SlideShare a Scribd company logo
CHAPTER IINUMERICAL APPROXIMATIONBY: MARIA FERNANDA VERGARA M.UNIVERSIDAD INDUSTRIAL DE SANTANDER
NUMERICAL APPROXIMATIONA numericalapproximationis a number X’ thatrepresentsanothernumberwhichitsexactvalueis X. X’ becomes more exactwhenisclosertotheexactvalue of XIsimportanttotakeintoaccountthisnumericalapproximationbecausenumericalsolutions are notexact, butthemainobjectiveistoget a solutionreallyclosetothe real solution.
SIGNIFICANT FIGURES“The concept of  a significant figure, ordigit, has beendevelopedtoformallydesignatethereliability of a numericalvalue. Thesignificantdigits of a number are thosethat can beusedwithconfidence. Theycorrespondtothenumber of certaindigits plus oneestimateddigit.”-Numericalmethodsforengineers, CHAPRA-.Whysignificant figures are important in numericalmethods?
ACCURACY AND PRECISION
ERROR DEFINITIONSNumericalerrorsoriginatewhenyouapproximatetorepresentexactmathematicalquantitiesoroperations. Thiserrors can be: Truncationerrorswhichhappenwhenapproximations are usedtorepresentmathemathicalprocedures; and round-off errorswhichhappenwhenyou use numberswithlimitedsignificant figures toexpressexactnumbers.ET=Real Value - Approximation
RELATIVE ERRORRelative error is a waytoaccountforthe magnitudes of thequantitiesbeingevaluatedTrue percentrelative error
EXAMPLE EXERCISEThemeasure of a bridge is 9999cm, and themeasure of a rivetis 9 cm, ifthe true values are 10.000cm and 10cm, respectively, compute the true error and the true percentrelative error foreach case.
In real worldapplications, wewillnotknowthe true value. So theprocedureistonormalizethe error usingthebestavaliableestimate of the true value:Usinaniterativeapproachto compute answers, theapproximatedrelative error
ROUND-OFF ERRORSThiskind of errorsoriginatebecausecomputers can retain a finitenumber of significant figures, so numbers as e, π, cannotbeexpressedexactly.“Truncationerrors are thosethatresultfromusinganapproximation in place of anexactmathematicalprocedure.”TRUNCATION ERRORS
THE TAYLOR SERIESThe Taylor series provides a meanstofind a functionvalue in a point, usingthefunctionvalue and itsderivatives in anotherpoint. Thetheoremsaysthatanysmoothfunction can beapproximated as polynomial.Taylor’sTheorem: Ifthefunction f  and itsfirst n+1 derivatives are continuous in anintervalcontaining a and x, thenthevalue of thefunction at x isgivenbyWhere:
BIBLIOGRAPHYCHAPRA, Steven. “Numericalmethodsforengineers”; McGraw Hill.ROCHA, Gustavo. “Métodos Numéricos”.2005

More Related Content

PPT
introduction to Numerical Analysis
PPTX
Numerical approximation
PPTX
NUMERICAL APPROXIMATION
PPTX
Numerical approximation
PPTX
Cheg 2052 – introduction.pptx
PPTX
Numerical Methods.pptx
PPTX
Numerical approximation
PPT
Lesson 1 Measuring Errors.ppt the material regards errors in measuring a
introduction to Numerical Analysis
Numerical approximation
NUMERICAL APPROXIMATION
Numerical approximation
Cheg 2052 – introduction.pptx
Numerical Methods.pptx
Numerical approximation
Lesson 1 Measuring Errors.ppt the material regards errors in measuring a

Similar to CHAPTER 2: Numerical Approximation (20)

PDF
Applied numerical methods lec3
PPT
Numerical Analysis And Linear Algebra
PPTX
Aproximacion numerica
PPTX
PPT
PDF
Métodos numéricos - introducción a los métodos numéricos
PDF
NUMERICA METHODS 1 final touch summary for test 1
PPTX
Application's of Numerical Math in CSE
PDF
Numerical approximation
PPT
Numerical approximation and solution of equations
PDF
Multivariate Approximation and Applications 1st Edition N. Dyn
PDF
01introductiontocomputationalmaterialengineering 101108031216-phpapp01
PDF
Introduction to Numerical Analysis
PPTX
PPT
Unit One - Solved problems on error analysis .ppt
PPTX
LEC01.wararAWQWWRwrrwqRQRWQWQqqrwq1.pptx
PPT
lecture01.ppt
PPT
Numerical Method
Applied numerical methods lec3
Numerical Analysis And Linear Algebra
Aproximacion numerica
Métodos numéricos - introducción a los métodos numéricos
NUMERICA METHODS 1 final touch summary for test 1
Application's of Numerical Math in CSE
Numerical approximation
Numerical approximation and solution of equations
Multivariate Approximation and Applications 1st Edition N. Dyn
01introductiontocomputationalmaterialengineering 101108031216-phpapp01
Introduction to Numerical Analysis
Unit One - Solved problems on error analysis .ppt
LEC01.wararAWQWWRwrrwqRQRWQWQqqrwq1.pptx
lecture01.ppt
Numerical Method
Ad

More from Maria Fernanda (12)

PDF
Estudios de-casos-internacionales-de-ciudades-inteligentes-medellin-colombia
PDF
Smart cities a lesson from barcelona
PDF
Internet of things en las smart cities
PPTX
Chapter v
PPTX
Chapter 4: Linear Algebraic Equations
PDF
Roots of polynomials
PPT
Roots of polynomials
PPT
Chapter 3: Roots of Equations
PPTX
Chapter 2: Numerical Approximation
PPT
Chapter 1: Darcy's law
PPT
CHAPTER 1: Modeling
PPT
Chapter I
Estudios de-casos-internacionales-de-ciudades-inteligentes-medellin-colombia
Smart cities a lesson from barcelona
Internet of things en las smart cities
Chapter v
Chapter 4: Linear Algebraic Equations
Roots of polynomials
Roots of polynomials
Chapter 3: Roots of Equations
Chapter 2: Numerical Approximation
Chapter 1: Darcy's law
CHAPTER 1: Modeling
Chapter I
Ad

CHAPTER 2: Numerical Approximation

  • 1. CHAPTER IINUMERICAL APPROXIMATIONBY: MARIA FERNANDA VERGARA M.UNIVERSIDAD INDUSTRIAL DE SANTANDER
  • 2. NUMERICAL APPROXIMATIONA numericalapproximationis a number X’ thatrepresentsanothernumberwhichitsexactvalueis X. X’ becomes more exactwhenisclosertotheexactvalue of XIsimportanttotakeintoaccountthisnumericalapproximationbecausenumericalsolutions are notexact, butthemainobjectiveistoget a solutionreallyclosetothe real solution.
  • 3. SIGNIFICANT FIGURES“The concept of a significant figure, ordigit, has beendevelopedtoformallydesignatethereliability of a numericalvalue. Thesignificantdigits of a number are thosethat can beusedwithconfidence. Theycorrespondtothenumber of certaindigits plus oneestimateddigit.”-Numericalmethodsforengineers, CHAPRA-.Whysignificant figures are important in numericalmethods?
  • 5. ERROR DEFINITIONSNumericalerrorsoriginatewhenyouapproximatetorepresentexactmathematicalquantitiesoroperations. Thiserrors can be: Truncationerrorswhichhappenwhenapproximations are usedtorepresentmathemathicalprocedures; and round-off errorswhichhappenwhenyou use numberswithlimitedsignificant figures toexpressexactnumbers.ET=Real Value - Approximation
  • 6. RELATIVE ERRORRelative error is a waytoaccountforthe magnitudes of thequantitiesbeingevaluatedTrue percentrelative error
  • 7. EXAMPLE EXERCISEThemeasure of a bridge is 9999cm, and themeasure of a rivetis 9 cm, ifthe true values are 10.000cm and 10cm, respectively, compute the true error and the true percentrelative error foreach case.
  • 8. In real worldapplications, wewillnotknowthe true value. So theprocedureistonormalizethe error usingthebestavaliableestimate of the true value:Usinaniterativeapproachto compute answers, theapproximatedrelative error
  • 9. ROUND-OFF ERRORSThiskind of errorsoriginatebecausecomputers can retain a finitenumber of significant figures, so numbers as e, π, cannotbeexpressedexactly.“Truncationerrors are thosethatresultfromusinganapproximation in place of anexactmathematicalprocedure.”TRUNCATION ERRORS
  • 10. THE TAYLOR SERIESThe Taylor series provides a meanstofind a functionvalue in a point, usingthefunctionvalue and itsderivatives in anotherpoint. Thetheoremsaysthatanysmoothfunction can beapproximated as polynomial.Taylor’sTheorem: Ifthefunction f and itsfirst n+1 derivatives are continuous in anintervalcontaining a and x, thenthevalue of thefunction at x isgivenbyWhere:
  • 11. BIBLIOGRAPHYCHAPRA, Steven. “Numericalmethodsforengineers”; McGraw Hill.ROCHA, Gustavo. “Métodos Numéricos”.2005