooperating processes. • Shared-memory solution to bounded-butter problem (Chapter 4) allows at most n – 1 items in buffer at the same time. A solution, where all N buffers are used is not simple. – Suppose that we modify the producer-consumer code by adding a variable counter, initialized to 0 and incremented each time a new item is added to the buffer Operating System Concepts
  • 4. Silberschatz and Galvin19996.4 Operating System Concepts Silberschatz and Galvin19995.4Operating System Concepts Silberschatz and Galvin 19994.4 4 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Bounded-Buffer • Shared data type item = … ; var buffer array [0..n-1] of item; in, out: 0..n-1; counter: 0..n; in, out, counter := 0; • Producer process repeat … produce an item in nextp … while counter = n do no-op; buffer [in] := nextp; in := in + 1 mod n; counter := counter +1; until false; Operating System Concepts
  • 5. Silberschatz and Galvin19996.5 Operating System Concepts Silberschatz and Galvin19995.5Operating System Concepts Silberschatz and Galvin 19994.5 5 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Bounded-Buffer (Cont.) • Consumer process repeat while counter = 0 do no-op; nextc := buffer [out]; out := out + 1 mod n; counter := counter – 1; … consume the item in nextc … until false; • The statements: – counter := counter + 1; – counter := counter - 1; must be executed atomically. Operating System Concepts
  • 6. Silberschatz and Galvin19996.6 Operating System Concepts Silberschatz and Galvin19995.6Operating System Concepts Silberschatz and Galvin 19994.6 6 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 The Critical-Section Problem • n processes all competing to use some shared data • Each process has a code segment, called critical section, in which the shared data is accessed. • Problem – ensure that when one process is executing in its critical section, no other process is allowed to execute in its critical section. • Structure of process Pi repeat entry section critical section exit section reminder section until false; Operating System Concepts
  • 7. Silberschatz and Galvin19996.7 Operating System Concepts Silberschatz and Galvin19995.7Operating System Concepts Silberschatz and Galvin 19994.7 7 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Solution to Critical-Section Problem 1. Mutual Exclusion. If process Pi is executing in its critical section, then no other processes can be executing in their critical sections. 2. Progress. If no process is executing in its critical section and there exist some processes that wish to enter their critical section, then the selection of the processes that will enter the critical section next cannot be postponed indefinitely. 3. Bounded Waiting. A bound must exist on the number of times that other processes are allowed to enter their critical sections after a process has made a request to enter its critical section and before that request is granted.  Assume that each process executes at a nonzero speed  No assumption concerning relative speed of the n processes. Operating System Concepts
  • 8. Silberschatz and Galvin19996.8 Operating System Concepts Silberschatz and Galvin19995.8Operating System Concepts Silberschatz and Galvin 19994.8 8 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Initial Attempts to Solve Problem • Only 2 processes, P0 and P1 • General structure of process Pi (other process Pj) repeat entry section critical section exit section reminder section until false; • Processes may share some common variables to synchronize their actions. Operating System Concepts
  • 9. Silberschatz and Galvin19996.9 Operating System Concepts Silberschatz and Galvin19995.9Operating System Concepts Silberschatz and Galvin 19994.9 9 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Algorithm 1 • Shared variables: – var turn: (0..1); initially turn = 0 – turn - i  Pi can enter its critical section • Process Pi repeat while turn  i do no-op; critical section turn := j; reminder section until false; • Satisfies mutual exclusion, but not progress Operating System Concepts
  • 10. Silberschatz and Galvin19996.10 Operating System Concepts Silberschatz and Galvin19995.10Operating System Concepts Silberschatz and Galvin 19994.10 10 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Algorithm 2 • Shared variables – var flag: array [0..1] of boolean; initially flag [0] = flag [1] = false. – flag [i] = true  Pi ready to enter its critical section • Process Pi repeat flag[i] := true; while flag[j] do no-op; critical section flag [i] := false; remainder section until false; • Satisfies mutual exclusion, but not progress requirement. Operating System Concepts
  • 11. Silberschatz and Galvin19996.11 Operating System Concepts Silberschatz and Galvin19995.11Operating System Concepts Silberschatz and Galvin 19994.11 11 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Algorithm 3 • Combined shared variables of algorithms 1 and 2. • Process Pi repeat flag [i] := true; turn := j; while (flag [j] and turn = j) do no-op; critical section flag [i] := false; remainder section until false; • Meets all three requirements; solves the critical-section problem for two processes. Operating System Concepts
  • 12. Silberschatz and Galvin19996.12 Operating System Concepts Silberschatz and Galvin19995.12Operating System Concepts Silberschatz and Galvin 19994.12 12 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Bakery Algorithm • Before entering its critical section, process receives a number. Holder of the smallest number enters the critical section. • If processes Pi and Pj receive the same number, if i < j, then Pi is served first; else Pj is served first. • The numbering scheme always generates numbers in increasing order of enumeration; i.e., 1,2,3,3,3,3,4,5... Critical section for n processes Operating System Concepts
  • 13. Silberschatz and Galvin19996.13 Operating System Concepts Silberschatz and Galvin19995.13Operating System Concepts Silberschatz and Galvin 19994.13 13 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Bakery Algorithm (Cont.) • Notation < lexicographical order (ticket #, process id #) – (a,b) < c,d) if a < c or if a = c and b < d – max (a0,…, an-1) is a number, k, such that k  ai for i - 0, …, n – 1 • Shared data var choosing: array [0..n – 1] of boolean; number: array [0..n – 1] of integer, Data structures are initialized to false and 0 respectively Operating System Concepts
  • 14. Silberschatz and Galvin19996.14 Operating System Concepts Silberschatz and Galvin19995.14Operating System Concepts Silberschatz and Galvin 19994.14 14 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Bakery Algorithm (Cont.) repeat choosing[i] := true; number[i] := max(number[0], number[1], …, number [n – 1])+1; choosing[i] := false; for j := 0 to n – 1 do begin while choosing[j] do no-op; while number[j]  0 and (number[j],j) < (number[i], i) do no-op; end; critical section number[i] := 0; remainder section until false; Operating System Concepts
  • 15. Silberschatz and Galvin19996.15 Operating System Concepts Silberschatz and Galvin19995.15Operating System Concepts Silberschatz and Galvin 19994.15 15 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Synchronization Hardware • Test and modify the content of a word atomically. function Test-and-Set (var target: boolean): boolean; begin Test-and-Set := target; target := true; end; Operating System Concepts
  • 16. Silberschatz and Galvin19996.16 Operating System Concepts Silberschatz and Galvin19995.16Operating System Concepts Silberschatz and Galvin 19994.16 16 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Mutual Exclusion with Test-and-Set • Shared data: var lock: boolean (initially false) • Process Pi repeat while Test-and-Set (lock) do no-op; critical section lock := false; remainder section until false; Operating System Concepts
  • 17. Silberschatz and Galvin19996.17 Operating System Concepts Silberschatz and Galvin19995.17Operating System Concepts Silberschatz and Galvin 19994.17 17 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Semaphore • Synchronization tool that does not require busy waiting. • Semaphore S – integer variable • can only be accessed via two indivisible (atomic) operations wait (S): while S 0 do no-op; S := S – 1; signal (S): S := S + 1; Operating System Concepts
  • 18. Silberschatz and Galvin19996.18 Operating System Concepts Silberschatz and Galvin19995.18Operating System Concepts Silberschatz and Galvin 19994.18 18 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Example: Critical Section of n Processes • Shared variables – var mutex : semaphore – initially mutex = 1 • Process Pi repeat wait(mutex); critical section signal(mutex); remainder section until false; Operating System Concepts
  • 19. Silberschatz and Galvin19996.19 Operating System Concepts Silberschatz and Galvin19995.19Operating System Concepts Silberschatz and Galvin 19994.19 19 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Semaphore Implementation • Define a semaphore as a record type semaphore = record value: integer L: list of process; end; • Assume two simple operations: – block suspends the process that invokes it. – wakeup(P) resumes the execution of a blocked process P. Operating System Concepts
  • 20. Silberschatz and Galvin19996.20 Operating System Concepts Silberschatz and Galvin19995.20Operating System Concepts Silberschatz and Galvin 19994.20 20 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Implementation (Cont.) • Semaphore operations now defined as wait(S): S.value := S.value – 1; if S.value < 0 then begin add this process to S.L; block; end; signal(S): S.value := S.value = 1; if S.value  0 then begin remove a process P from S.L; wakeup(P); end; Operating System Concepts
  • 21. Silberschatz and Galvin19996.21 Operating System Concepts Silberschatz and Galvin19995.21Operating System Concepts Silberschatz and Galvin 19994.21 21 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Semaphore as General Synchronization Tool • Execute B in Pj only after A executed in Pi • Use semaphore flag initialized to 0 • Code: Pi Pj   A wait(flag) signal(flag) B Operating System Concepts
  • 22. Silberschatz and Galvin19996.22 Operating System Concepts Silberschatz and Galvin19995.22Operating System Concepts Silberschatz and Galvin 19994.22 22 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Deadlock and Starvation • Deadlock – two or more processes are waiting indefinitely for an event that can be caused by only one of the waiting processes. • Let S and Q be two semaphores initialized to 1 P0 P1 wait(S); wait(Q); wait(Q); wait(S);   signal(S); signal(Q); signal(Q) signal(S); • Starvation – indefinite blocking. A process may never be removed from the semaphore queue in which it is suspended. Operating System Concepts
  • 23. Silberschatz and Galvin19996.23 Operating System Concepts Silberschatz and Galvin19995.23Operating System Concepts Silberschatz and Galvin 19994.23 23 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Two Types of Semaphores • Counting semaphore – integer value can range over an unrestricted domain. • Binary semaphore – integer value can range only between 0 and 1; can be simpler to implement. • Can implement a counting semaphore S as a binary semaphore. Operating System Concepts
  • 24. Silberschatz and Galvin19996.24 Operating System Concepts Silberschatz and Galvin19995.24Operating System Concepts Silberschatz and Galvin 19994.24 24 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Implementing S as a Binary Semaphore • Data structures: var S1: binary-semaphore; S2: binary-semaphore; S3: binary-semaphore; C: integer; • Initialization: S1 = S3 = 1 S2 = 0 C = initial value of semaphore S Operating System Concepts
  • 25. Silberschatz and Galvin19996.25 Operating System Concepts Silberschatz and Galvin19995.25Operating System Concepts Silberschatz and Galvin 19994.25 25 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Implementing S (Cont.) • wait operation wait(S3); wait(S1); C := C – 1; if C < 0 then begin signal(S1); wait(S2); end else signal(S1); signal(S3); • signal operation wait(S1); C := C + 1; if C  0 then signal(S2); signal(S)1; Operating System Concepts
  • 26. Silberschatz and Galvin19996.26 Operating System Concepts Silberschatz and Galvin19995.26Operating System Concepts Silberschatz and Galvin 19994.26 26 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Classical Problems of Synchronization • Bounded-Buffer Problem • Readers and Writers Problem • Dining-Philosophers Problem Operating System Concepts
  • 27. Silberschatz and Galvin19996.27 Operating System Concepts Silberschatz and Galvin19995.27Operating System Concepts Silberschatz and Galvin 19994.27 27 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Bounded-Buffer Problem • Shared data type item = … var buffer = … full, empty, mutex: semaphore; nextp, nextc: item; full :=0; empty := n; mutex :=1; Operating System Concepts
  • 28. Silberschatz and Galvin19996.28 Operating System Concepts Silberschatz and Galvin19995.28Operating System Concepts Silberschatz and Galvin 19994.28 28 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Bounded-Buffer Problem (Cont.) • Producer process repeat … produce an item in nextp … wait(empty); wait(mutex); … signal(mutex); signal(full); until false; Operating System Concepts
  • 29. Silberschatz and Galvin19996.29 Operating System Concepts Silberschatz and Galvin19995.29Operating System Concepts Silberschatz and Galvin 19994.29 29 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Bounded-Buffer Problem (Cont.) • Consumer process repeat wait(full) wait(mutex); … remove an item from buffer to nextc … signal(mutex); signal(empty); … consume the item in nextc … until false; Operating System Concepts
  • 30. Silberschatz and Galvin19996.30 Operating System Concepts Silberschatz and Galvin19995.30Operating System Concepts Silberschatz and Galvin 19994.30 30 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Readers-Writers Problem • Shared data var mutex, wrt: semaphore (=1); readcount : integer (=0); • Writer process wait(wrt); … writing is performed … signal(wrt); Operating System Concepts
  • 31. Silberschatz and Galvin19996.31 Operating System Concepts Silberschatz and Galvin19995.31Operating System Concepts Silberschatz and Galvin 19994.31 31 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Readers-Writers Problem (Cont.) • Reader process wait(mutex); readcount := readcount +1; if readcount = 1 then wait(wrt); signal(mutex); … reading is performed … wait(mutex); readcount := readcount – 1; if readcount = 0 then signal(wrt); signal(mutex): Operating System Concepts
  • 32. Silberschatz and Galvin19996.32 Operating System Concepts Silberschatz and Galvin19995.32Operating System Concepts Silberschatz and Galvin 19994.32 32 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Dining-Philosophers Problem • Shared data var chopstick: array [0..4] of semaphore; (=1 initially) Operating System Concepts
  • 33. Silberschatz and Galvin19996.33 Operating System Concepts Silberschatz and Galvin19995.33Operating System Concepts Silberschatz and Galvin 19994.33 33 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Dining-Philosophers Problem (Cont.) • Philosopher i: repeat wait(chopstick[i]) wait(chopstick[i+1 mod 5]) … eat … signal(chopstick[i]); signal(chopstick[i+1 mod 5]); … think … until false; Operating System Concepts
  • 34. Silberschatz and Galvin19996.34 Operating System Concepts Silberschatz and Galvin19995.34Operating System Concepts Silberschatz and Galvin 19994.34 34 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Critical Regions • High-level synchronization construct • A shared variable v of type T, is declared as: var v: shared T • Variable v accessed only inside statement region v when B do S where B is a Boolean expression. While statement S is being executed, no other process can access variable v. Operating System Concepts
  • 35. Silberschatz and Galvin19996.35 Operating System Concepts Silberschatz and Galvin19995.35Operating System Concepts Silberschatz and Galvin 19994.35 35 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Critical Regions (Cont.) • Regions referring to the same shared variable exclude each other in time. • When a process tries to execute the region statement, the Boolean expression B is evaluated. If B is true, statement S is executed. If it is false, the process is delayed until B becomes true and no other process is in the region associated with v. Operating System Concepts
  • 36. Silberschatz and Galvin19996.36 Operating System Concepts Silberschatz and Galvin19995.36Operating System Concepts Silberschatz and Galvin 19994.36 36 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Example – Bounded Buffer • Shared variables: var buffer: shared record pool: array [0..n–1] of item; count,in,out: integer end; • Producer process inserts nextp into the shared buffer region buffer when count < n do begin pool[in] := nextp; in:= in+1 mod n; count := count + 1; end; Operating System Concepts
  • 37. Silberschatz and Galvin19996.37 Operating System Concepts Silberschatz and Galvin19995.37Operating System Concepts Silberschatz and Galvin 19994.37 37 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Bounded Buffer Example (Cont.) • Consumer process removes an item from the shared buffer and puts it in nextc region buffer when count > 0 do begin nextc := pool[out]; out := out+1 mod n; count := count – 1; end; Operating System Concepts
  • 38. Silberschatz and Galvin19996.38 Operating System Concepts Silberschatz and Galvin19995.38Operating System Concepts Silberschatz and Galvin 19994.38 38 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Implementation: region x when B do S • Associate with the shared variable x, the following variables: var mutex, first-delay, second-delay: semaphore; first-count, second-count: integer, • Mutually exclusive access to the critical section is provided by mutex. • If a process cannot enter the critical section because the Boolean expression B is false, it initially waits on the first-delay semaphore; moved to the second-delay semaphore before it is allowed to reevaluate B. Operating System Concepts
  • 39. Silberschatz and Galvin19996.39 Operating System Concepts Silberschatz and Galvin19995.39Operating System Concepts Silberschatz and Galvin 19994.39 39 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Implementation (Cont.) • Keep track of the number of processes waiting on first-delay and second-delay, with first-count and second-count respectively. • The algorithm assumes a FIFO ordering in the queuing of processes for a semaphore. • For an arbitrary queuing discipline, a more complicated implementation is required. Operating System Concepts
  • 40. Silberschatz and Galvin19996.40 Operating System Concepts Silberschatz and Galvin19995.40Operating System Concepts Silberschatz and Galvin 19994.40 40 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 wait(mutex); while not B do begin first-count := first-count + 1; if second-count > 0 then signal(second-delay) else signal(mutex); wait(first-delay): first-count := first-count – 1; if first-count > 0 then signal(first-delay) else signal(second-delay); wait(second-delay); second-count := second-count – 1; end; S; if first-count >0 then signal(first-delay); else if second-count >0 then signal(second-delay); else signal(mutex); Operating System Concepts
  • 41. Silberschatz and Galvin19996.41 Operating System Concepts Silberschatz and Galvin19995.41Operating System Concepts Silberschatz and Galvin 19994.41 41 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Monitors • High-level synchronization construct that allows the safe sharing of an abstract data type among concurrent processes. type monitor-name = monitor variable declarations procedure entry P1 :(…); begin … end; procedure entry P2(…); begin … end;  procedure entry Pn (…); begin…end; begin initialization code end Operating System Concepts
  • 42. Silberschatz and Galvin19996.42 Operating System Concepts Silberschatz and Galvin19995.42Operating System Concepts Silberschatz and Galvin 19994.42 42 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Monitors (Cont.) • To allow a process to wait within the monitor, a condition variable must be declared, as var x, y: condition • Condition variable can only be used with the operations wait and signal. – The operation x.wait; means that the process invoking this opeation is suspended until another process invokes x.signal; – The x.signal operation resumes exactly one suspended process. If no process is suspended, then the signal operation has no effect. Operating System Concepts
  • 43. Silberschatz and Galvin19996.43 Operating System Concepts Silberschatz and Galvin19995.43Operating System Concepts Silberschatz and Galvin 19994.43 43 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Schematic view of a monitor Operating System Concepts
  • 44. Silberschatz and Galvin19996.44 Operating System Concepts Silberschatz and Galvin19995.44Operating System Concepts Silberschatz and Galvin 19994.44 44 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Monitor with condition variables Operating System Concepts
  • 45. Silberschatz and Galvin19996.45 Operating System Concepts Silberschatz and Galvin19995.45Operating System Concepts Silberschatz and Galvin 19994.45 45 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Dining Philosophers Example type dining-philosophers = monitor var state : array [0..4] of :(thinking, hungry, eating); var self : array [0..4] of condition; procedure entry pickup (i: 0..4); begin state[i] := hungry, test (i); if state[i]  eating then self[i], wait, end; procedure entry putdown (i: 0..4); begin state[i] := thinking; test (i+4 mod 5); test (i+1 mod 5); end; Operating System Concepts
  • 46. Silberschatz and Galvin19996.46 Operating System Concepts Silberschatz and Galvin19995.46Operating System Concepts Silberschatz and Galvin 19994.46 46 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Dining Philosophers (Cont.) procedure test(k: 0..4); begin if state[k+4 mod 5]  eating and state[k] = hungry and state[k+1 mod 5] ]  eating then begin state[k] := eating; self[k].signal; end; end; begin for i := 0 to 4 do state[i] := thinking; end. Operating System Concepts
  • 47. Silberschatz and Galvin19996.47 Operating System Concepts Silberschatz and Galvin19995.47Operating System Concepts Silberschatz and Galvin 19994.47 47 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Monitor Implementation Using Semaphores • Variables var mutex: semaphore (init = 1) next: semaphore (init = 0) next-count: integer (init = 0) • Each external procedure F will be replaced by wait(mutex); … body of F; … if next-count > 0 then signal(next) else signal(mutex); • Mutual exclusion within a monitor is ensured. Operating System Concepts
  • 48. Silberschatz and Galvin19996.48 Operating System Concepts Silberschatz and Galvin19995.48Operating System Concepts Silberschatz and Galvin 19994.48 48 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Monitor Implementation (Cont.) • For each condition variable x, we have: var x-sem: semaphore (init = 0) x-count: integer (init = 0) • The operation x.wait can be implemented as: x-count := x-count + 1; if next-count >0 then signal(next) else signal(mutex); wait(x-sem); x-count := x-count – 1; Operating System Concepts
  • 49. Silberschatz and Galvin19996.49 Operating System Concepts Silberschatz and Galvin19995.49Operating System Concepts Silberschatz and Galvin 19994.49 49 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Monitor Implementation (Cont.) • The operation x.signal can be implemented as: if x-count > 0 then begin next-count := next-count + 1; signal(x-sem); wait(next); next-count := next-count – 1; end; Operating System Concepts
  • 50. Silberschatz and Galvin19996.50 Operating System Concepts Silberschatz and Galvin19995.50Operating System Concepts Silberschatz and Galvin 19994.50 50 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Monitor Implementation (Cont.) • Conditional-wait construct: x.wait(c); – c – integer expression evaluated when the wait opertion is executed. – value of c (priority number) stored with the name of the process that is suspended. – when x.signal is executed, process with smallest associated priority number is resumed next. • Check tow conditions to establish correctness of system: – User processes must always make their calls on the monitor in a correct sequence. – Must ensure that an uncooperative process does not ignore the mutual-exclusion gateway provided by the monitor, and try to access the shared resource directly, without using the access protocols. Operating System Concepts
  • 51. Silberschatz and Galvin19996.51 Operating System Concepts Silberschatz and Galvin19995.51Operating System Concepts Silberschatz and Galvin 19994.51 51 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Solaris 2 Operating System • Implements a variety of locks to support multitasking, multithreading (including real-time threads), and multiprocessing. • Uses adaptive mutexes for efficiency when protecting data from short code segments. • Uses condition variables and readers-writers locks when longer sections of code need access to data. Operating System Concepts