SlideShare a Scribd company logo
11
Most read
13
Most read
15
Most read
Chapter Three
Basic Circuit Laws and Analysis
Mesh Analysis
1
Basic Circuits
Mesh Analysis: Basic Concepts:
 In formulating mesh analysis we assign a mesh current to
each mesh.
2
 A loop is a closed path with no node passed more
than once.
 A mesh is a loop which does not contain any
other loops within it.
 Mesh analysis is also known as loop analysis or
the mesh-current method.
Basic Circuits
Mesh Analysis: Basic Concepts:
I1 I2 I3
3
1. Assign mesh currents i1, i2, . . . , in to the n meshes.
2. Apply KVL to each of the n meshes. Use Ohm’s law to
express the voltages in terms of the mesh currents.
3. Solve the resulting n simultaneous equations to get the mesh
currents.
 S t e p s t o D e t e r m i n e Mesh C u r r e n t s :
Basic Circuits
Mesh Analysis: Basic Concepts:
R1
Rx
R2
+
_ I1 I2
+
_
VA VB
+ +
+
_
_
_
V1
VL1
V2
Figure 4.1: A circuit for illustrating mesh analysis.
 
A
X
X
X
L
A
L
V
I
R
I
R
R
so
R
I
I
V
R
I
V
where
V
V
V








2
1
1
2
1
1
1
1
1
1
1
)
(
,
;
Eq 4.1
Around mesh 1, we have:
4
Basic Circuits
Mesh Analysis: Basic Concepts:
R1
Rx
R2
+
_ I1 I2
+
_
VA VB
+ +
+
_
_
_
V1
VL1
V2
B
X
X
B
X
X
X
L
B
L
V
I
R
R
I
R
or
V
I
R
R
I
R
gives
in
Eq
ng
Substituti
R
I
V
R
I
I
V
with
V
V
V
have
we
mesh
Around














2
2
1
2
2
1
2
2
2
1
2
1
2
1
)
(
)
(
,
2
.
4
3
.
4
;
)
(
;
:
,
2
Eq 4.2
Eq 4.3
Eq 4.4 5
Basic Circuits
Mesh Analysis: Basic Concepts:
We are left with 2 equations: From (4.1) and (4.4) we have,
A
X
X V
I
R
I
R
R 

 2
1
1 )
(
B
X
X V
I
R
R
I
R 



 2
2
1 )
(
Eq 4.5
Eq 4.6
We can easily solve these equations for I1 and I2.
6
Basic Circuits
Mesh Analysis: Basic Concepts:
The previous equations can be written in matrix form as:

















































B
A
X
X
X
X
B
A
X
X
X
X
V
V
R
R
R
R
R
R
I
I
or
V
V
I
I
R
R
R
R
R
R
1
2
1
2
1
2
1
2
1
)
(
)
(
)
(
)
(
Eq (4.7)
Eq (4.8)
7
Basic Circuits
Mesh Analysis: Example 4.1.
Write the mesh equations and solve for the currents I1, and I2.
+
_
10V
4  2 
6 
7 
2V 20V
I1 I2
+
+
_
_
Figure 4.2: Circuit for Example 4.1.
Mesh 1: 4I1 + 6(I1 – I2) = 10 - 2
Mesh 2: 6(I2 – I1) + 2I2 + 7I2 = 2 + 20
Eq (4.9)
Eq (4.10)
8
Basic Circuits
Mesh Analysis: Example 4.1 continued…
Simplifying Equations (4.9) and (4.10) gives,
10I1 – 6I2 = 8
-6I1 + 15I2 = 22
Eq (4.11)
Eq (4.12)
I1 = 2.2105
I2 = 2.3509
9
Basic Circuits
Mesh Analysis: Example 4.2
Solve for the mesh currents in the circuit below.
+
_
6 
10 
9 
11 
3 
4 
20V 10V
8V
12V
I1 I2
I3
+
+
_
_
_
_
+
+
_
Figure 4.3: Circuit for Example 4.2.
The plan: Write KVL, clockwise, for each mesh. Look for a
pattern in the final equations.
10
Basic Circuits
Mesh Analysis: Example 4.2 continued…
+
_
6 
10 
9 
11 
3 
4 
20V 10V
8V
12V
I1 I2
I3
+
+
_
_
_
_
+
+
_
Mesh 1: 6I1 + 10(I1 – I3) + 4(I1 – I2) = 20 + 10
Mesh 2: 4(I2 – I1) + 11(I2 – I3) + 3I2 = - 10 - 8
Mesh 3: 9I3 + 11(I3 – I2) + 10(I3 – I1) = 12 + 8
Eq (4.13)
Eq (4.14)
Eq (4.15)
11
Basic Circuits
Mesh Analysis: Example 4.2 continued…
Clearing Equations (4.13), (4.14) and (4.15) gives,
20I1 – 4I2 – 10I3 = 30
-4I1 + 18I2 – 11I3 = -18
-10I1 – 11I2 + 30I3 = 20
In matrix form:






































20
18
30
3
2
1
30
11
10
11
18
4
10
4
20
I
I
I
Standard Equation form
12
Basic Circuits
Mesh Analysis: Example 4.3 - Direct method.
20V
10V
15V
30V
20 
10 
30 
10 
12 
8 
+
_
I1 I2 I3
+
+
+
_
_
_
Use the direct method to write the mesh equations for the following.
Figure 4.4: Circuit diagram for Example 4.3.



































15
25
10
3
2
1
30
10
0
10
50
10
0
10
30
I
I
I
Eq (4.16)
13
Basic Circuits
Mesh Analysis: With current sources (supermesh) in the circuit
14
 A supermesh results when two meshes have a (dependent or
independent) current source in common. The presence of the
current sources in between meshes reduces the number of
equations.
 The following are properties of a supermesh:
1. The current source in the supermesh is not completely ignored; it
provides the constraint equation necessary to solve for the mesh
currents.
2. A supermesh has no current of its own.
3. A supermesh requires the application of both KVL and KCL.
Basic Circuits
Mesh Analysis: With current sources (supermesh) in the circuit
Example 4.4: For the circuit in Figure below, find i1 to i4 using mesh analysis.
Figure 4.5: Circuit diagram for Example 4.4.
15
4 Ω 2 Ω
8 Ω
i2 i3 i4
10 V
i1
2 Ω
6 Ω
5 A
3i0
i3
i2
Q
i2
i1
P
i0
Basic Circuits
Mesh Analysis: With current sources in the circuit
16
Applying KVL on the supermesh, we can obtain:
For the independent current source, we apply KCL to node P:
For the dependent current source, we apply KCL to node Q:
Applying KVL in mesh 4:
From the equations above, we can solve to find:
Eq (4.19)
Eq (4.18)
Eq (4.17)
Eq (4.20)
10V
20V
4A
10 
5 
20 
2 
+
_
15 
+
_
I1 I2
I3
Basic Circuits
Mesh Analysis:
Find the three mesh currents I1, I2 and I3 in the circuit below.
Figure 4.6. Circuit diagram with current sources
17
exercise

More Related Content

PPTX
Mesh Analysis.pptx
PPT
2 mesh analysis
PPTX
Nodal Analysis.pptx
PDF
Norton's theorem
PPTX
Nodal analysis
PPTX
Mesh analysis and Nodal Analysis
PPT
Electric circuits-chapter-1 Basic Concept
PPTX
Network Topology
Mesh Analysis.pptx
2 mesh analysis
Nodal Analysis.pptx
Norton's theorem
Nodal analysis
Mesh analysis and Nodal Analysis
Electric circuits-chapter-1 Basic Concept
Network Topology

What's hot (20)

PPTX
Thevenin theorem
PPTX
4 kirchoff law
PPT
PPT
Kirchhoff's Laws
PPT
3.magnetically coupled circuit
PDF
Mesh analysis dc circuit
PPTX
Series Circuit
PDF
Nodal_and_Mesh_analysis
PPT
3 nodal analysis
PPTX
Kirchhoff's laws With Examples
PPTX
KCL and KVL
PPTX
KIRCHHOFF’S CURRENT LAW
PPTX
Norton's theorem
PDF
Circuit lab 7 verification of superposition theorem@taj
PPT
Node Voltage Method
PPTX
Nodal analysis and mesh analysis
PDF
Circuit Analysis – DC Circuits
PPTX
Ampere's circuital law and its applications
PPT
Lecture 4 methods_of_analysis
PPT
MESH AND SUPERMESH ANALYSIS
Thevenin theorem
4 kirchoff law
Kirchhoff's Laws
3.magnetically coupled circuit
Mesh analysis dc circuit
Series Circuit
Nodal_and_Mesh_analysis
3 nodal analysis
Kirchhoff's laws With Examples
KCL and KVL
KIRCHHOFF’S CURRENT LAW
Norton's theorem
Circuit lab 7 verification of superposition theorem@taj
Node Voltage Method
Nodal analysis and mesh analysis
Circuit Analysis – DC Circuits
Ampere's circuital law and its applications
Lecture 4 methods_of_analysis
MESH AND SUPERMESH ANALYSIS
Ad

Similar to Chapter 3.4 Mesh Analysis.ppt (20)

PPT
mesh analysis
DOCX
Project
PDF
EXpt 04 on EEE lab
PPTX
Y parmater H paprmenter hybrid Parameters
PPTX
BEE301 - circuit theory - NT.pptx
PPTX
A Lecture on Nodal and mesh analysis with examples
PDF
Circuit theory 1-c3-analysis methods
PDF
L 04(gdr)(et) ((ee)nptel)
PPTX
MESH NODAL DC.pptx
PPTX
circuit theory.pptx
PPTX
L03_Mesh and Nodal Analysis.pptxkuaewbgewb.dskBD
PPTX
211EEE1301-Mesh and nodalkiaiowliwowowlkaajkaklhahjakajanahhanwnnwjajjajajana...
PDF
Mesh Analysis.pdf
PDF
Lecture 6
PPTX
Chapter_2_DC Circuits_KCL_KVL_mesh_nodal.pptx
PPTX
ecpresentation-221209095851-6257f3ec.pptx
PDF
Chapter_2_basic Electric circuit Network Analysis.pdf
PDF
Chapter_2_Electric Circuit Network Analysis.pdf
PPT
chap3.ppt
PDF
neub-cse-121-lec-3.pdf Basic-Electric-and-Circuit
mesh analysis
Project
EXpt 04 on EEE lab
Y parmater H paprmenter hybrid Parameters
BEE301 - circuit theory - NT.pptx
A Lecture on Nodal and mesh analysis with examples
Circuit theory 1-c3-analysis methods
L 04(gdr)(et) ((ee)nptel)
MESH NODAL DC.pptx
circuit theory.pptx
L03_Mesh and Nodal Analysis.pptxkuaewbgewb.dskBD
211EEE1301-Mesh and nodalkiaiowliwowowlkaajkaklhahjakajanahhanwnnwjajjajajana...
Mesh Analysis.pdf
Lecture 6
Chapter_2_DC Circuits_KCL_KVL_mesh_nodal.pptx
ecpresentation-221209095851-6257f3ec.pptx
Chapter_2_basic Electric circuit Network Analysis.pdf
Chapter_2_Electric Circuit Network Analysis.pdf
chap3.ppt
neub-cse-121-lec-3.pdf Basic-Electric-and-Circuit
Ad

Recently uploaded (20)

PDF
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
PPTX
bas. eng. economics group 4 presentation 1.pptx
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PPTX
Geodesy 1.pptx...............................................
PPTX
Lecture Notes Electrical Wiring System Components
PPTX
additive manufacturing of ss316l using mig welding
PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
PPTX
Foundation to blockchain - A guide to Blockchain Tech
PPTX
Construction Project Organization Group 2.pptx
PDF
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
PPTX
Welding lecture in detail for understanding
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PDF
R24 SURVEYING LAB MANUAL for civil enggi
PDF
Model Code of Practice - Construction Work - 21102022 .pdf
PPTX
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
PDF
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PPT
Mechanical Engineering MATERIALS Selection
PPTX
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
PPTX
CH1 Production IntroductoryConcepts.pptx
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
bas. eng. economics group 4 presentation 1.pptx
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
Geodesy 1.pptx...............................................
Lecture Notes Electrical Wiring System Components
additive manufacturing of ss316l using mig welding
Embodied AI: Ushering in the Next Era of Intelligent Systems
Foundation to blockchain - A guide to Blockchain Tech
Construction Project Organization Group 2.pptx
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
Welding lecture in detail for understanding
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
R24 SURVEYING LAB MANUAL for civil enggi
Model Code of Practice - Construction Work - 21102022 .pdf
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
Mechanical Engineering MATERIALS Selection
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
CH1 Production IntroductoryConcepts.pptx

Chapter 3.4 Mesh Analysis.ppt

  • 1. Chapter Three Basic Circuit Laws and Analysis Mesh Analysis 1
  • 2. Basic Circuits Mesh Analysis: Basic Concepts:  In formulating mesh analysis we assign a mesh current to each mesh. 2  A loop is a closed path with no node passed more than once.  A mesh is a loop which does not contain any other loops within it.  Mesh analysis is also known as loop analysis or the mesh-current method.
  • 3. Basic Circuits Mesh Analysis: Basic Concepts: I1 I2 I3 3 1. Assign mesh currents i1, i2, . . . , in to the n meshes. 2. Apply KVL to each of the n meshes. Use Ohm’s law to express the voltages in terms of the mesh currents. 3. Solve the resulting n simultaneous equations to get the mesh currents.  S t e p s t o D e t e r m i n e Mesh C u r r e n t s :
  • 4. Basic Circuits Mesh Analysis: Basic Concepts: R1 Rx R2 + _ I1 I2 + _ VA VB + + + _ _ _ V1 VL1 V2 Figure 4.1: A circuit for illustrating mesh analysis.   A X X X L A L V I R I R R so R I I V R I V where V V V         2 1 1 2 1 1 1 1 1 1 1 ) ( , ; Eq 4.1 Around mesh 1, we have: 4
  • 5. Basic Circuits Mesh Analysis: Basic Concepts: R1 Rx R2 + _ I1 I2 + _ VA VB + + + _ _ _ V1 VL1 V2 B X X B X X X L B L V I R R I R or V I R R I R gives in Eq ng Substituti R I V R I I V with V V V have we mesh Around               2 2 1 2 2 1 2 2 2 1 2 1 2 1 ) ( ) ( , 2 . 4 3 . 4 ; ) ( ; : , 2 Eq 4.2 Eq 4.3 Eq 4.4 5
  • 6. Basic Circuits Mesh Analysis: Basic Concepts: We are left with 2 equations: From (4.1) and (4.4) we have, A X X V I R I R R    2 1 1 ) ( B X X V I R R I R      2 2 1 ) ( Eq 4.5 Eq 4.6 We can easily solve these equations for I1 and I2. 6
  • 7. Basic Circuits Mesh Analysis: Basic Concepts: The previous equations can be written in matrix form as:                                                  B A X X X X B A X X X X V V R R R R R R I I or V V I I R R R R R R 1 2 1 2 1 2 1 2 1 ) ( ) ( ) ( ) ( Eq (4.7) Eq (4.8) 7
  • 8. Basic Circuits Mesh Analysis: Example 4.1. Write the mesh equations and solve for the currents I1, and I2. + _ 10V 4  2  6  7  2V 20V I1 I2 + + _ _ Figure 4.2: Circuit for Example 4.1. Mesh 1: 4I1 + 6(I1 – I2) = 10 - 2 Mesh 2: 6(I2 – I1) + 2I2 + 7I2 = 2 + 20 Eq (4.9) Eq (4.10) 8
  • 9. Basic Circuits Mesh Analysis: Example 4.1 continued… Simplifying Equations (4.9) and (4.10) gives, 10I1 – 6I2 = 8 -6I1 + 15I2 = 22 Eq (4.11) Eq (4.12) I1 = 2.2105 I2 = 2.3509 9
  • 10. Basic Circuits Mesh Analysis: Example 4.2 Solve for the mesh currents in the circuit below. + _ 6  10  9  11  3  4  20V 10V 8V 12V I1 I2 I3 + + _ _ _ _ + + _ Figure 4.3: Circuit for Example 4.2. The plan: Write KVL, clockwise, for each mesh. Look for a pattern in the final equations. 10
  • 11. Basic Circuits Mesh Analysis: Example 4.2 continued… + _ 6  10  9  11  3  4  20V 10V 8V 12V I1 I2 I3 + + _ _ _ _ + + _ Mesh 1: 6I1 + 10(I1 – I3) + 4(I1 – I2) = 20 + 10 Mesh 2: 4(I2 – I1) + 11(I2 – I3) + 3I2 = - 10 - 8 Mesh 3: 9I3 + 11(I3 – I2) + 10(I3 – I1) = 12 + 8 Eq (4.13) Eq (4.14) Eq (4.15) 11
  • 12. Basic Circuits Mesh Analysis: Example 4.2 continued… Clearing Equations (4.13), (4.14) and (4.15) gives, 20I1 – 4I2 – 10I3 = 30 -4I1 + 18I2 – 11I3 = -18 -10I1 – 11I2 + 30I3 = 20 In matrix form:                                       20 18 30 3 2 1 30 11 10 11 18 4 10 4 20 I I I Standard Equation form 12
  • 13. Basic Circuits Mesh Analysis: Example 4.3 - Direct method. 20V 10V 15V 30V 20  10  30  10  12  8  + _ I1 I2 I3 + + + _ _ _ Use the direct method to write the mesh equations for the following. Figure 4.4: Circuit diagram for Example 4.3.                                    15 25 10 3 2 1 30 10 0 10 50 10 0 10 30 I I I Eq (4.16) 13
  • 14. Basic Circuits Mesh Analysis: With current sources (supermesh) in the circuit 14  A supermesh results when two meshes have a (dependent or independent) current source in common. The presence of the current sources in between meshes reduces the number of equations.  The following are properties of a supermesh: 1. The current source in the supermesh is not completely ignored; it provides the constraint equation necessary to solve for the mesh currents. 2. A supermesh has no current of its own. 3. A supermesh requires the application of both KVL and KCL.
  • 15. Basic Circuits Mesh Analysis: With current sources (supermesh) in the circuit Example 4.4: For the circuit in Figure below, find i1 to i4 using mesh analysis. Figure 4.5: Circuit diagram for Example 4.4. 15 4 Ω 2 Ω 8 Ω i2 i3 i4 10 V i1 2 Ω 6 Ω 5 A 3i0 i3 i2 Q i2 i1 P i0
  • 16. Basic Circuits Mesh Analysis: With current sources in the circuit 16 Applying KVL on the supermesh, we can obtain: For the independent current source, we apply KCL to node P: For the dependent current source, we apply KCL to node Q: Applying KVL in mesh 4: From the equations above, we can solve to find: Eq (4.19) Eq (4.18) Eq (4.17) Eq (4.20)
  • 17. 10V 20V 4A 10  5  20  2  + _ 15  + _ I1 I2 I3 Basic Circuits Mesh Analysis: Find the three mesh currents I1, I2 and I3 in the circuit below. Figure 4.6. Circuit diagram with current sources 17 exercise