SlideShare a Scribd company logo
2
Most read
3
Most read
6
Most read
BMM 104: ENGINEERING MATHEMATICS I                                                       Page 1 of 8


                                CHAPTER 5: PARTIAL DERIVATIVES

Functions of n Independent Variables

Suppose D is a set of n-tuples of real numbers ( x1 , x 2 ,..., x n ) . A real valued function f
on D is a rule that assigns a unique (single) real number

                 w = f ( x1 , x 2 ,..., x n )
to each element in D. The set D is the function’s domain. The set of w-values taken on
by f is the function’s range. The symbol w is the dependent variable of f, and f is said to
be a function of the n independent variables x1 to x n . We also call the x j ' s the
function’s input variables and call w the function’s output variable.

Level Curve, Graph, surface of Functions of Two Variables

The set of points in the plane where a function f ( x , y ) has a constant value f ( x , y ) = c
is called a level curve of f. The set of all points ( x , y , f ( x , y ) ) in space, for ( x , y ) in
the domain of f, is called the graph of f. The graph of f is also called the surface
 z = f ( x , y) .

Functions of Three Variables

The set of points ( x , y , z ) in space where a function of three independent variables has a
constant value f ( x , y , z ) = c is called a level surface of f.

Example: Attend lecture.

Partial Derivatives of a Function of Two Variables

Definition:      Partial Derivative with Respect to x

The partial derivative of f ( x , y ) with respect to x at the point ( x0 , y 0 ) is

                 ∂f                         f ( x0 + h , y 0 ) − f ( x0 , y 0 )
                                    = lim                                       ,
                 ∂x   ( x0 , y0 )
                                      h→0                   h
provided the limit exists.




Definition:      Partial Derivative with Respect to y
BMM 104: ENGINEERING MATHEMATICS I                                                                                        Page 2 of 8


The partial derivative of f ( x , y ) with respect to y at the point ( x0 , y0 ) is

                    ∂f                     d                                      f ( x0 , y 0 + h ) − f ( x0 , y 0 )
                                       =      f ( x0 , y )             = lim                                          ,
                    ∂y   ( x0 , y0 )       dy                 y = y0        h→0                   h
provided the limit exists.

Example:

                                           ∂f     ∂f
1.       Find the values of                   and ∂ at the point ( 4 ,− ) if
                                                                       5
                                           ∂x      y
 f ( x , y ) = x 2 + 3 xy + y − 1 .
                   ∂ f
2.           Find         if f ( x , y ) = y sin xy .
                    ∂ x
                                                                       2y
3.       Find f x and f y if f ( x , y ) = y + cos x .



Functions of More Than Two Variables

Example:

                                                             ∂f   ∂f    ∂f
1.       Let f ( x , y , z ) = xy 2 z 3 . Find                  , ∂ and    at (1,− ,− ) .
                                                                                  2 1
                                                             ∂x    y    ∂z
                                             y
2.       Let g ( x , y , z ) = x 2 e z . Find g x , g y and g z .


Second-Order Partial Derivatives

When we differentiate a function f ( x , y ) twice, we produce its second-order
       derivatives.
These derivatives are usually denoted by

∂2 f                                                         f xx
         “ d squared fdx squared “ or                                   “f sub xx “
∂x 2

∂2 f
         “ d squared fdy squared “ or                        f yy       “f sub yy “
∂ 2
 y

∂2 f                                                         f xx
         “ d squared fdx squared “ or                                   “f sub xx “
∂x 2

 ∂ f
  2

                   “ d squared fdxdy squared “ or                                      f yx     “f sub yx “
 ∂∂
  x y
BMM 104: ENGINEERING MATHEMATICS I                                                                               Page 3 of 8




∂ f
 2

                  “ d squared fdydx squared “ or                                       f xy        “f sub xy “
∂∂
 y x

The defining equations are

                   ∂2 f   ∂  ∂f                          ∂2 f   ∂ ∂ 
                                                                       f
                        =        ,                            =    
                                                                     ∂ 
                   ∂x 2
                          ∂x  ∂x                         ∂∂
                                                            x y   ∂  y
                                                                   x     
and so on. Notice the order in which the derivatives are taken:

         ∂ f
          2

                                             Differentiate first with respect to y, then with respect to x.
         ∂∂
          x y

         f yx = ( f y ) x      Means the same thing.

Example:

                                                ∂2 f    ∂ f
                                                          2
                                                                ∂ f        ∂ f
                                                                             2                      2

1.      Let f ( x , y ) = x 3 y 2 − x 4 y 6 . Find    ,       ,        and       .
                                                 ∂x 2 ∂ ∂ ∂
                                                          y x     y2       ∂∂x y
                                               ∂2 f   ∂ f
                                                        2
                                                              ∂2 f        ∂ f
                                                                           2

2.      If f ( x , y ) = x cos y + ye x , find      ,       ,        and       .
                                               ∂x 2 ∂ ∂ ∂
                                                        y x     y2       ∂∂x y




The Chain Rule

Chain Rule for Functions of Two Independent Variables

If w = f ( x , y ) has continuous partial derivatives f x and f y and if x = x( t ) , y = y ( t )
        are
differentiable functions of t, then the compose w = f ( x( t ) , y ( t ) ) is a differentiable
function of t and

                   df
                      = f x ( x ( t ) , y ( t ) ) • x ' ( t ) + f y ( x( t ) , y ( t ) ) • y ' ( t ) ,
                   dt

or
                   dw   ∂f dx ∂f dy
                      =       +       .
                   dt   ∂x dt   ∂y dt

Example:

Use the chain rule to find the derivative of w = xy , with respect to t along the path
BMM 104: ENGINEERING MATHEMATICS I                                                              Page 4 of 8


                                                             π
x = cos t , y = sin t . What is the derivative’s value at t = ?
                                                                       2

Chain Rule for Functions of Three Independent Variables

If w = f ( x , y , z ) is differentiable and x, y and z are differentiable functions of t, then w
        is
a differentiable function of t and

                   dw   ∂f dx ∂f dy ∂f dz
                      =       +       +       .
                   dt   ∂x dt   ∂y dt   ∂z dt

Example:

       dw
Find      if w = xy + z ,      x = cos t ,   y = sin t ,   z =t.
       dt

Chain Rule for Two Independent Variables and Three Intermediate Variables

Suppose that w = f ( x , y , z ) , x = g ( r , s ) , y = h( r , s ) , and z = k ( r , s ) . If all four
        functions
are differentiable, then w has partial derivatives with respect to r and s, given by the
formulas

                   ∂w   ∂ ∂
                         w x ∂ ∂w y   ∂ ∂
                                       w z
                      =      +      +
                   ∂r   ∂ ∂
                         x r   ∂ ∂
                                y r   ∂ ∂
                                       z r

                   ∂w   ∂ ∂
                         w x ∂ ∂w y   ∂ ∂
                                       w z
                      =      +      +
                   ∂s   ∂ ∂
                         x s   ∂ ∂
                                y s   ∂ ∂
                                       z s

Example:

           ∂w     ∂w
Express       and               in terms of r and s is
           ∂r     ∂s

                                    r
         w = x +2y + z2, x =          , y = r 2 + ln s , z = 2 r .
                                    s

If w = f ( x , y ) , x = g ( r , s ) , and y = h( r , s ) , then

          ∂w   ∂ ∂
                w x   ∂ ∂
                       w y                                         ∂w   ∂ ∂
                                                                         w x   ∂ ∂
                                                                                w y
             =      +                                  and            =      +
          ∂r   ∂ ∂
                x r   ∂ ∂
                       y r                                         ∂s   ∂ ∂
                                                                         x s   ∂ ∂
                                                                                y s
Example:

           ∂w     ∂w
Express       and    in terms of r and s if
           ∂r     ∂s
BMM 104: ENGINEERING MATHEMATICS I                                                                   Page 5 of 8




         w = x2 + y2 ,     x= r− s,                  y =r+s.

If w = f ( x ) and x = g ( r , s ) , then

         ∂w   dw ∂x                     ∂w   dw ∂x
            =       and                    =       .
         ∂r   dx ∂r                     ∂s   dx ∂s




                                     PROBLEM SET: CHAPTER 5

1.      Sketch and name the surfaces

        (a)       f ( x, y , z ) = x 2 + y 2 + z 2        (e)        f ( x, y, z ) = x 2 + y 2
        (b)       f ( x , y , z ) = ln( x 2 + y 2 + z 2 ) (f)        f ( x, y, z ) = y 2 + z 2
        (c)       f ( x, y , z ) = x + z                  (g)        f ( x, y, z ) = z − x 2 − y 2
                                                                                                 x2 y2 z2
        (d)       f ( x, y, z ) = z                                  (h)      f ( x, y , z ) =     +   +
                                                                                                 25 16   9

               ∂f     ∂f
2.      Find      and ∂ .
               ∂x      y

        (a)       f ( x , y ) = 5 xy − 7 x 2 − y 2 + 3 x − 6 y + 2
                                           y
        (b)       f ( x , y ) = tan −1  
                                           x
        (c)       f ( x, y) = e    ( x + y +1)

        (d)       f ( x , y ) = e −x sin( x + y )
        (e)       f ( x , y ) = ln( x + y )
        (f)       f ( x , y ) = sin 2 ( x − 3 y )

3.      Find f x , f y and f z .

        (a)       f ( x , y , z ) = sin −1 ( xyz )
                  f ( x , y , z ) = e −( x                    )
                                             2
                                                 + y 2 +z 2
        (b)
        (c)       f ( x , y , z ) = e −xyz
        (d)       f ( x , y , z ) = tanh( x + 2 y + 3 z )

4.      Find all the second-order partial derivatives of the following functions.

        (a)       f ( x , y ) = x + y + xy
        (b)       f ( x , y ) = sin xy
        (c)       f ( x , y ) = x 2 y + cos y + y sin x
BMM 104: ENGINEERING MATHEMATICS I                                                                      Page 6 of 8


      (d)      f ( x , y ) = xe y + y + 1

5.    Verify that w xy = w yx .

      (a)     w = ln( 2 x + 3 y )                       (c)      w = xy 2 + x 2 y 3 + x 3 y 4
      (b)     w = e x + x ln y + y ln x (d)              w = x sin y + y sin x + xy

                                                            dw
6.    In the following questions, (a) express                  as a function of t, both by using
                                                            dt
      the Chain Rule and by expressing w in terms of t and differentiating directly with
                                              dw
      respect to t. The (b) evaluate             at the given value of t.
                                              dt

      (i)     w = x2 + y2 ,        x = cos t ,      y = sin t ;      t=π .

                    x y                                                     1
      (ii)    w=     + ,         x = cos 2 t ,      y = sin 2 t ,     z=          t =3.
                    z z                                                     t

                                                            ∂z     ∂z
7.    In the following questions, (a) express                  and    as a functions of u and v
                                                            ∂u     ∂v
      both by using the Chain Rule and by expressing z directly in terms of u and v
                                                              ∂z     ∂z
      before differentiating. Then (b) evaluate                  and    at the given point (u , v ) .
                                                              ∂u     ∂v


      (i)     z = 4 e x ln y ,      x = ln( u cos v ) ,       y = u sin v ;      ( u ,v ) =  2 , π 
                                                                                                   
                                                                                                4


      (ii)
                         x
              z = tan −1   ,
                         y          x = u cos v ,       y = u sin v ;       ( u ,v ) = 1.3 , π 
                                                                                                 
                                                                                              6


                    ANSWERS FOR PROBLEM SET: CHAPTER 5

              ∂f                       ∂f
2.    (a)        = 5 y − 14 x + 3 ,        = 5 x − 2 y −6
              ∂x                       ∂y
              ∂f           y        ∂f          x
      (b)        =− 2             ,     = 2
              ∂x     x + y 2 ∂y           x + y2
              ∂f                   ∂f
      (c)        = e ( x +y +1) ,      = e ( x +y +1 )
              ∂x                   ∂y
              ∂f                                             ∂f
      (d)        = −e −x sin( x + y ) + e −x cos ( x + y ) ,    = e −x cos ( x + y )
              ∂x                                             ∂y
              ∂f     1    ∂f    1
      (e)        =      ,    =
              ∂x   x + y ∂y    x+y
              ∂f                                     ∂f
      (f)        = 2 sin( x − 3 y ) cos( x − 3 y ) ,    = −6 sin( x − 3 y ) cos( x − 3 y )
              ∂x                                     ∂x
BMM 104: ENGINEERING MATHEMATICS I                                                                                Page 7 of 8




                            yz                                xz                                   xy
3.    (a)     fx =                            , fy =                          , fz =
                       1−x y z2       2   2
                                                          1−x y z
                                                                2   2   2
                                                                                              1 − x2 y2 z2
              f x = −2 xe −( x                     ) , f = −2 ye −( x                        f z = −2 ze − ( x + y + z )
      (b)
                                  2
                                      + y 2 +z 2                        2
                                                                            + y 2 +z 2   ) ,                  2   2   2
                                                        y

      (c)     f x = −yze −xyz , f y = −xze −xyz , f z = −xye − xyz
      (d)     f x = sec h 2 ( x + 2 y + 3 z ) , f y = 2 sec h 2 ( x + 2 y + 3 z ) ,
              f z = 3 sec h 2 ( x + 2 y + 3 z )

              ∂f          ∂f                   ∂2 f
                             =1 + x , ∂ f = 0,
                                       2
                                                         ∂2 f   ∂2 f
4.    (a)        = 1 + y,                           = 0,      =      =1
              ∂x          ∂y          ∂x 2     ∂y 2      ∂∂
                                                          y x   ∂∂
                                                                 x y


              ∂f              ∂f                                   ∂2 f
                                 = x cos xy , ∂ f = − y 2 sin xy ,
                                               2
      (b)        = y cos xy ,                                           = −x 2 sin xy ,
              ∂x              ∂y              ∂x 2                 ∂y 2
              ∂2 f   ∂2 f
                   =      = cos xy − xy sin xy
              ∂y∂x   ∂x∂y
              ∂f                     ∂f
                                        = x 2 − sin y + sin x , ∂ f = 2 y − y sin x ,
                                                                 2
      (c)         = 2 xy + y cos x ,
              ∂x                     ∂y                         ∂x 2
              ∂ f
               2
                               ∂2 f     ∂2 f
                   = −cos y ,         =       = 2 x + cos x
              ∂y 2
                               ∂y∂x     ∂x∂y
              ∂f     ∂f                        ∂2 f
                        = xe y + 1 , ∂ f = 0 ,
                                      2
                                                             ∂2 f   ∂2 f
      (d)        =ey                                = xe y ,      =      =e y
              ∂x     ∂y              ∂x 2      ∂y 2
                                                             ∂∂
                                                              y x   ∂∂
                                                                     x y




              ∂w       2      ∂w       3      ∂2 w       −6
5.    (a)        =          ,    =          ,      =              , and
              ∂x   2 x + 3 y ∂y    2 x + 3 y ∂y∂x    (2x + 3 y) 2
              ∂2 w       −6
                   =
              ∂x∂y ( 2 x + 3 y ) 2
              ∂w               y ∂w  x         ∂2 w  1 1
      (b)        = e x + ln y + ,   = + ln x ,      = + , and
              ∂x               x ∂y  y         ∂∂
                                                y x  y x
              ∂2w 1 1
                  = +
              ∂x∂y y x

              ∂w                              ∂w
      (c)        = y 2 + 2 xy 3 + 3 x 2 y 4 ,    = 2 xy + 3 x 2 y 2 + 4 x 3 y 3 ,
              ∂x                              ∂y
      ∂2 w                                   ∂2 w
           = 2 y + 6 xy 2 + 12 x 2 y 3 , and      = 2 y + 6 xy 2 + 12 x 2 y 3
      ∂y∂x                                   ∂x∂y
BMM 104: ENGINEERING MATHEMATICS I                                        Page 8 of 8


             ∂w                         ∂w
      (d)       = sin y + y cos x + y ,    = x cos y + sin x + x ,
             ∂x                         ∂y
             ∂2 w                          ∂2 w
                  = cos y + cos x + 1, and      = cos y + cos x + 1
             ∂y∂x                          ∂x∂y



                     dw
6.    (i)    (a)        =0              (b)       0
                     dt
                     dw
      (ii)   (a)        =1              (b)       1
                     dt

                     ∂z
7.    (i)    (a)          = ( 4 cos v ) ln( u sin v ) + 4 cos v
                     ∂u
                     ∂z                                      4u cos 2 v
                          = ( − 4u sin v ) ln( u sin v ) +
                     ∂v                                        sin v
                     ∂z
             (b)          = 2 ( ln 2 + 2 )
                     ∂u
                     ∂z
                          = −2 2 ln 2 + 4 2
                     ∂v

                     ∂z
      (ii)   (a)          =0
                     ∂u
                     ∂z
                          = −1
                     ∂v
                     ∂z
             (b)          =0
                     ∂u
                     ∂z
                          = −1
                     ∂v
BMM 104: ENGINEERING MATHEMATICS I                                        Page 8 of 8


             ∂w                         ∂w
      (d)       = sin y + y cos x + y ,    = x cos y + sin x + x ,
             ∂x                         ∂y
             ∂2 w                          ∂2 w
                  = cos y + cos x + 1, and      = cos y + cos x + 1
             ∂y∂x                          ∂x∂y



                     dw
6.    (i)    (a)        =0              (b)       0
                     dt
                     dw
      (ii)   (a)        =1              (b)       1
                     dt

                     ∂z
7.    (i)    (a)          = ( 4 cos v ) ln( u sin v ) + 4 cos v
                     ∂u
                     ∂z                                      4u cos 2 v
                          = ( − 4u sin v ) ln( u sin v ) +
                     ∂v                                        sin v
                     ∂z
             (b)          = 2 ( ln 2 + 2 )
                     ∂u
                     ∂z
                          = −2 2 ln 2 + 4 2
                     ∂v

                     ∂z
      (ii)   (a)          =0
                     ∂u
                     ∂z
                          = −1
                     ∂v
                     ∂z
             (b)          =0
                     ∂u
                     ∂z
                          = −1
                     ∂v
BMM 104: ENGINEERING MATHEMATICS I                                        Page 8 of 8


             ∂w                         ∂w
      (d)       = sin y + y cos x + y ,    = x cos y + sin x + x ,
             ∂x                         ∂y
             ∂2 w                          ∂2 w
                  = cos y + cos x + 1, and      = cos y + cos x + 1
             ∂y∂x                          ∂x∂y



                     dw
6.    (i)    (a)        =0              (b)       0
                     dt
                     dw
      (ii)   (a)        =1              (b)       1
                     dt

                     ∂z
7.    (i)    (a)          = ( 4 cos v ) ln( u sin v ) + 4 cos v
                     ∂u
                     ∂z                                      4u cos 2 v
                          = ( − 4u sin v ) ln( u sin v ) +
                     ∂v                                        sin v
                     ∂z
             (b)          = 2 ( ln 2 + 2 )
                     ∂u
                     ∂z
                          = −2 2 ln 2 + 4 2
                     ∂v

                     ∂z
      (ii)   (a)          =0
                     ∂u
                     ∂z
                          = −1
                     ∂v
                     ∂z
             (b)          =0
                     ∂u
                     ∂z
                          = −1
                     ∂v
BMM 104: ENGINEERING MATHEMATICS I                                        Page 8 of 8


             ∂w                         ∂w
      (d)       = sin y + y cos x + y ,    = x cos y + sin x + x ,
             ∂x                         ∂y
             ∂2 w                          ∂2 w
                  = cos y + cos x + 1, and      = cos y + cos x + 1
             ∂y∂x                          ∂x∂y



                     dw
6.    (i)    (a)        =0              (b)       0
                     dt
                     dw
      (ii)   (a)        =1              (b)       1
                     dt

                     ∂z
7.    (i)    (a)          = ( 4 cos v ) ln( u sin v ) + 4 cos v
                     ∂u
                     ∂z                                      4u cos 2 v
                          = ( − 4u sin v ) ln( u sin v ) +
                     ∂v                                        sin v
                     ∂z
             (b)          = 2 ( ln 2 + 2 )
                     ∂u
                     ∂z
                          = −2 2 ln 2 + 4 2
                     ∂v

                     ∂z
      (ii)   (a)          =0
                     ∂u
                     ∂z
                          = −1
                     ∂v
                     ∂z
             (b)          =0
                     ∂u
                     ∂z
                          = −1
                     ∂v

More Related Content

PDF
Class XI CH 2 (relations and functions)
PPT
Chapter 17 - Multivariable Calculus
PPT
Application of definite integrals
PPT
Higher Differential Equation
PPSX
Complex Analysis - Differentiability and Analyticity (Team 2) - University of...
PPT
Partial Differentiation & Application
PPTX
Series solution to ordinary differential equations
PPTX
Application of partial derivatives with two variables
Class XI CH 2 (relations and functions)
Chapter 17 - Multivariable Calculus
Application of definite integrals
Higher Differential Equation
Complex Analysis - Differentiability and Analyticity (Team 2) - University of...
Partial Differentiation & Application
Series solution to ordinary differential equations
Application of partial derivatives with two variables

What's hot (20)

PDF
5.5 Injective and surjective functions. Dynamic slides.
PPTX
Integral Calculus
DOC
Chapter 1 (maths 3)
PDF
Lesson 5: Continuity (slides)
PDF
U unit3 vm
PPTX
Fourier series and fourier integral
PPT
07 periodic functions and fourier series
PDF
Lesson 16: Exponential Growth and Decay
PPTX
Definite Integral and Properties of Definite Integral
PDF
Canonical Tranformation I.pdf
PPTX
Math presentation on domain and range
PPTX
Different types of functions
PDF
Function of several variables
PPT
Composite functions
PDF
2.3 Set difference
PDF
2.1 Basics of Functions and Their Graphs
PPT
27 triple integrals in spherical and cylindrical coordinates
PPTX
Partial Derivatives
PPTX
Exponential and logarithmic functions
PDF
First Order Partial Differential Equations.pdf
5.5 Injective and surjective functions. Dynamic slides.
Integral Calculus
Chapter 1 (maths 3)
Lesson 5: Continuity (slides)
U unit3 vm
Fourier series and fourier integral
07 periodic functions and fourier series
Lesson 16: Exponential Growth and Decay
Definite Integral and Properties of Definite Integral
Canonical Tranformation I.pdf
Math presentation on domain and range
Different types of functions
Function of several variables
Composite functions
2.3 Set difference
2.1 Basics of Functions and Their Graphs
27 triple integrals in spherical and cylindrical coordinates
Partial Derivatives
Exponential and logarithmic functions
First Order Partial Differential Equations.pdf
Ad

Similar to Chapter 5(partial differentiation) (20)

PDF
Bernheim calculusfinal
PPTX
Partial differentiation B tech
PDF
Lesson 8: Basic Differentation Rules (slides)
PDF
Lesson 8: Basic Differentation Rules (slides)
PPTX
584 fundamental theorem of calculus
PDF
Chapter 16
PDF
Lattices and codes
PDF
Partial Derivatives.pdf
PDF
Lesson 8: Basic Differentiation Rules
PDF
PPT
Chapter 3
PDF
Quantum modes - Ion Cotaescu
PPT
Complex varible
PPT
Complex varible
PDF
Difrentiation
PDF
[Vvedensky d.] group_theory,_problems_and_solution(book_fi.org)
PDF
Ex algebra (5)
PDF
subdiff_prox.pdf
PDF
Lesson 8: Basic Differentiation Rules
PDF
Bernheim calculusfinal
Partial differentiation B tech
Lesson 8: Basic Differentation Rules (slides)
Lesson 8: Basic Differentation Rules (slides)
584 fundamental theorem of calculus
Chapter 16
Lattices and codes
Partial Derivatives.pdf
Lesson 8: Basic Differentiation Rules
Chapter 3
Quantum modes - Ion Cotaescu
Complex varible
Complex varible
Difrentiation
[Vvedensky d.] group_theory,_problems_and_solution(book_fi.org)
Ex algebra (5)
subdiff_prox.pdf
Lesson 8: Basic Differentiation Rules
Ad

Chapter 5(partial differentiation)

  • 1. BMM 104: ENGINEERING MATHEMATICS I Page 1 of 8 CHAPTER 5: PARTIAL DERIVATIVES Functions of n Independent Variables Suppose D is a set of n-tuples of real numbers ( x1 , x 2 ,..., x n ) . A real valued function f on D is a rule that assigns a unique (single) real number w = f ( x1 , x 2 ,..., x n ) to each element in D. The set D is the function’s domain. The set of w-values taken on by f is the function’s range. The symbol w is the dependent variable of f, and f is said to be a function of the n independent variables x1 to x n . We also call the x j ' s the function’s input variables and call w the function’s output variable. Level Curve, Graph, surface of Functions of Two Variables The set of points in the plane where a function f ( x , y ) has a constant value f ( x , y ) = c is called a level curve of f. The set of all points ( x , y , f ( x , y ) ) in space, for ( x , y ) in the domain of f, is called the graph of f. The graph of f is also called the surface z = f ( x , y) . Functions of Three Variables The set of points ( x , y , z ) in space where a function of three independent variables has a constant value f ( x , y , z ) = c is called a level surface of f. Example: Attend lecture. Partial Derivatives of a Function of Two Variables Definition: Partial Derivative with Respect to x The partial derivative of f ( x , y ) with respect to x at the point ( x0 , y 0 ) is ∂f f ( x0 + h , y 0 ) − f ( x0 , y 0 ) = lim , ∂x ( x0 , y0 ) h→0 h provided the limit exists. Definition: Partial Derivative with Respect to y
  • 2. BMM 104: ENGINEERING MATHEMATICS I Page 2 of 8 The partial derivative of f ( x , y ) with respect to y at the point ( x0 , y0 ) is ∂f d f ( x0 , y 0 + h ) − f ( x0 , y 0 ) = f ( x0 , y ) = lim , ∂y ( x0 , y0 ) dy y = y0 h→0 h provided the limit exists. Example: ∂f ∂f 1. Find the values of and ∂ at the point ( 4 ,− ) if 5 ∂x y f ( x , y ) = x 2 + 3 xy + y − 1 . ∂ f 2. Find if f ( x , y ) = y sin xy . ∂ x 2y 3. Find f x and f y if f ( x , y ) = y + cos x . Functions of More Than Two Variables Example: ∂f ∂f ∂f 1. Let f ( x , y , z ) = xy 2 z 3 . Find , ∂ and at (1,− ,− ) . 2 1 ∂x y ∂z y 2. Let g ( x , y , z ) = x 2 e z . Find g x , g y and g z . Second-Order Partial Derivatives When we differentiate a function f ( x , y ) twice, we produce its second-order derivatives. These derivatives are usually denoted by ∂2 f f xx “ d squared fdx squared “ or “f sub xx “ ∂x 2 ∂2 f “ d squared fdy squared “ or f yy “f sub yy “ ∂ 2 y ∂2 f f xx “ d squared fdx squared “ or “f sub xx “ ∂x 2 ∂ f 2 “ d squared fdxdy squared “ or f yx “f sub yx “ ∂∂ x y
  • 3. BMM 104: ENGINEERING MATHEMATICS I Page 3 of 8 ∂ f 2 “ d squared fdydx squared “ or f xy “f sub xy “ ∂∂ y x The defining equations are ∂2 f ∂  ∂f  ∂2 f ∂ ∂  f =  , =  ∂  ∂x 2 ∂x  ∂x  ∂∂ x y ∂  y x  and so on. Notice the order in which the derivatives are taken: ∂ f 2 Differentiate first with respect to y, then with respect to x. ∂∂ x y f yx = ( f y ) x Means the same thing. Example: ∂2 f ∂ f 2 ∂ f ∂ f 2 2 1. Let f ( x , y ) = x 3 y 2 − x 4 y 6 . Find , , and . ∂x 2 ∂ ∂ ∂ y x y2 ∂∂x y ∂2 f ∂ f 2 ∂2 f ∂ f 2 2. If f ( x , y ) = x cos y + ye x , find , , and . ∂x 2 ∂ ∂ ∂ y x y2 ∂∂x y The Chain Rule Chain Rule for Functions of Two Independent Variables If w = f ( x , y ) has continuous partial derivatives f x and f y and if x = x( t ) , y = y ( t ) are differentiable functions of t, then the compose w = f ( x( t ) , y ( t ) ) is a differentiable function of t and df = f x ( x ( t ) , y ( t ) ) • x ' ( t ) + f y ( x( t ) , y ( t ) ) • y ' ( t ) , dt or dw ∂f dx ∂f dy = + . dt ∂x dt ∂y dt Example: Use the chain rule to find the derivative of w = xy , with respect to t along the path
  • 4. BMM 104: ENGINEERING MATHEMATICS I Page 4 of 8 π x = cos t , y = sin t . What is the derivative’s value at t = ? 2 Chain Rule for Functions of Three Independent Variables If w = f ( x , y , z ) is differentiable and x, y and z are differentiable functions of t, then w is a differentiable function of t and dw ∂f dx ∂f dy ∂f dz = + + . dt ∂x dt ∂y dt ∂z dt Example: dw Find if w = xy + z , x = cos t , y = sin t , z =t. dt Chain Rule for Two Independent Variables and Three Intermediate Variables Suppose that w = f ( x , y , z ) , x = g ( r , s ) , y = h( r , s ) , and z = k ( r , s ) . If all four functions are differentiable, then w has partial derivatives with respect to r and s, given by the formulas ∂w ∂ ∂ w x ∂ ∂w y ∂ ∂ w z = + + ∂r ∂ ∂ x r ∂ ∂ y r ∂ ∂ z r ∂w ∂ ∂ w x ∂ ∂w y ∂ ∂ w z = + + ∂s ∂ ∂ x s ∂ ∂ y s ∂ ∂ z s Example: ∂w ∂w Express and in terms of r and s is ∂r ∂s r w = x +2y + z2, x = , y = r 2 + ln s , z = 2 r . s If w = f ( x , y ) , x = g ( r , s ) , and y = h( r , s ) , then ∂w ∂ ∂ w x ∂ ∂ w y ∂w ∂ ∂ w x ∂ ∂ w y = + and = + ∂r ∂ ∂ x r ∂ ∂ y r ∂s ∂ ∂ x s ∂ ∂ y s Example: ∂w ∂w Express and in terms of r and s if ∂r ∂s
  • 5. BMM 104: ENGINEERING MATHEMATICS I Page 5 of 8 w = x2 + y2 , x= r− s, y =r+s. If w = f ( x ) and x = g ( r , s ) , then ∂w dw ∂x ∂w dw ∂x = and = . ∂r dx ∂r ∂s dx ∂s PROBLEM SET: CHAPTER 5 1. Sketch and name the surfaces (a) f ( x, y , z ) = x 2 + y 2 + z 2 (e) f ( x, y, z ) = x 2 + y 2 (b) f ( x , y , z ) = ln( x 2 + y 2 + z 2 ) (f) f ( x, y, z ) = y 2 + z 2 (c) f ( x, y , z ) = x + z (g) f ( x, y, z ) = z − x 2 − y 2 x2 y2 z2 (d) f ( x, y, z ) = z (h) f ( x, y , z ) = + + 25 16 9 ∂f ∂f 2. Find and ∂ . ∂x y (a) f ( x , y ) = 5 xy − 7 x 2 − y 2 + 3 x − 6 y + 2 y (b) f ( x , y ) = tan −1   x (c) f ( x, y) = e ( x + y +1) (d) f ( x , y ) = e −x sin( x + y ) (e) f ( x , y ) = ln( x + y ) (f) f ( x , y ) = sin 2 ( x − 3 y ) 3. Find f x , f y and f z . (a) f ( x , y , z ) = sin −1 ( xyz ) f ( x , y , z ) = e −( x ) 2 + y 2 +z 2 (b) (c) f ( x , y , z ) = e −xyz (d) f ( x , y , z ) = tanh( x + 2 y + 3 z ) 4. Find all the second-order partial derivatives of the following functions. (a) f ( x , y ) = x + y + xy (b) f ( x , y ) = sin xy (c) f ( x , y ) = x 2 y + cos y + y sin x
  • 6. BMM 104: ENGINEERING MATHEMATICS I Page 6 of 8 (d) f ( x , y ) = xe y + y + 1 5. Verify that w xy = w yx . (a) w = ln( 2 x + 3 y ) (c) w = xy 2 + x 2 y 3 + x 3 y 4 (b) w = e x + x ln y + y ln x (d) w = x sin y + y sin x + xy dw 6. In the following questions, (a) express as a function of t, both by using dt the Chain Rule and by expressing w in terms of t and differentiating directly with dw respect to t. The (b) evaluate at the given value of t. dt (i) w = x2 + y2 , x = cos t , y = sin t ; t=π . x y 1 (ii) w= + , x = cos 2 t , y = sin 2 t , z= t =3. z z t ∂z ∂z 7. In the following questions, (a) express and as a functions of u and v ∂u ∂v both by using the Chain Rule and by expressing z directly in terms of u and v ∂z ∂z before differentiating. Then (b) evaluate and at the given point (u , v ) . ∂u ∂v (i) z = 4 e x ln y , x = ln( u cos v ) , y = u sin v ; ( u ,v ) =  2 , π     4 (ii) x z = tan −1   , y x = u cos v , y = u sin v ; ( u ,v ) = 1.3 , π       6 ANSWERS FOR PROBLEM SET: CHAPTER 5 ∂f ∂f 2. (a) = 5 y − 14 x + 3 , = 5 x − 2 y −6 ∂x ∂y ∂f y ∂f x (b) =− 2 , = 2 ∂x x + y 2 ∂y x + y2 ∂f ∂f (c) = e ( x +y +1) , = e ( x +y +1 ) ∂x ∂y ∂f ∂f (d) = −e −x sin( x + y ) + e −x cos ( x + y ) , = e −x cos ( x + y ) ∂x ∂y ∂f 1 ∂f 1 (e) = , = ∂x x + y ∂y x+y ∂f ∂f (f) = 2 sin( x − 3 y ) cos( x − 3 y ) , = −6 sin( x − 3 y ) cos( x − 3 y ) ∂x ∂x
  • 7. BMM 104: ENGINEERING MATHEMATICS I Page 7 of 8 yz xz xy 3. (a) fx = , fy = , fz = 1−x y z2 2 2 1−x y z 2 2 2 1 − x2 y2 z2 f x = −2 xe −( x ) , f = −2 ye −( x f z = −2 ze − ( x + y + z ) (b) 2 + y 2 +z 2 2 + y 2 +z 2 ) , 2 2 2 y (c) f x = −yze −xyz , f y = −xze −xyz , f z = −xye − xyz (d) f x = sec h 2 ( x + 2 y + 3 z ) , f y = 2 sec h 2 ( x + 2 y + 3 z ) , f z = 3 sec h 2 ( x + 2 y + 3 z ) ∂f ∂f ∂2 f =1 + x , ∂ f = 0, 2 ∂2 f ∂2 f 4. (a) = 1 + y, = 0, = =1 ∂x ∂y ∂x 2 ∂y 2 ∂∂ y x ∂∂ x y ∂f ∂f ∂2 f = x cos xy , ∂ f = − y 2 sin xy , 2 (b) = y cos xy , = −x 2 sin xy , ∂x ∂y ∂x 2 ∂y 2 ∂2 f ∂2 f = = cos xy − xy sin xy ∂y∂x ∂x∂y ∂f ∂f = x 2 − sin y + sin x , ∂ f = 2 y − y sin x , 2 (c) = 2 xy + y cos x , ∂x ∂y ∂x 2 ∂ f 2 ∂2 f ∂2 f = −cos y , = = 2 x + cos x ∂y 2 ∂y∂x ∂x∂y ∂f ∂f ∂2 f = xe y + 1 , ∂ f = 0 , 2 ∂2 f ∂2 f (d) =ey = xe y , = =e y ∂x ∂y ∂x 2 ∂y 2 ∂∂ y x ∂∂ x y ∂w 2 ∂w 3 ∂2 w −6 5. (a) = , = , = , and ∂x 2 x + 3 y ∂y 2 x + 3 y ∂y∂x (2x + 3 y) 2 ∂2 w −6 = ∂x∂y ( 2 x + 3 y ) 2 ∂w y ∂w x ∂2 w 1 1 (b) = e x + ln y + , = + ln x , = + , and ∂x x ∂y y ∂∂ y x y x ∂2w 1 1 = + ∂x∂y y x ∂w ∂w (c) = y 2 + 2 xy 3 + 3 x 2 y 4 , = 2 xy + 3 x 2 y 2 + 4 x 3 y 3 , ∂x ∂y ∂2 w ∂2 w = 2 y + 6 xy 2 + 12 x 2 y 3 , and = 2 y + 6 xy 2 + 12 x 2 y 3 ∂y∂x ∂x∂y
  • 8. BMM 104: ENGINEERING MATHEMATICS I Page 8 of 8 ∂w ∂w (d) = sin y + y cos x + y , = x cos y + sin x + x , ∂x ∂y ∂2 w ∂2 w = cos y + cos x + 1, and = cos y + cos x + 1 ∂y∂x ∂x∂y dw 6. (i) (a) =0 (b) 0 dt dw (ii) (a) =1 (b) 1 dt ∂z 7. (i) (a) = ( 4 cos v ) ln( u sin v ) + 4 cos v ∂u ∂z 4u cos 2 v = ( − 4u sin v ) ln( u sin v ) + ∂v sin v ∂z (b) = 2 ( ln 2 + 2 ) ∂u ∂z = −2 2 ln 2 + 4 2 ∂v ∂z (ii) (a) =0 ∂u ∂z = −1 ∂v ∂z (b) =0 ∂u ∂z = −1 ∂v
  • 9. BMM 104: ENGINEERING MATHEMATICS I Page 8 of 8 ∂w ∂w (d) = sin y + y cos x + y , = x cos y + sin x + x , ∂x ∂y ∂2 w ∂2 w = cos y + cos x + 1, and = cos y + cos x + 1 ∂y∂x ∂x∂y dw 6. (i) (a) =0 (b) 0 dt dw (ii) (a) =1 (b) 1 dt ∂z 7. (i) (a) = ( 4 cos v ) ln( u sin v ) + 4 cos v ∂u ∂z 4u cos 2 v = ( − 4u sin v ) ln( u sin v ) + ∂v sin v ∂z (b) = 2 ( ln 2 + 2 ) ∂u ∂z = −2 2 ln 2 + 4 2 ∂v ∂z (ii) (a) =0 ∂u ∂z = −1 ∂v ∂z (b) =0 ∂u ∂z = −1 ∂v
  • 10. BMM 104: ENGINEERING MATHEMATICS I Page 8 of 8 ∂w ∂w (d) = sin y + y cos x + y , = x cos y + sin x + x , ∂x ∂y ∂2 w ∂2 w = cos y + cos x + 1, and = cos y + cos x + 1 ∂y∂x ∂x∂y dw 6. (i) (a) =0 (b) 0 dt dw (ii) (a) =1 (b) 1 dt ∂z 7. (i) (a) = ( 4 cos v ) ln( u sin v ) + 4 cos v ∂u ∂z 4u cos 2 v = ( − 4u sin v ) ln( u sin v ) + ∂v sin v ∂z (b) = 2 ( ln 2 + 2 ) ∂u ∂z = −2 2 ln 2 + 4 2 ∂v ∂z (ii) (a) =0 ∂u ∂z = −1 ∂v ∂z (b) =0 ∂u ∂z = −1 ∂v
  • 11. BMM 104: ENGINEERING MATHEMATICS I Page 8 of 8 ∂w ∂w (d) = sin y + y cos x + y , = x cos y + sin x + x , ∂x ∂y ∂2 w ∂2 w = cos y + cos x + 1, and = cos y + cos x + 1 ∂y∂x ∂x∂y dw 6. (i) (a) =0 (b) 0 dt dw (ii) (a) =1 (b) 1 dt ∂z 7. (i) (a) = ( 4 cos v ) ln( u sin v ) + 4 cos v ∂u ∂z 4u cos 2 v = ( − 4u sin v ) ln( u sin v ) + ∂v sin v ∂z (b) = 2 ( ln 2 + 2 ) ∂u ∂z = −2 2 ln 2 + 4 2 ∂v ∂z (ii) (a) =0 ∂u ∂z = −1 ∂v ∂z (b) =0 ∂u ∂z = −1 ∂v