Chapter 9 -
Chapter 9: Phase Diagrams
1
Chapter 9 - 2
Schematically sketch simple isomorphous and eutectic phase diagram and label the
various phase regions, label the liquidus, solidus and solvus line.
Given a binary phase diagram (isomorphous and eutectic systems), the composition
of an alloy, its temperature, and assuming that the alloy is at equilibrium, determine:
What phase(s) is (are) present,
The composition(s) of the phase(s), and
The mass fraction(s) of the phase(s)
For some given binary phase diagram, do the following:
Locate the temperatures and compositions of all eutectic, eutectoid, and
peritectic, phase transformations,
Write reactions for all of these transformations for either heating or cooling.
Given the composition of an iron-carbon alloy containing between 0.022 wt% and
2.14 wt% C, be able to:
Specify whether the alloy is hypoeutectoid or hypereutectoid,
Name the proeutectoid phase,
Compute the mass fraction of proeutectoid phase and pearlite, and
Make a schematic diagram of the microstructure at a temperature just
below the eutectoid.
Learning Outcomes
Chapter 9 - 3
ISSUES TO ADDRESS...
• When we combine two elements...
what is the resulting equilibrium state?
• In particular, if we specify...
-- the composition (e.g., wt% Cu - wt% Ni), and
-- the temperature (T)
then...
How many phases form?
What is the composition of each phase?
What is the amount of each phase?
Phase B
Phase A
Nickel atom
Copper atom
Chapter 9 - 4
Phase Equilibria: Solubility Limit
Question: What is the
solubility limit for sugar in
water at 20ºC?
Answer: 65 wt% sugar.
At 20ºC, if C < 65 wt% sugar: syrup
At 20ºC, if C > 65 wt% sugar:
syrup + sugar
65
• Solubility Limit:
Maximum concentration for
which only a single phase
solution exists.
Sugar/Water Phase Diagram
Sugar
Temperature
(ºC)
0 20 40 60 80 100
C = Composition (wt% sugar)
L
(liquid solution
i.e., syrup)
Solubility
Limit L
(liquid)
+
S
(solid
sugar)
20
40
60
80
100
Water
Adapted from Fig. 9.1,
Callister & Rethwisch 8e.
• Solution – solid, liquid, or gas solutions, single phase
• Mixture – more than one phase
Chapter 9 - 5
• Components:
The elements or compounds which are present in the alloy
(e.g., Al and Cu)
• Phases:
The physically and chemically distinct material regions
that form (e.g., a and b).
Aluminum-
Copper
Alloy
Components and Phases
a (darker
phase)
b (lighter
phase)
Adapted from chapter-
opening photograph,
Chapter 9, Callister,
Materials Science &
Engineering: An
Introduction, 3e.
Chapter 9 - 6
70 80 100
60
40
20
0
Temperature
(ºC)
C = Composition (wt% sugar)
L
(liquid solution
i.e., syrup)
20
100
40
60
80
0
L
(liquid)
+
S
(solid
sugar)
Effect of Temperature & Composition
• Altering T can change # of phases: path A to B.
• Altering C can change # of phases: path B to D.
water-
sugar
system
Adapted from Fig. 9.1,
Callister & Rethwisch 8e.
D (100ºC,C = 90)
2 phases
B (100ºC,C = 70)
1 phase
A (20ºC,C = 70)
2 phases
Chapter 9 - 7
Criteria for Solid Solubility
Crystal
Structure
electroneg r (nm)
Ni FCC 1.9 0.1246
Cu FCC 1.8 0.1278
• Both have the same crystal structure (FCC) and have
similar electronegativities and atomic radii (W. Hume –
Rothery rules) suggesting high mutual solubility.
Simple system (e.g., Ni-Cu solution)
• Ni and Cu are totally soluble in one another for all proportions.
Chapter 9 - 8
Phase Diagrams
• Indicate phases as a function of T, C, and P.
• For this course:
- binary systems: just 2 components.
- independent variables: T and C (P = 1 atm is almost always used).
Phase
Diagram
for Cu-Ni
system
Adapted from Fig. 9.3(a), Callister &
Rethwisch 8e. (Fig. 9.3(a) is adapted from
Phase Diagrams of Binary Nickel Alloys,
P. Nash (Ed.), ASM International,
Materials Park, OH (1991).
• 2 phases:
L (liquid)
a (FCC solid solution)
• 3 different phase fields:
L
L + a
a
wt% Ni
20 40 60 80 100
0
1000
1100
1200
1300
1400
1500
1600
T(ºC)
L (liquid)
a
(FCC solid
solution)
Chapter 9 - 9
Cu-Ni
phase
diagram
Isomorphous Binary Phase Diagram
• Phase diagram:
Cu-Ni system.
• System is:
Adapted from Fig. 9.3(a), Callister &
Rethwisch 8e. (Fig. 9.3(a) is adapted from
Phase Diagrams of Binary Nickel Alloys,
P. Nash (Ed.), ASM International,
Materials Park, OH (1991).
-- binary
i.e., 2 components:
Cu and Ni.
-- isomorphous
i.e., complete
solubility of one
component in
another; a phase
field extends from
0 to 100 wt% Ni.
wt% Ni
20 40 60 80 100
0
1000
1100
1200
1300
1400
1500
1600
T(ºC)
L (liquid)
a
(FCC solid
solution)
Chapter 9 -
wt% Ni
20 40 60 80 100
0
1000
1100
1200
1300
1400
1500
1600
T(ºC)
L (liquid)
a
(FCC solid
solution)
Cu-Ni
phase
diagram
10
Phase Diagrams:
Determination of phase(s) present
• Rule 1: If we know T and Co, then we know:
-- which phase(s) is (are) present.
• Examples:
A(1100ºC, 60 wt% Ni):
1 phase: a
B(1250ºC, 35 wt% Ni):
2 phases: L + a
B
(1250ºC,35) A(1100ºC,60)
Adapted from Fig. 9.3(a), Callister &
Rethwisch 8e. (Fig. 9.3(a) is adapted from
Phase Diagrams of Binary Nickel Alloys,
P. Nash (Ed.), ASM International,
Materials Park, OH (1991).
Chapter 9 - 11
wt% Ni
20
1200
1300
T(ºC)
L (liquid)
a
(solid)
30 40 50
Cu-Ni
system
Phase Diagrams:
Determination of phase compositions
• Rule 2: If we know T and C0, then we can determine:
-- the composition of each phase.
• Examples:
TA
A
35
C0
32
CL
At TA = 1320ºC:
Only Liquid (L) present
CL = C0 ( = 35 wt% Ni)
At TB = 1250ºC:
Both a and L present
CL = Cliquidus ( = 32 wt% Ni)
Ca = Csolidus ( = 43 wt% Ni)
At TD = 1190ºC:
Only Solid (a) present
Ca = C0 ( = 35 wt% Ni)
Consider C0 = 35 wt% Ni
D
TD
tie line
4
Ca
3
Adapted from Fig. 9.3(a), Callister &
Rethwisch 8e. (Fig. 9.3(a) is adapted from
Phase Diagrams of Binary Nickel Alloys, P.
Nash (Ed.), ASM International, Materials
Park, OH (1991).
B
TB
Chapter 9 - 12
• Rule 3: If we know T and C0, then can determine:
-- the weight fraction of each phase.
• Examples:
At TA : Only Liquid (L) present
WL = 1.00, Wa = 0
At TD : Only Solid ( a) present
WL = 0, Wa = 1.00
Phase Diagrams:
Determination of phase weight fractions
wt% Ni
20
1200
1300
T(ºC)
L (liquid)
a
(solid)
30 40 50
Cu-Ni
system
TA
A
35
C0
32
CL
B
TB
D
TD
tie line
4
Ca
3
R S
At TB : Both a and L present
73
.
0
32
43
35
43




= 0.27
WL
 S
R +S
Wa
 R
R +S
Consider C0 = 35 wt% Ni
Adapted from Fig. 9.3(a), Callister &
Rethwisch 8e. (Fig. 9.3(a) is adapted from
Phase Diagrams of Binary Nickel Alloys, P.
Nash (Ed.), ASM International, Materials
Park, OH (1991).
Chapter 9 - 13
• Tie line – connects the phases in equilibrium with
each other – also sometimes called an isotherm
The Lever Rule
What fraction of each phase?
Think of the tie line as a lever
(teeter-totter)
ML Ma
R S

Ma x S  ML x R
L
L
L
L
L
L
C
C
C
C
S
R
R
W
C
C
C
C
S
R
S
M
M
M
W












a
a
a
a
a
0
0
wt% Ni
20
1200
1300
T(ºC)
L (liquid)
a
(solid)
30 40 50
B
TB
tie line
C0
CL Ca
S
R
Adapted from Fig. 9.3(b),
Callister & Rethwisch 8e.
Chapter 9 - 14
wt% Ni
20
1200
1300
30 40 50
110 0
L (liquid)
a
(solid)
T(ºC)
A
35
C0
L: 35wt%Ni
Cu-Ni
system
• Phase diagram:
Cu-Ni system.
Adapted from Fig. 9.4,
Callister & Rethwisch 8e.
• Consider
microstuctural
changes that
accompany the
cooling of a
C0 = 35 wt% Ni alloy
Ex: Cooling of a Cu-Ni Alloy
46
35
43
32
a: 43 wt% Ni
L: 32 wt% Ni
B
a: 46 wt% Ni
L: 35 wt% Ni
C
E
L: 24 wt% Ni
a: 36 wt% Ni
24 36
D
Chapter 9 -
• Slow rate of cooling:
Equilibrium structure
• Fast rate of cooling:
Cored structure
First a to solidify:
46 wt% Ni
Last a to solidify:
< 35 wt% Ni
15
• Ca changes as we solidify.
• Cu-Ni case: First a to solidify has Ca = 46 wt% Ni.
Last a to solidify has Ca = 35 wt% Ni.
Cored vs Equilibrium Structures
Uniform Ca:
35 wt% Ni
Chapter 9 - 16
Mechanical Properties: Cu-Ni System
• Effect of solid solution strengthening on:
-- Tensile strength (TS) -- Ductility (%EL)
Adapted from Fig. 9.6(a),
Callister & Rethwisch 8e.
Tensile
Strength
(MPa)
Composition, wt% Ni
Cu Ni
0 20 40 60 80 100
200
300
400
TS for
pure Ni
TS for pure Cu
Elongation
(%EL) Composition, wt% Ni
Cu Ni
0 20 40 60 80 100
20
30
40
50
60
%EL for
pure Ni
%EL for pure Cu
Adapted from Fig. 9.6(b),
Callister & Rethwisch 8e.
Chapter 9 - 17
2 components
has a special composition
with a min. melting T.
Adapted from Fig. 9.7,
Callister & Rethwisch 8e.
Binary-Eutectic Systems
• 3 single phase regions
(L, a, b)
• Limited solubility:
a: mostly Cu
b: mostly Ag
• TE : No liquid below TE
: Composition at
temperature TE
• CE
Ex.: Cu-Ag system
Cu-Ag
system
L (liquid)
a L + a
L+bb
a  b
C, wt% Ag
20 40 60 80 100
0
200
1200
T(ºC)
400
600
800
1000
CE
TE 8.0 71.9 91.2
779ºC
Ag)
wt%
1.2
9
(
Ag)
wt%
.0
8
(
Ag)
wt%
9
.
71
( b

a
L
cooling
heating
• Eutectic reaction
L(CE) a(CaE) + b(CbE)
Chapter 9 - 18
L+a
L+b
a + b
200
T(ºC)
18.3
C, wt% Sn
20 60 80 100
0
300
100
L (liquid)
a 183ºC
61.9 97.8
b
• For a 40 wt% Sn-60 wt% Pb alloy at 150ºC, determine:
-- the phases present Pb-Sn
system
EX 1: Pb-Sn Eutectic System
Answer: a + b
-- the phase compositions
-- the relative amount
of each phase
150
40
C0
11
Ca
99
Cb
S
R
Answer: Ca = 11 wt% Sn
Cb = 99 wt% Sn
W
a
=
Cb - C0
Cb - Ca
=
99 - 40
99 - 11
=
59
88
= 0.67
S
R+S
=
Wb =
C0 - Ca
Cb - Ca
=
R
R+S
=
29
88
= 0.33
=
40 - 11
99 - 11
Answer:
Adapted from Fig. 9.8,
Callister & Rethwisch 8e.
Chapter 9 - 19
Answer: Ca = 17 wt% Sn
-- the phase compositions
L+b
a + b
200
T(ºC)
C, wt% Sn
20 60 80 100
0
300
100
L (liquid)
a b
L+a
183ºC
• For a 40 wt% Sn-60 wt% Pb alloy at 220ºC, determine:
-- the phases present: Pb-Sn
system
EX 2: Pb-Sn Eutectic System
-- the relative amount
of each phase
Wa =
CL - C0
CL - Ca
=
46 - 40
46 - 17
=
6
29
= 0.21
WL =
C0 - Ca
CL - Ca
=
23
29
= 0.79
40
C0
46
CL
17
Ca
220
S
R
Answer: a + L
CL = 46 wt% Sn
Answer:
Adapted from Fig. 9.8,
Callister & Rethwisch 8e.
Chapter 9 - 20
• For alloys for which
C0 < 2 wt% Sn
• Result: at room temperature
-- polycrystalline with grains of
a phase having
composition C0
Microstructural Developments
in Eutectic Systems I
0
L+ a
200
T(ºC)
C, wt% Sn
10
2
20
C0
300
100
L
a
30
a+b
400
(room T solubility limit)
TE
(Pb-Sn
System)
a
L
L: C0 wt% Sn
a: C0 wt% Sn
Adapted from Fig. 9.11,
Callister & Rethwisch 8e.
Chapter 9 - 21
• For alloys for which
2 wt% Sn < C0 < 18.3 wt% Sn
• Result:
at temperatures in a + b range
-- polycrystalline with a grains
and small b-phase particles
Adapted from Fig. 9.12,
Callister & Rethwisch 8e.
Microstructural Developments
in Eutectic Systems II
Pb-Sn
system
L + a
200
T(ºC)
C, wt% Sn
10
18.3
20
0
C0
300
100
L
a
30
a+ b
400
(sol. limit at TE)
TE
2
(sol. limit at Troom)
L
a
L: C0 wt% Sn
a
b
a: C0 wt% Sn
Chapter 9 - 22
• For alloy of composition C0 = CE
• Result: Eutectic microstructure (lamellar structure)
-- alternating layers (lamellae) of a and b phases.
Adapted from Fig. 9.13,
Callister & Rethwisch 8e.
Microstructural Developments
in Eutectic Systems III
Adapted from Fig. 9.14,
Callister & Rethwisch 8e.
160m
Micrograph of Pb-Sn
eutectic
microstructure
Pb-Sn
system
Lb
a  b
200
T(ºC)
C, wt% Sn
20 60 80 100
0
300
100
L
a b
L+a
183ºC
40
TE
18.3
a: 18.3 wt%Sn
97.8
b: 97.8 wt% Sn
CE
61.9
L: C0 wt% Sn
Chapter 9 - 23
Lamellar Eutectic Structure
Adapted from Figs. 9.14 & 9.15, Callister
& Rethwisch 8e.
Chapter 9 - 24
• For alloys for which 18.3 wt% Sn < C0 < 61.9 wt% Sn
• Result: a phase particles and a eutectic microconstituent
Microstructural Developments
in Eutectic Systems IV
18.3 61.9
S
R
97.8
S
R
primary a
eutectic a
eutectic b
WL = (1-Wa) = 0.50
Ca = 18.3 wt% Sn
CL = 61.9 wt% Sn
S
R + S
Wa = = 0.50
• Just above TE :
• Just below TE :
Ca = 18.3 wt% Sn
Cb = 97.8 wt% Sn
S
R + S
Wa= = 0.73
Wb = 0.27
Adapted from Fig. 9.16,
Callister & Rethwisch 8e.
Pb-Sn
system
L+
b
200
T(ºC)
C, wt% Sn
20 60 80 100
0
300
100
L
a b
L+a
40
a+b
TE
L: C0 wt% Sn L
a
L
a
Chapter 9 - 25
L+a
L+b
a + b
200
C, wt% Sn
20 60 80 100
0
300
100
L
a b
TE
40
(Pb-Sn
System)
Hypoeutectic & Hypereutectic
Adapted from Fig. 9.8,
Callister & Rethwisch 8e.
(Fig. 10.8 adapted from
Binary Phase Diagrams,
2nd ed., Vol. 3, T.B.
Massalski (Editor-in-Chief),
ASM International,
Materials Park, OH, 1990.)
160 m
eutectic micro-constituent
Adapted from Fig. 9.14,
Callister & Rethwisch 8e.
hypereutectic: (illustration only)
b
b
b
b
b
b
Adapted from Fig. 9.17,
Callister & Rethwisch 8e.
(Illustration only)
(Figs. 9.14 and 9.17
from Metals
Handbook, 9th ed.,
Vol. 9,
Metallography and
Microstructures,
American Society for
Metals, Materials
Park, OH, 1985.)
175 m
a
a
a
a
a
a
hypoeutectic: C0 = 50 wt% Sn
Adapted from
Fig. 9.17, Callister &
Rethwisch 8e.
T(ºC)
61.9
eutectic
eutectic: C0 =61.9wt% Sn
Chapter 9 - 26
Intermetallic Compounds
Mg2Pb
Note: intermetallic compound exists as a line on the diagram - not an
area - because of stoichiometry (i.e. composition of a compound
is a fixed value).
Adapted from
Fig. 9.20, Callister &
Rethwisch 8e.
Chapter 9 - 27
• Eutectoid – one solid phase transforms to two other
solid phases
S2 S1+S3
 a + Fe3C (For Fe-C, 727ºC, 0.76 wt% C)
intermetallic compound
- cementite
cool
heat
Eutectic, Eutectoid, & Peritectic
• Eutectic - liquid transforms to two solid phases
L a + b (For Pb-Sn, 183ºC, 61.9 wt% Sn)
cool
heat
cool
heat
• Peritectic - liquid and one solid phase transform to a
second solid phase
S1 + L S2
 + L  (For Fe-C, 1493ºC, 0.16 wt% C)
Chapter 9 - 28
Eutectoid & Peritectic
Cu-Zn Phase diagram
Adapted from Fig. 9.21,
Callister & Rethwisch 8e.
Eutectoid transformation   + 
Peritectic transformation  + L 
Chapter 9 - 29
Iron-Carbon (Fe-C) Phase Diagram
• 2 important
points
- Eutectoid (B):
  a +Fe3C
- Eutectic (A):
L   +Fe3C
Adapted from Fig. 9.24,
Callister & Rethwisch 8e.
Fe
3
C
(cementite)
1600
1400
1200
1000
800
600
400
0 1 2 3 4 5 6 6.7
L

(austenite)
+L
+Fe3C
a+Fe3C

(Fe) C, wt% C
1148ºC
T(ºC)
a 727ºC = Teutectoid
4.30
Result: Pearlite =
alternating layers of
a and Fe3C phases
120 m
(Adapted from Fig. 9.27,
Callister & Rethwisch 8e.)
0.76
B
 


A L+Fe3C
Fe3C (cementite-hard)
a (ferrite-soft)
Chapter 9 - 30
Fe
3
C
(cementite)
1600
1400
1200
1000
800
600
400
0 1 2 3 4 5 6 6.7
L

(austenite)
+L
 +Fe3C
a+Fe3C
L+Fe3C

(Fe) C, wt% C
1148ºC
T(ºC)
a
727ºC
(Fe-C
System)
C0
0.76
Hypoeutectoid Steel
Adapted from Figs. 9.24
and 9.29,Callister &
Rethwisch 8e.
(Fig. 9.24 adapted from
Binary Alloy Phase
Diagrams, 2nd ed., Vol.
1, T.B. Massalski (Ed.-in-
Chief), ASM International,
Materials Park, OH,
1990.)
Adapted from Fig. 9.30, Callister & Rethwisch 8e.
proeutectoid ferrite
pearlite
100 m
Hypoeutectoid
steel
a
pearlite

 

a
a
a


 
 


Chapter 9 - 31
Fe
3
C
(cementite)
1600
1400
1200
1000
800
600
400
0 1 2 3 4 5 6 6.7
L

(austenite)
+L
 +Fe3C
a+Fe3C
L+Fe3C

(Fe) C, wt% C
1148ºC
T(ºC)
a
727ºC
(Fe-C
System)
C0
0.76
Hypoeutectoid Steel

 

a
a
a
s
r
Wa = s/(r +s)
W =(1 - Wa)
R S
a
pearlite
Wpearlite = W
Wa’ = S/(R +S)
W =(1 – Wa’)
Fe3C
Adapted from Figs. 9.24
and 9.29,Callister &
Rethwisch 8e.
(Fig. 9.24 adapted from
Binary Alloy Phase
Diagrams, 2nd ed., Vol.
1, T.B. Massalski (Ed.-in-
Chief), ASM International,
Materials Park, OH,
1990.)
Adapted from Fig. 9.30, Callister & Rethwisch 8e.
proeutectoid ferrite
pearlite
100 m
Hypoeutectoid
steel
Chapter 9 - 32
Hypereutectoid Steel
Fe
3
C
(cementite)
1600
1400
1200
1000
800
600
400
0 1 2 3 4 5 6 6.7
L

(austenite)
+L
 +Fe3C
a +Fe3C
L+Fe3C

(Fe) C, wt%C
1148ºC
T(ºC)
a
Adapted from Figs. 9.24
and 9.32,Callister &
Rethwisch 8e. (Fig. 9.24
adapted from Binary Alloy
Phase Diagrams, 2nd
ed., Vol. 1, T.B. Massalski
(Ed.-in-Chief), ASM
International, Materials
Park, OH, 1990.)
(Fe-C
System)
0.76
C0
Fe3C


 


 


 
Adapted from Fig. 9.33, Callister & Rethwisch 8e.
proeutectoid Fe3C
60 mHypereutectoid
steel
pearlite
pearlite
Chapter 9 - 33
Fe
3
C
(cementite)
1600
1400
1200
1000
800
600
400
0 1 2 3 4 5 6 6.7
L

(austenite)
+L
 +Fe3C
a +Fe3C
L+Fe3C

(Fe) C, wt%C
1148ºC
T(ºC)
a
Hypereutectoid Steel
(Fe-C
System)
0.76
C0
pearlite
Fe3C


 
x
v
V X
Wpearlite = W
Wa = X/(V +X)
W =(1 - Wa)
Fe3C’
W =(1-W)
W =x/(v + x)
Fe3C
Adapted from Fig. 9.33, Callister & Rethwisch 8e.
proeutectoid Fe3C
60 mHypereutectoid
steel
pearlite
Adapted from Figs. 9.24
and 9.32,Callister &
Rethwisch 8e. (Fig. 9.24
adapted from Binary Alloy
Phase Diagrams, 2nd
ed., Vol. 1, T.B. Massalski
(Ed.-in-Chief), ASM
International, Materials
Park, OH, 1990.)
Chapter 9 - 34
Example Problem
For a 99.6 wt% Fe-0.40 wt% C steel at a
temperature just below the eutectoid,
determine the following:
a) The compositions of Fe3C and ferrite (a).
b) The amount of cementite (in grams) that
forms in 100 g of steel.
c) The amounts of pearlite and proeutectoid
ferrite (a) in the 100 g.
Chapter 9 - 35
Solution to Example Problem
WFe3C 
R
R  S

C0 Ca
CFe3C Ca

0.40 0.022
6.70 0.022
 0.057
b) Using the lever rule with
the tie line shown
a) Using the RS tie line just below the eutectoid
Ca = 0.022 wt% C
CFe3C = 6.70 wt% C
Fe
C
(cementite)
1600
1400
1200
1000
800
600
400
0 1 2 3 4 5 6 6.7
L

(austenite)
+L
 + Fe3C
a+ Fe3C
L+Fe3C

C, wt% C
1148ºC
T(ºC)
727ºC
C0
R S
CFe C
3
Ca
Amount of Fe3C in 100 g
= (100 g)WFe3C
= (100 g)(0.057) = 5.7 g
Chapter 9 - 36
Solution to Example Problem (cont.)
c) Using the VX tie line just above the eutectoid and
realizing that
C0 = 0.40 wt% C
Ca = 0.022 wt% C
Cpearlite = C = 0.76 wt% C
Fe
C
(cementite)
1600
1400
1200
1000
800
600
400
0 1 2 3 4 5 6 6.7
L

(austenite)
+L
 + Fe3C
a+ Fe3C
L+Fe3C

C, wt% C
1148ºC
T(ºC)
727ºC
C0
V X
C
Ca
Wpearlite 
V
V  X

C0 Ca
C Ca

0.40 0.022
0.76 0.022
 0.512
Amount of pearlite in 100 g
= (100 g)Wpearlite
= (100 g)(0.512) = 51.2 g
Chapter 9 -
VMSE: Interactive Phase Diagrams
37
Change alloy composition
Microstructure, phase compositions, and phase fractions respond interactively
Chapter 9 - 38
Alloying with Other Elements
• Teutectoid changes:
Adapted from Fig. 9.34,Callister & Rethwisch 8e.
(Fig. 9.34 from Edgar C. Bain, Functions of the
Alloying Elements in Steel, American Society for
Metals, 1939, p. 127.)
T
Eutectoid
(ºC)
wt. % of alloying elements
Ti
Ni
Mo
Si
W
Cr
Mn
• Ceutectoid changes:
Adapted from Fig. 9.35,Callister & Rethwisch 8e.
(Fig. 9.35 from Edgar C. Bain, Functions of the
Alloying Elements in Steel, American Society for
Metals, 1939, p. 127.)
wt. % of alloying elements
C
eutectoid
(wt%
C)
Ni
Ti
Cr
Si
Mn
W
Mo
Chapter 9 - 39
• Phase diagrams are useful tools to determine:
-- the number and types of phases present,
-- the composition of each phase,
-- and the weight fraction of each phase
given the temperature and composition of the system.
• The microstructure of an alloy depends on
-- its composition, and
-- whether or not cooling rate allows for maintenance of
equilibrium.
• Important phase diagram phase transformations include
eutectic, eutectoid, and peritectic.
Summary
Chapter 9 - 40
Core Problems:
Self-help Problems:
ANNOUNCEMENTS
Reading:

More Related Content

PPT
NH Phase Diagrams.ppt
PDF
the second law of thermodynamics
PPTX
Mathematical modeling of continuous stirred tank reactor systems (cstr)
PPT
Phase Diagram
PDF
Heat Conduction through Composite Walls.pdf
PDF
The joule thomson experiment
PDF
Module 5 (properties of pure substance)2021 2022
DOCX
Joule thompson effect
NH Phase Diagrams.ppt
the second law of thermodynamics
Mathematical modeling of continuous stirred tank reactor systems (cstr)
Phase Diagram
Heat Conduction through Composite Walls.pdf
The joule thomson experiment
Module 5 (properties of pure substance)2021 2022
Joule thompson effect

What's hot (20)

PPTX
Thermodynamic relations, Clausius Clapreyon equation , joule thomson coefficient
PPT
Introduction to Thermodynamics
PPT
Condenser performance test
PDF
Thermal conductivity of copper
PPTX
Phase Diagrams
PPTX
Gas mixtures
PDF
Chapter 9 phase diagrams 1
PPTX
Hess's law
DOCX
Faraday
PPT
State versus Path Functions
PPT
2. Fluids 2.ppt
PDF
02 part5 energy balance
PPSX
Vapor liquid equilibrium using hysys
 
PPT
phase diagrams
PDF
VLE VAPOR LIQUID EQUILIBRIUM - Introduction
PPTX
types of systems
PPT
THERMODYNAMIC SYSTEMS
PPT
Kinetics
PPTX
Temperatura e calore
Thermodynamic relations, Clausius Clapreyon equation , joule thomson coefficient
Introduction to Thermodynamics
Condenser performance test
Thermal conductivity of copper
Phase Diagrams
Gas mixtures
Chapter 9 phase diagrams 1
Hess's law
Faraday
State versus Path Functions
2. Fluids 2.ppt
02 part5 energy balance
Vapor liquid equilibrium using hysys
 
phase diagrams
VLE VAPOR LIQUID EQUILIBRIUM - Introduction
types of systems
THERMODYNAMIC SYSTEMS
Kinetics
Temperatura e calore
Ad

Similar to CHAPTER 9.1 - PHASE DIAGRAMS FOR METALLIC SYSTEMS.pdf (20)

PDF
ch09-STUD.pdfhhtrfhftdtfhgyfdtiokhgdreffj
PPT
Ch09
PPT
chapter 11 phase diagram. for simple system
PDF
Ch09 phase diagm-sent-fall2016
PDF
02-MEC121-Lecture 3-Iron-Carbon phase diagram .pdf
PPTX
Phase Diagram for different alloy system.pptx
PPT
PPTX
1727416154977_Module-2---Steel-Alloy-and-Heat-Treatment.pptx
PDF
Phase diagram type 1 (1) (1).pdf
PDF
binary phase diagram of lead and tin.pdf
PDF
Lecture 8: Phase Diagrams
PPT
ch10-Phase_Diagramsbsnsbbbsbsbsbbwbwbwb.ppt
PPT
Phase equibllurium diagram material scienceppt
PDF
Thermodynamics Hw#4
PDF
Phy351 ch 5
PDF
Phy351 ch 5
PPT
10[1].Phase Diagrams.ppt
PPTX
ATOMIC LAYER DEPOSITION OF Al₂O₃ ON Si SUBSTRATE
PPT
Phase diagram (Muda Ibrahim)
ch09-STUD.pdfhhtrfhftdtfhgyfdtiokhgdreffj
Ch09
chapter 11 phase diagram. for simple system
Ch09 phase diagm-sent-fall2016
02-MEC121-Lecture 3-Iron-Carbon phase diagram .pdf
Phase Diagram for different alloy system.pptx
1727416154977_Module-2---Steel-Alloy-and-Heat-Treatment.pptx
Phase diagram type 1 (1) (1).pdf
binary phase diagram of lead and tin.pdf
Lecture 8: Phase Diagrams
ch10-Phase_Diagramsbsnsbbbsbsbsbbwbwbwb.ppt
Phase equibllurium diagram material scienceppt
Thermodynamics Hw#4
Phy351 ch 5
Phy351 ch 5
10[1].Phase Diagrams.ppt
ATOMIC LAYER DEPOSITION OF Al₂O₃ ON Si SUBSTRATE
Phase diagram (Muda Ibrahim)
Ad

Recently uploaded (20)

PPTX
Introcution to Microbes Burton's Biology for the Health
PDF
5.Physics 8-WBS_Light.pdfFHDGJDJHFGHJHFTY
PDF
Worlds Next Door: A Candidate Giant Planet Imaged in the Habitable Zone of ↵ ...
PDF
The Future of Telehealth: Engineering New Platforms for Care (www.kiu.ac.ug)
PPT
THE CELL THEORY AND ITS FUNDAMENTALS AND USE
PDF
Chapter 3 - Human Development Poweroint presentation
PPTX
limit test definition and all limit tests
PPTX
Introduction to Immunology (Unit-1).pptx
PPTX
Platelet disorders - thrombocytopenia.pptx
PDF
Is Earendel a Star Cluster?: Metal-poor Globular Cluster Progenitors at z ∼ 6
PDF
Integrative Oncology: Merging Conventional and Alternative Approaches (www.k...
PDF
CuO Nps photocatalysts 15156456551564161
PPT
LEC Synthetic Biology and its application.ppt
PDF
Social preventive and pharmacy. Pdf
PDF
Cosmology using numerical relativity - what hapenned before big bang?
PPTX
AP CHEM 1.2 Mass spectroscopy of elements
PPTX
PMR- PPT.pptx for students and doctors tt
PPTX
TORCH INFECTIONS in pregnancy with toxoplasma
PPTX
ELISA(Enzyme linked immunosorbent assay)
PDF
Worlds Next Door: A Candidate Giant Planet Imaged in the Habitable Zone of ↵ ...
Introcution to Microbes Burton's Biology for the Health
5.Physics 8-WBS_Light.pdfFHDGJDJHFGHJHFTY
Worlds Next Door: A Candidate Giant Planet Imaged in the Habitable Zone of ↵ ...
The Future of Telehealth: Engineering New Platforms for Care (www.kiu.ac.ug)
THE CELL THEORY AND ITS FUNDAMENTALS AND USE
Chapter 3 - Human Development Poweroint presentation
limit test definition and all limit tests
Introduction to Immunology (Unit-1).pptx
Platelet disorders - thrombocytopenia.pptx
Is Earendel a Star Cluster?: Metal-poor Globular Cluster Progenitors at z ∼ 6
Integrative Oncology: Merging Conventional and Alternative Approaches (www.k...
CuO Nps photocatalysts 15156456551564161
LEC Synthetic Biology and its application.ppt
Social preventive and pharmacy. Pdf
Cosmology using numerical relativity - what hapenned before big bang?
AP CHEM 1.2 Mass spectroscopy of elements
PMR- PPT.pptx for students and doctors tt
TORCH INFECTIONS in pregnancy with toxoplasma
ELISA(Enzyme linked immunosorbent assay)
Worlds Next Door: A Candidate Giant Planet Imaged in the Habitable Zone of ↵ ...

CHAPTER 9.1 - PHASE DIAGRAMS FOR METALLIC SYSTEMS.pdf

  • 1. Chapter 9 - Chapter 9: Phase Diagrams 1
  • 2. Chapter 9 - 2 Schematically sketch simple isomorphous and eutectic phase diagram and label the various phase regions, label the liquidus, solidus and solvus line. Given a binary phase diagram (isomorphous and eutectic systems), the composition of an alloy, its temperature, and assuming that the alloy is at equilibrium, determine: What phase(s) is (are) present, The composition(s) of the phase(s), and The mass fraction(s) of the phase(s) For some given binary phase diagram, do the following: Locate the temperatures and compositions of all eutectic, eutectoid, and peritectic, phase transformations, Write reactions for all of these transformations for either heating or cooling. Given the composition of an iron-carbon alloy containing between 0.022 wt% and 2.14 wt% C, be able to: Specify whether the alloy is hypoeutectoid or hypereutectoid, Name the proeutectoid phase, Compute the mass fraction of proeutectoid phase and pearlite, and Make a schematic diagram of the microstructure at a temperature just below the eutectoid. Learning Outcomes
  • 3. Chapter 9 - 3 ISSUES TO ADDRESS... • When we combine two elements... what is the resulting equilibrium state? • In particular, if we specify... -- the composition (e.g., wt% Cu - wt% Ni), and -- the temperature (T) then... How many phases form? What is the composition of each phase? What is the amount of each phase? Phase B Phase A Nickel atom Copper atom
  • 4. Chapter 9 - 4 Phase Equilibria: Solubility Limit Question: What is the solubility limit for sugar in water at 20ºC? Answer: 65 wt% sugar. At 20ºC, if C < 65 wt% sugar: syrup At 20ºC, if C > 65 wt% sugar: syrup + sugar 65 • Solubility Limit: Maximum concentration for which only a single phase solution exists. Sugar/Water Phase Diagram Sugar Temperature (ºC) 0 20 40 60 80 100 C = Composition (wt% sugar) L (liquid solution i.e., syrup) Solubility Limit L (liquid) + S (solid sugar) 20 40 60 80 100 Water Adapted from Fig. 9.1, Callister & Rethwisch 8e. • Solution – solid, liquid, or gas solutions, single phase • Mixture – more than one phase
  • 5. Chapter 9 - 5 • Components: The elements or compounds which are present in the alloy (e.g., Al and Cu) • Phases: The physically and chemically distinct material regions that form (e.g., a and b). Aluminum- Copper Alloy Components and Phases a (darker phase) b (lighter phase) Adapted from chapter- opening photograph, Chapter 9, Callister, Materials Science & Engineering: An Introduction, 3e.
  • 6. Chapter 9 - 6 70 80 100 60 40 20 0 Temperature (ºC) C = Composition (wt% sugar) L (liquid solution i.e., syrup) 20 100 40 60 80 0 L (liquid) + S (solid sugar) Effect of Temperature & Composition • Altering T can change # of phases: path A to B. • Altering C can change # of phases: path B to D. water- sugar system Adapted from Fig. 9.1, Callister & Rethwisch 8e. D (100ºC,C = 90) 2 phases B (100ºC,C = 70) 1 phase A (20ºC,C = 70) 2 phases
  • 7. Chapter 9 - 7 Criteria for Solid Solubility Crystal Structure electroneg r (nm) Ni FCC 1.9 0.1246 Cu FCC 1.8 0.1278 • Both have the same crystal structure (FCC) and have similar electronegativities and atomic radii (W. Hume – Rothery rules) suggesting high mutual solubility. Simple system (e.g., Ni-Cu solution) • Ni and Cu are totally soluble in one another for all proportions.
  • 8. Chapter 9 - 8 Phase Diagrams • Indicate phases as a function of T, C, and P. • For this course: - binary systems: just 2 components. - independent variables: T and C (P = 1 atm is almost always used). Phase Diagram for Cu-Ni system Adapted from Fig. 9.3(a), Callister & Rethwisch 8e. (Fig. 9.3(a) is adapted from Phase Diagrams of Binary Nickel Alloys, P. Nash (Ed.), ASM International, Materials Park, OH (1991). • 2 phases: L (liquid) a (FCC solid solution) • 3 different phase fields: L L + a a wt% Ni 20 40 60 80 100 0 1000 1100 1200 1300 1400 1500 1600 T(ºC) L (liquid) a (FCC solid solution)
  • 9. Chapter 9 - 9 Cu-Ni phase diagram Isomorphous Binary Phase Diagram • Phase diagram: Cu-Ni system. • System is: Adapted from Fig. 9.3(a), Callister & Rethwisch 8e. (Fig. 9.3(a) is adapted from Phase Diagrams of Binary Nickel Alloys, P. Nash (Ed.), ASM International, Materials Park, OH (1991). -- binary i.e., 2 components: Cu and Ni. -- isomorphous i.e., complete solubility of one component in another; a phase field extends from 0 to 100 wt% Ni. wt% Ni 20 40 60 80 100 0 1000 1100 1200 1300 1400 1500 1600 T(ºC) L (liquid) a (FCC solid solution)
  • 10. Chapter 9 - wt% Ni 20 40 60 80 100 0 1000 1100 1200 1300 1400 1500 1600 T(ºC) L (liquid) a (FCC solid solution) Cu-Ni phase diagram 10 Phase Diagrams: Determination of phase(s) present • Rule 1: If we know T and Co, then we know: -- which phase(s) is (are) present. • Examples: A(1100ºC, 60 wt% Ni): 1 phase: a B(1250ºC, 35 wt% Ni): 2 phases: L + a B (1250ºC,35) A(1100ºC,60) Adapted from Fig. 9.3(a), Callister & Rethwisch 8e. (Fig. 9.3(a) is adapted from Phase Diagrams of Binary Nickel Alloys, P. Nash (Ed.), ASM International, Materials Park, OH (1991).
  • 11. Chapter 9 - 11 wt% Ni 20 1200 1300 T(ºC) L (liquid) a (solid) 30 40 50 Cu-Ni system Phase Diagrams: Determination of phase compositions • Rule 2: If we know T and C0, then we can determine: -- the composition of each phase. • Examples: TA A 35 C0 32 CL At TA = 1320ºC: Only Liquid (L) present CL = C0 ( = 35 wt% Ni) At TB = 1250ºC: Both a and L present CL = Cliquidus ( = 32 wt% Ni) Ca = Csolidus ( = 43 wt% Ni) At TD = 1190ºC: Only Solid (a) present Ca = C0 ( = 35 wt% Ni) Consider C0 = 35 wt% Ni D TD tie line 4 Ca 3 Adapted from Fig. 9.3(a), Callister & Rethwisch 8e. (Fig. 9.3(a) is adapted from Phase Diagrams of Binary Nickel Alloys, P. Nash (Ed.), ASM International, Materials Park, OH (1991). B TB
  • 12. Chapter 9 - 12 • Rule 3: If we know T and C0, then can determine: -- the weight fraction of each phase. • Examples: At TA : Only Liquid (L) present WL = 1.00, Wa = 0 At TD : Only Solid ( a) present WL = 0, Wa = 1.00 Phase Diagrams: Determination of phase weight fractions wt% Ni 20 1200 1300 T(ºC) L (liquid) a (solid) 30 40 50 Cu-Ni system TA A 35 C0 32 CL B TB D TD tie line 4 Ca 3 R S At TB : Both a and L present 73 . 0 32 43 35 43     = 0.27 WL  S R +S Wa  R R +S Consider C0 = 35 wt% Ni Adapted from Fig. 9.3(a), Callister & Rethwisch 8e. (Fig. 9.3(a) is adapted from Phase Diagrams of Binary Nickel Alloys, P. Nash (Ed.), ASM International, Materials Park, OH (1991).
  • 13. Chapter 9 - 13 • Tie line – connects the phases in equilibrium with each other – also sometimes called an isotherm The Lever Rule What fraction of each phase? Think of the tie line as a lever (teeter-totter) ML Ma R S  Ma x S  ML x R L L L L L L C C C C S R R W C C C C S R S M M M W             a a a a a 0 0 wt% Ni 20 1200 1300 T(ºC) L (liquid) a (solid) 30 40 50 B TB tie line C0 CL Ca S R Adapted from Fig. 9.3(b), Callister & Rethwisch 8e.
  • 14. Chapter 9 - 14 wt% Ni 20 1200 1300 30 40 50 110 0 L (liquid) a (solid) T(ºC) A 35 C0 L: 35wt%Ni Cu-Ni system • Phase diagram: Cu-Ni system. Adapted from Fig. 9.4, Callister & Rethwisch 8e. • Consider microstuctural changes that accompany the cooling of a C0 = 35 wt% Ni alloy Ex: Cooling of a Cu-Ni Alloy 46 35 43 32 a: 43 wt% Ni L: 32 wt% Ni B a: 46 wt% Ni L: 35 wt% Ni C E L: 24 wt% Ni a: 36 wt% Ni 24 36 D
  • 15. Chapter 9 - • Slow rate of cooling: Equilibrium structure • Fast rate of cooling: Cored structure First a to solidify: 46 wt% Ni Last a to solidify: < 35 wt% Ni 15 • Ca changes as we solidify. • Cu-Ni case: First a to solidify has Ca = 46 wt% Ni. Last a to solidify has Ca = 35 wt% Ni. Cored vs Equilibrium Structures Uniform Ca: 35 wt% Ni
  • 16. Chapter 9 - 16 Mechanical Properties: Cu-Ni System • Effect of solid solution strengthening on: -- Tensile strength (TS) -- Ductility (%EL) Adapted from Fig. 9.6(a), Callister & Rethwisch 8e. Tensile Strength (MPa) Composition, wt% Ni Cu Ni 0 20 40 60 80 100 200 300 400 TS for pure Ni TS for pure Cu Elongation (%EL) Composition, wt% Ni Cu Ni 0 20 40 60 80 100 20 30 40 50 60 %EL for pure Ni %EL for pure Cu Adapted from Fig. 9.6(b), Callister & Rethwisch 8e.
  • 17. Chapter 9 - 17 2 components has a special composition with a min. melting T. Adapted from Fig. 9.7, Callister & Rethwisch 8e. Binary-Eutectic Systems • 3 single phase regions (L, a, b) • Limited solubility: a: mostly Cu b: mostly Ag • TE : No liquid below TE : Composition at temperature TE • CE Ex.: Cu-Ag system Cu-Ag system L (liquid) a L + a L+bb a  b C, wt% Ag 20 40 60 80 100 0 200 1200 T(ºC) 400 600 800 1000 CE TE 8.0 71.9 91.2 779ºC Ag) wt% 1.2 9 ( Ag) wt% .0 8 ( Ag) wt% 9 . 71 ( b  a L cooling heating • Eutectic reaction L(CE) a(CaE) + b(CbE)
  • 18. Chapter 9 - 18 L+a L+b a + b 200 T(ºC) 18.3 C, wt% Sn 20 60 80 100 0 300 100 L (liquid) a 183ºC 61.9 97.8 b • For a 40 wt% Sn-60 wt% Pb alloy at 150ºC, determine: -- the phases present Pb-Sn system EX 1: Pb-Sn Eutectic System Answer: a + b -- the phase compositions -- the relative amount of each phase 150 40 C0 11 Ca 99 Cb S R Answer: Ca = 11 wt% Sn Cb = 99 wt% Sn W a = Cb - C0 Cb - Ca = 99 - 40 99 - 11 = 59 88 = 0.67 S R+S = Wb = C0 - Ca Cb - Ca = R R+S = 29 88 = 0.33 = 40 - 11 99 - 11 Answer: Adapted from Fig. 9.8, Callister & Rethwisch 8e.
  • 19. Chapter 9 - 19 Answer: Ca = 17 wt% Sn -- the phase compositions L+b a + b 200 T(ºC) C, wt% Sn 20 60 80 100 0 300 100 L (liquid) a b L+a 183ºC • For a 40 wt% Sn-60 wt% Pb alloy at 220ºC, determine: -- the phases present: Pb-Sn system EX 2: Pb-Sn Eutectic System -- the relative amount of each phase Wa = CL - C0 CL - Ca = 46 - 40 46 - 17 = 6 29 = 0.21 WL = C0 - Ca CL - Ca = 23 29 = 0.79 40 C0 46 CL 17 Ca 220 S R Answer: a + L CL = 46 wt% Sn Answer: Adapted from Fig. 9.8, Callister & Rethwisch 8e.
  • 20. Chapter 9 - 20 • For alloys for which C0 < 2 wt% Sn • Result: at room temperature -- polycrystalline with grains of a phase having composition C0 Microstructural Developments in Eutectic Systems I 0 L+ a 200 T(ºC) C, wt% Sn 10 2 20 C0 300 100 L a 30 a+b 400 (room T solubility limit) TE (Pb-Sn System) a L L: C0 wt% Sn a: C0 wt% Sn Adapted from Fig. 9.11, Callister & Rethwisch 8e.
  • 21. Chapter 9 - 21 • For alloys for which 2 wt% Sn < C0 < 18.3 wt% Sn • Result: at temperatures in a + b range -- polycrystalline with a grains and small b-phase particles Adapted from Fig. 9.12, Callister & Rethwisch 8e. Microstructural Developments in Eutectic Systems II Pb-Sn system L + a 200 T(ºC) C, wt% Sn 10 18.3 20 0 C0 300 100 L a 30 a+ b 400 (sol. limit at TE) TE 2 (sol. limit at Troom) L a L: C0 wt% Sn a b a: C0 wt% Sn
  • 22. Chapter 9 - 22 • For alloy of composition C0 = CE • Result: Eutectic microstructure (lamellar structure) -- alternating layers (lamellae) of a and b phases. Adapted from Fig. 9.13, Callister & Rethwisch 8e. Microstructural Developments in Eutectic Systems III Adapted from Fig. 9.14, Callister & Rethwisch 8e. 160m Micrograph of Pb-Sn eutectic microstructure Pb-Sn system Lb a  b 200 T(ºC) C, wt% Sn 20 60 80 100 0 300 100 L a b L+a 183ºC 40 TE 18.3 a: 18.3 wt%Sn 97.8 b: 97.8 wt% Sn CE 61.9 L: C0 wt% Sn
  • 23. Chapter 9 - 23 Lamellar Eutectic Structure Adapted from Figs. 9.14 & 9.15, Callister & Rethwisch 8e.
  • 24. Chapter 9 - 24 • For alloys for which 18.3 wt% Sn < C0 < 61.9 wt% Sn • Result: a phase particles and a eutectic microconstituent Microstructural Developments in Eutectic Systems IV 18.3 61.9 S R 97.8 S R primary a eutectic a eutectic b WL = (1-Wa) = 0.50 Ca = 18.3 wt% Sn CL = 61.9 wt% Sn S R + S Wa = = 0.50 • Just above TE : • Just below TE : Ca = 18.3 wt% Sn Cb = 97.8 wt% Sn S R + S Wa= = 0.73 Wb = 0.27 Adapted from Fig. 9.16, Callister & Rethwisch 8e. Pb-Sn system L+ b 200 T(ºC) C, wt% Sn 20 60 80 100 0 300 100 L a b L+a 40 a+b TE L: C0 wt% Sn L a L a
  • 25. Chapter 9 - 25 L+a L+b a + b 200 C, wt% Sn 20 60 80 100 0 300 100 L a b TE 40 (Pb-Sn System) Hypoeutectic & Hypereutectic Adapted from Fig. 9.8, Callister & Rethwisch 8e. (Fig. 10.8 adapted from Binary Phase Diagrams, 2nd ed., Vol. 3, T.B. Massalski (Editor-in-Chief), ASM International, Materials Park, OH, 1990.) 160 m eutectic micro-constituent Adapted from Fig. 9.14, Callister & Rethwisch 8e. hypereutectic: (illustration only) b b b b b b Adapted from Fig. 9.17, Callister & Rethwisch 8e. (Illustration only) (Figs. 9.14 and 9.17 from Metals Handbook, 9th ed., Vol. 9, Metallography and Microstructures, American Society for Metals, Materials Park, OH, 1985.) 175 m a a a a a a hypoeutectic: C0 = 50 wt% Sn Adapted from Fig. 9.17, Callister & Rethwisch 8e. T(ºC) 61.9 eutectic eutectic: C0 =61.9wt% Sn
  • 26. Chapter 9 - 26 Intermetallic Compounds Mg2Pb Note: intermetallic compound exists as a line on the diagram - not an area - because of stoichiometry (i.e. composition of a compound is a fixed value). Adapted from Fig. 9.20, Callister & Rethwisch 8e.
  • 27. Chapter 9 - 27 • Eutectoid – one solid phase transforms to two other solid phases S2 S1+S3  a + Fe3C (For Fe-C, 727ºC, 0.76 wt% C) intermetallic compound - cementite cool heat Eutectic, Eutectoid, & Peritectic • Eutectic - liquid transforms to two solid phases L a + b (For Pb-Sn, 183ºC, 61.9 wt% Sn) cool heat cool heat • Peritectic - liquid and one solid phase transform to a second solid phase S1 + L S2  + L  (For Fe-C, 1493ºC, 0.16 wt% C)
  • 28. Chapter 9 - 28 Eutectoid & Peritectic Cu-Zn Phase diagram Adapted from Fig. 9.21, Callister & Rethwisch 8e. Eutectoid transformation   +  Peritectic transformation  + L 
  • 29. Chapter 9 - 29 Iron-Carbon (Fe-C) Phase Diagram • 2 important points - Eutectoid (B):   a +Fe3C - Eutectic (A): L   +Fe3C Adapted from Fig. 9.24, Callister & Rethwisch 8e. Fe 3 C (cementite) 1600 1400 1200 1000 800 600 400 0 1 2 3 4 5 6 6.7 L  (austenite) +L +Fe3C a+Fe3C  (Fe) C, wt% C 1148ºC T(ºC) a 727ºC = Teutectoid 4.30 Result: Pearlite = alternating layers of a and Fe3C phases 120 m (Adapted from Fig. 9.27, Callister & Rethwisch 8e.) 0.76 B     A L+Fe3C Fe3C (cementite-hard) a (ferrite-soft)
  • 30. Chapter 9 - 30 Fe 3 C (cementite) 1600 1400 1200 1000 800 600 400 0 1 2 3 4 5 6 6.7 L  (austenite) +L  +Fe3C a+Fe3C L+Fe3C  (Fe) C, wt% C 1148ºC T(ºC) a 727ºC (Fe-C System) C0 0.76 Hypoeutectoid Steel Adapted from Figs. 9.24 and 9.29,Callister & Rethwisch 8e. (Fig. 9.24 adapted from Binary Alloy Phase Diagrams, 2nd ed., Vol. 1, T.B. Massalski (Ed.-in- Chief), ASM International, Materials Park, OH, 1990.) Adapted from Fig. 9.30, Callister & Rethwisch 8e. proeutectoid ferrite pearlite 100 m Hypoeutectoid steel a pearlite     a a a        
  • 31. Chapter 9 - 31 Fe 3 C (cementite) 1600 1400 1200 1000 800 600 400 0 1 2 3 4 5 6 6.7 L  (austenite) +L  +Fe3C a+Fe3C L+Fe3C  (Fe) C, wt% C 1148ºC T(ºC) a 727ºC (Fe-C System) C0 0.76 Hypoeutectoid Steel     a a a s r Wa = s/(r +s) W =(1 - Wa) R S a pearlite Wpearlite = W Wa’ = S/(R +S) W =(1 – Wa’) Fe3C Adapted from Figs. 9.24 and 9.29,Callister & Rethwisch 8e. (Fig. 9.24 adapted from Binary Alloy Phase Diagrams, 2nd ed., Vol. 1, T.B. Massalski (Ed.-in- Chief), ASM International, Materials Park, OH, 1990.) Adapted from Fig. 9.30, Callister & Rethwisch 8e. proeutectoid ferrite pearlite 100 m Hypoeutectoid steel
  • 32. Chapter 9 - 32 Hypereutectoid Steel Fe 3 C (cementite) 1600 1400 1200 1000 800 600 400 0 1 2 3 4 5 6 6.7 L  (austenite) +L  +Fe3C a +Fe3C L+Fe3C  (Fe) C, wt%C 1148ºC T(ºC) a Adapted from Figs. 9.24 and 9.32,Callister & Rethwisch 8e. (Fig. 9.24 adapted from Binary Alloy Phase Diagrams, 2nd ed., Vol. 1, T.B. Massalski (Ed.-in-Chief), ASM International, Materials Park, OH, 1990.) (Fe-C System) 0.76 C0 Fe3C             Adapted from Fig. 9.33, Callister & Rethwisch 8e. proeutectoid Fe3C 60 mHypereutectoid steel pearlite pearlite
  • 33. Chapter 9 - 33 Fe 3 C (cementite) 1600 1400 1200 1000 800 600 400 0 1 2 3 4 5 6 6.7 L  (austenite) +L  +Fe3C a +Fe3C L+Fe3C  (Fe) C, wt%C 1148ºC T(ºC) a Hypereutectoid Steel (Fe-C System) 0.76 C0 pearlite Fe3C     x v V X Wpearlite = W Wa = X/(V +X) W =(1 - Wa) Fe3C’ W =(1-W) W =x/(v + x) Fe3C Adapted from Fig. 9.33, Callister & Rethwisch 8e. proeutectoid Fe3C 60 mHypereutectoid steel pearlite Adapted from Figs. 9.24 and 9.32,Callister & Rethwisch 8e. (Fig. 9.24 adapted from Binary Alloy Phase Diagrams, 2nd ed., Vol. 1, T.B. Massalski (Ed.-in-Chief), ASM International, Materials Park, OH, 1990.)
  • 34. Chapter 9 - 34 Example Problem For a 99.6 wt% Fe-0.40 wt% C steel at a temperature just below the eutectoid, determine the following: a) The compositions of Fe3C and ferrite (a). b) The amount of cementite (in grams) that forms in 100 g of steel. c) The amounts of pearlite and proeutectoid ferrite (a) in the 100 g.
  • 35. Chapter 9 - 35 Solution to Example Problem WFe3C  R R  S  C0 Ca CFe3C Ca  0.40 0.022 6.70 0.022  0.057 b) Using the lever rule with the tie line shown a) Using the RS tie line just below the eutectoid Ca = 0.022 wt% C CFe3C = 6.70 wt% C Fe C (cementite) 1600 1400 1200 1000 800 600 400 0 1 2 3 4 5 6 6.7 L  (austenite) +L  + Fe3C a+ Fe3C L+Fe3C  C, wt% C 1148ºC T(ºC) 727ºC C0 R S CFe C 3 Ca Amount of Fe3C in 100 g = (100 g)WFe3C = (100 g)(0.057) = 5.7 g
  • 36. Chapter 9 - 36 Solution to Example Problem (cont.) c) Using the VX tie line just above the eutectoid and realizing that C0 = 0.40 wt% C Ca = 0.022 wt% C Cpearlite = C = 0.76 wt% C Fe C (cementite) 1600 1400 1200 1000 800 600 400 0 1 2 3 4 5 6 6.7 L  (austenite) +L  + Fe3C a+ Fe3C L+Fe3C  C, wt% C 1148ºC T(ºC) 727ºC C0 V X C Ca Wpearlite  V V  X  C0 Ca C Ca  0.40 0.022 0.76 0.022  0.512 Amount of pearlite in 100 g = (100 g)Wpearlite = (100 g)(0.512) = 51.2 g
  • 37. Chapter 9 - VMSE: Interactive Phase Diagrams 37 Change alloy composition Microstructure, phase compositions, and phase fractions respond interactively
  • 38. Chapter 9 - 38 Alloying with Other Elements • Teutectoid changes: Adapted from Fig. 9.34,Callister & Rethwisch 8e. (Fig. 9.34 from Edgar C. Bain, Functions of the Alloying Elements in Steel, American Society for Metals, 1939, p. 127.) T Eutectoid (ºC) wt. % of alloying elements Ti Ni Mo Si W Cr Mn • Ceutectoid changes: Adapted from Fig. 9.35,Callister & Rethwisch 8e. (Fig. 9.35 from Edgar C. Bain, Functions of the Alloying Elements in Steel, American Society for Metals, 1939, p. 127.) wt. % of alloying elements C eutectoid (wt% C) Ni Ti Cr Si Mn W Mo
  • 39. Chapter 9 - 39 • Phase diagrams are useful tools to determine: -- the number and types of phases present, -- the composition of each phase, -- and the weight fraction of each phase given the temperature and composition of the system. • The microstructure of an alloy depends on -- its composition, and -- whether or not cooling rate allows for maintenance of equilibrium. • Important phase diagram phase transformations include eutectic, eutectoid, and peritectic. Summary
  • 40. Chapter 9 - 40 Core Problems: Self-help Problems: ANNOUNCEMENTS Reading: