1
Chapter 6 : Antenna Arrays
• Introduction
• Two-Element Array
• N-element Linear Array: Uniform
Amplitude and Spacing
• N-element Linear Array: Directivity
• N-element Linear Array: Uniform spacing,
Non-uniform Amplitude
• Planar Array
2
Antenna Array: Introduction
• Array is an assembly of antenna elements
arranged in an orderly fashion. The
elements are usually identical.
• Why array? When high gain and/or
narrow beam are required:
– Single element -> Wide beam (low directivity)
– Increasing size -> difficult to build and
expensive
– Useful especially when the element gain is low.
3
Antenna Array: Introduction (2)
• Advantages
– Higher directivity
– Narrower beam
– Lower sidelobes
– Electronic steerable beam
• Types
– Fix direction
– Steerable : Mechanical or Electronic (phased
arrays)
4
Antenna Array: Introduction (3)
• In an array of identical elements, there
are in general five controls that can be
used to shape the overall pattern of the
antenna:
1. Geometrical configuration (linear, circular, etc.)
2. Relative displacement between elements
3. Excitation amplitude of individual elements
4. Excitation phase of individual elements
5. Relative pattern of individual elements
The linked image cannot be displayed. The file may have been moved, renamed, or deleted. Verify that the link points to the correct file and location.
5
Examples
Very Large Antenna (VLA)
Airborne Warning and
Control System (AWACS)
6
Two-element Array
• Consider two-element array of horizontal
infinitesimal dipoles (assume no coupling between
elements)
Far-field observation
Two infinitesimal dipoles
7
Two-element Array (2)



 cos
4
ˆ
0
r
e
l
I
jk
jkr


E
Recall the far-zone electric field of horizontal infinitesimal
dipole in the y-z plane














2
2
2
1
1
1
2
1 cos
4
cos
4
ˆ
2
1






r
e
I
r
e
I
l
jk
jkr
jkr
E
E
E
Thus the total electric field becomes:
8
Two-Element Array (3)

cos
2
1
d
r
r 
 
cos
2
2
d
r
r 

r
r
r 
 2
1
Using the far-field approximation
 
2
/
cos
2
2
/
cos
1
4
cos
ˆ 




 jkd
jkd
jkr
e
I
e
I
r
e
l
jk 



E
The total field becomes:
)
2
cos
2
cos(
2
4
cos
ˆ
0





 


d
k
r
e
l
I
jk
jkr
E
difference
phase
:
,
;
If 2
/
0
2
2
/
0
1 

 j
j
e
I
I
e
I
I 


)
factor(AF)
(array
factor)
(element
field
total 

9
Electric Field Pattern
4
/
,
0 
 
 d
10
Electric Field Pattern (2)
4
/
,
2
/ 

 
 d
11
Electric Field Pattern (2)
4
/
,
2
/ 

 

 d
12
Quiz
• Find the far-zone electric field of a two-
element array of infinitesimal circular
loops. Assume that the loops are parallel
to the x-y plane and the two elements are
aligned along the z axis.
• (i) I1=I0, I2=I0, d = λ
λ
λ
λ/4
• (ii) I1=I0, I2=I0, d = λ
λ
λ
λ/2
• (iii) I1=I0, I2=-I0, d = λ
λ
λ
λ/2
• (iv) I1=I0, I2=jI0, d = λ
λ
λ
λ/2
13
N-element Linear Array: Uniform
amplitude & spacing

























cos
where
1
AF
1
)
1
(
)
cos
)(
1
(
)
cos
(
2
)
cos
(
kd
e
e
e
e
N
n
n
j
kd
N
j
kd
j
kd
j
L
If the amplitude and spacing are both uniform, the array factor
becomes
14
N-element Linear Array: Uniform
amplitude & spacing (2)
2
sin
2
sin
1
1
AF
2
1
2
2
2
2
2
1



























N
e
e
e
e
e
e
e
e
N
j
j
j
N
j
N
j
N
j
j
jN
thus
If the reference point is the physical center of the array
2
2
sin
2
sin
2
sin
AF
small
: 


















N
N
15
N-element Linear Array: Uniform
amplitude & spacing (3)




















 




 2
sinc
2
2
sin
2
sin
2
sin
(AF)
small
:
n
N
N
N
N
N
K
K ,
3
,
2
,
;
,
3
,
2
,
1
2
2
cos
2
0
2
sin
1
N
N
N
n
n
N
n
d
n
N
N
n
n





































 

Normalized AF
Nulls
 
K
,
2
,
1
,
0
2
2
cos
2
1












 

m
m
d
m m
m









Maxima
16
Normalized Array Factor
17
Sinc function plot
0 5 10 15
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
|sin(x)/x|
18
N-element Linear Array: Uniform
amplitude & spacing (4)













































N
d
N
d
N
N
h
h
782
.
2
2
sin
2
782
.
2
2
cos
391
.
1
2
2
1
2
sin
2
sin
1
1













HPBW (symmetrical case)
3-dB point
Secondary
Maxima
h
m
h 
 

 2
K
,
3
,
2
,
1
;
1
2
2
cos
2
1
2
2
1
2
sin
1












 



















s
N
s
d
s
N
N
s
s
s







 



19
N-element Linear Array: Uniform
amplitude & spacing (5)
First sidelobe


























 

N
d
N
s
s
3
2
cos
2
3
2
1
dB
46
.
13
212
.
0
3
2
2
2
sin
(AF)
1
,
n 




























 s
s
N
N
First sidelobe level
20
Example
#2
#1
#3
d
d
z
y
0
2 I
I 

2
/
0
1

j
e
I
I 

0
3 I
I 
A 3-element array of
isotropic sources has the
phase and amplitude
relationships shown. The
spacing between elements
is d=λ/2.
(a)Find the array factor.
(b)Find all the nulls.
21
Broadside Array
0
cos 2
/ 


  


 

kd
4
/
,
10 

 d
N
22
Grating Lobes










n
n
kd
n
n
d
2
cos
2
cos
,
0
,
3
,
2
,
1
0
,









K


max
d
No grating lobes
Should avoid d=nλ because


 d
N ,
10
23
24
25
Ordinary End-fire Array
kd
kd
kd 





  



 

cos
4
/
10



d
N
kd
kd
kd 





  



  0
cos
26
Ordinary End-fire Array (2)
4
/
,
10 

 d
N
27
Grating Lobes
•If d=λ/2, end-fire radiation exists simultaneously
in both directions.
•If d = nλ, also broad-side radiation.
•To avoid grating lobes,
2
max


d
28
29
30
Phased (Scanning) Array
0
0 cos
cos
cos 0






 
 kd
kd
kd 





 
4
/
,
10 

 d
N
31
Phased (Scanning) Array (2)

















































Nkd
Nkd
N
kd
d
N
kd
d
h
782
.
2
cos
cos
782
.
2
cos
cos
782
.
2
cos
2
cos
782
.
2
cos
2
cos
0
1
0
1
0
1
0
1








HPBW


















 

d
L
d
L
h



 443
.
0
cos
cos
443
.
0
cos
cos 0
1
0
1
Since N = (L+d)/d,
Not valid for end-fire arrays, i.e., θ0=0,π.
32
Hansen-Woodyard End-fire
Array
0
for
92
.
2
0 

















 


N
kd
N
kd



 















 0
for
92
.
2
N
kd
N
kd








 

 





 
 |
cos
|
|
|
;
|
cos
|
|
|
;
0
For 0
0 kd
N
kd
Additional Conditions:









 

 





 
 0
0 |
cos
|
|
|
;
|
cos
|
|
|
;
For kd
N
kd
which yields
4
4
1
large
:


N
N
N
d 


33
Hansen-Woodyard End-fire
Array (2)
34
Hansen-Woodyard End-fire
Array (3)
35
36
37
N-Element Array: Directivity
• Broadside Array







cos
;
2
2
sin
2
sin
2
sin
(AF)
small
:
n kd
N
N
N
N















  



 cos
2
;
)
sin(
2
cos
cos
2
sin
)
AF
(
)
,
(
2
2
2
kd
N
Z
Z
Z
kd
N
kd
N
U n 



























Recall that AF for broadside arrays is given by
The radiation intensity then becomes:
Clearly, the maximum Umax=1 at θ=π/2
38
N-Element Array: Directivity (2)
• Broadside Array (cont’d)
The “average” radiation intensity can be obtained from
Using

 























 












0
2
2
0 0
2
0
sin
cos
2
)
cos
2
sin(
2
1
sin
)
sin(
4
1
)
,
(
4
1
4
d
kd
N
kd
N
d
d
Z
Z
d
U
P
U rad


 d
kd
N
dZ
kd
N
Z sin
2
;
cos
2



 

 














2
/
2
/
2
/
2
/
2
2
0
)
sin(
1
)
sin(
1 Nkd
Nkd
Nkd
Nkd
dZ
Z
Z
Nkd
dZ
Z
Z
Nkd
U
39
N-Element Array: Directivity (3)
• Broadside Array (cont’d)





 












 dZ
Z
Z
Nkd
dZ
Z
Z
Nkd
U
Nkd
Nkd
2
2
/
2
/
2
0
)
sin(
1
)
sin(
1
For a large array (Nkd/2 -> large),
The directivity is then given by


d
N
Nkd
U
U
D 2
0
max
0 














dZ
Z
Z
2
)
sin(
Nkd
U


0



L
d
d
L
d
N
D
d
L
d
N
L
2
1
2
2
)
1
(
0













Using L=(N-1)d
Since
40
N-Element Array: Directivity (4)
• Ordinary end-fire Array
)
1
(cos
;
2
2
sin
2
sin
2
sin
(AF)
small
:
n 














 






kd
N
N
N
N
  )
1
(cos
2
;
)
sin(
2
)
1
(cos
)
1
(cos
2
sin
)
AF
(
)
,
(
2
2
2






























 



 kd
N
Z
Z
Z
kd
N
kd
N
U n
Recall that AF for ordinary end-fire arrays (θ=0) is given by
The radiation intensity then becomes:
Clearly, the maximum Umax=1 at θ=0
41
N-Element Array: Directivity (5)
• Ordinary end-fire Array (cont’d)
The “average” radiation intensity can be obtained from
Using

 

























 












0
2
2
0 0
2
0
sin
)
1
(cos
2
))
1
(cos
2
sin(
2
1
sin
)
sin(
4
1
)
,
(
4
1
4
d
kd
N
kd
N
d
d
Z
Z
d
U
P
U rad


 d
kd
N
dZ
kd
N
Z sin
2
);
1
(cos
2




 
















Nkd Nkd
dZ
Z
Z
Nkd
dZ
Z
Z
Nkd
U
0 0
2
2
0
)
sin(
1
)
sin(
1
42
N-Element Array: Directivity (6)
• Ordinary end-fire Array (cont’d)

















0
2
0
2
0
)
sin(
1
)
sin(
1
dZ
Z
Z
Nkd
dZ
Z
Z
Nkd
U
Nkd
For a large array (Nkd -> large),
The directivity is then given by


d
N
Nkd
U
U
D 4
2
0
max
0 


Nkd
U
2
0





L
d
d
L
d
N
D
d
L
d
N
L
4
1
4
4
)
1
(
0













Using L=(N-1)d
Thus
43
N-Element Array: Directivity (7)
• Hansen-Woodyard end-fire Array
Nkd
Nkd
Nkd
U
2
554
.
0
871
.
0
8515
.
1
2
2
2
1
2
0





















For a large array (Nkd -> large),
The directivity is then given by











d
N
Nkd
U
U
D 4
805
.
1
2
554
.
0
1
0
max
0























 

L
d
d
L
D
d
L
d
N
L
4
805
.
1
1
4
805
.
1
)
1
(
0
Using L=(N-1)d
44
45
Example
• Design an 18-element uniform linear
array with a spacing of λ
λ
λ
λ/4 between
elements. Assume that the array is
aligned along the z-axis.
a) Find the array factor for the broadside array
case.
b) Find the first null and sidelobe locations of a).
c) Find the phase shift such that the maximum of
the array factor is at θ0=45°.
d) Find the first null and sidelobe locations of c).
46
18-element AF (broadside array)
0 20 40 60 80 100 120 140 160 180
−50
−45
−40
−35
−30
−25
−20
−15
−10
−5
0
θ [Degree]
|(AF)
n
|
[dB]
18−element array factor (Broadside scan
47
18-element AF (scan array)
0 20 40 60 80 100 120 140 160 180
−50
−45
−40
−35
−30
−25
−20
−15
−10
−5
0
θ [Degree]
|(AF)
n
|
[dB]
18−element array factor
48
Quiz
Find the array factor of the 3-element array of isotropic
sources shown below. The spacing between elements
is d=λ/4 and I1 = 1, I2 = -j2, I3= -1.
49
N-element Array: Non-uniform
amplitude, uniform spacing
• Uniform amplitude -> High sidelobe
• Two popular distributions:
– Binomial (maximally flat)
– Tschebysheff (equiripple)
• HPBW: Uniform<Tschebysheff<Binomial
• Sidelobe level:
Binomial<Tschebysheff<Uniform
50
51
52
53
54
55
56
57
58
59
Planar Array
• Linear Array = one-dimensional array,
i.e., can scan the beam only in one plane.
• In order to be able to scan the beam in
any direction, two-dimensional arrays are
needed. Geometries can be planar, circle,
cylindrical, spherical and so on.
60
Planar Array (2)
61
Array Factor





M
m
kd
m
j
m
x
x
e
I
1
)
cos
sin
)(
1
(
1
AF 


yn
xm
kd
n
j
M
m
kd
m
j
m
N
n
n
S
S
e
e
I
I y
y
x
x
















)
sin
sin
)(
1
(
1
)
cos
sin
)(
1
(
1
1
1
AF






y
y
y
x
x
x
y
y
x
x
kd
kd
N
N
M
M





























sin
sin
;
cos
sin
;
2
sin
2
sin
2
sin
2
sin
(AF)n
AF for each linear array along x-axis:
AF for the entire planar array:
For uniform excitation,
i.e., |Im1I1n|=I0,
62
Planar Array Example
5
;
4
/
,
6
/
);
2
2
/(
;
2
/
0
0 








N
M
d
d y
x
y
x









More Related Content

PDF
3_Antenna Array [Modlue 4] (1).pdf
PDF
Antenna arrays
PDF
EC6602 - AWP UNIT-2
PDF
Antenna Array Tutorial for dummies making of.pdf
PDF
antenna array basics and analysis NPTEL ppt
PDF
Finite Antenna Arrays And Fss Ben Munk John Wiley Sons
PDF
Antennas and Wave Propagation
PPTX
directivity of broadside and endfire.pptx
3_Antenna Array [Modlue 4] (1).pdf
Antenna arrays
EC6602 - AWP UNIT-2
Antenna Array Tutorial for dummies making of.pdf
antenna array basics and analysis NPTEL ppt
Finite Antenna Arrays And Fss Ben Munk John Wiley Sons
Antennas and Wave Propagation
directivity of broadside and endfire.pptx

Similar to Chapter Chapter Chapter Chapter Chapter 6.pdf (20)

PPTX
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Dipole Arrays
PPTX
Antenna array advantages and disadvantages and application
PDF
Sidelobe rejection in a uniform linear array antenna using windowing techniques
PPTX
Antenna array
PDF
Linear Antenna Array synthesis with Decreasing Sidelobe and Narrow Beamwidth
PDF
Antenna Arrays.pdf
PPTX
Antenna-Arrays-I.pptx
PDF
Design of Non-Uniform Linear Antenna Arrays Using Dolph- Chebyshev and Binomi...
PPTX
Antenna Arrays Modified power point presentation
PDF
Rabid Euclidean direction search algorithm for various adaptive array geometries
PPTX
Antenna array antenna engineering microwave ppt
PPTX
Array Antennas
PDF
Objectives(antennas and wave propagation)
PDF
Arrays of Cylindrical Dipoles 1st Edition R. W. P. King
PDF
ch5 Antenna Arrays.pdf
PPT
ANTENNA ARRAYSANTENNA ARRAYSANTENNA ARRAYS.ppt
PDF
Ia2615691572
PDF
An Overview of Array Signal Processing and Beam Forming TechniquesAn Overview...
PDF
Cylindrical Antennas And Arrays Second Edition 2nd Edition Ronold W P King
PDF
EC6602-Antenna fundamentals
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Dipole Arrays
Antenna array advantages and disadvantages and application
Sidelobe rejection in a uniform linear array antenna using windowing techniques
Antenna array
Linear Antenna Array synthesis with Decreasing Sidelobe and Narrow Beamwidth
Antenna Arrays.pdf
Antenna-Arrays-I.pptx
Design of Non-Uniform Linear Antenna Arrays Using Dolph- Chebyshev and Binomi...
Antenna Arrays Modified power point presentation
Rabid Euclidean direction search algorithm for various adaptive array geometries
Antenna array antenna engineering microwave ppt
Array Antennas
Objectives(antennas and wave propagation)
Arrays of Cylindrical Dipoles 1st Edition R. W. P. King
ch5 Antenna Arrays.pdf
ANTENNA ARRAYSANTENNA ARRAYSANTENNA ARRAYS.ppt
Ia2615691572
An Overview of Array Signal Processing and Beam Forming TechniquesAn Overview...
Cylindrical Antennas And Arrays Second Edition 2nd Edition Ronold W P King
EC6602-Antenna fundamentals
Ad

More from arabnuradin (20)

PPTX
Smart-AntennaSmart-AntennaSmart-Antenna-PPT.pptx
PPT
Matching and TuningMatching and Tuning.ppt
PPT
Mendeley Mendeley Mendeley Mendeley 2024 (1).ppt
PDF
Chapter 4Chapter 4Chapter 4Chapter 4.pdf
PPTX
7 Research Design (Data Types and Collection).pptx
PPTX
6 Research Design (Qalititive and Quantitative).pptx
PPTX
715677653-CPE-445-Internet-of-Things-Chapter-6.pptx
PPTX
715677653-CPE-445-Internet-of-Things-Chapter-6.pptx
PPT
Mendeley 2022Mendeley 2022Mendeley 2022.ppt
PDF
itest-lesson5-introduction-to-arduino.pdf
PPT
ArduinoPart1ArduinoPart1ArduinoPart1.ppt
PDF
iot_9Yocto Project getting started,,.pdf
PDF
Gray Modern Three Steps Marketing Process Graph (1).pdf
PDF
lesson-10.pdflesson-10.pdflesson-10.pdflesson-10.pdf
PDF
lesson-9lesson-9lesson-9lesson-9lesson-9.pdf
PDF
Module 04 IoT Security and Privacy...pdf
PDF
Module 03 IoT Networking.............pdf
PDF
IoTIO16IoT-Networkinghggggggggggggggggggggggggggggggggggggggggggggggggggggggg...
PPTX
Lecture02_IoTSystemArchitectureAndStandards.pptx
PPTX
Lecture01_IntroductionToTheInternetOfThings.pptx
Smart-AntennaSmart-AntennaSmart-Antenna-PPT.pptx
Matching and TuningMatching and Tuning.ppt
Mendeley Mendeley Mendeley Mendeley 2024 (1).ppt
Chapter 4Chapter 4Chapter 4Chapter 4.pdf
7 Research Design (Data Types and Collection).pptx
6 Research Design (Qalititive and Quantitative).pptx
715677653-CPE-445-Internet-of-Things-Chapter-6.pptx
715677653-CPE-445-Internet-of-Things-Chapter-6.pptx
Mendeley 2022Mendeley 2022Mendeley 2022.ppt
itest-lesson5-introduction-to-arduino.pdf
ArduinoPart1ArduinoPart1ArduinoPart1.ppt
iot_9Yocto Project getting started,,.pdf
Gray Modern Three Steps Marketing Process Graph (1).pdf
lesson-10.pdflesson-10.pdflesson-10.pdflesson-10.pdf
lesson-9lesson-9lesson-9lesson-9lesson-9.pdf
Module 04 IoT Security and Privacy...pdf
Module 03 IoT Networking.............pdf
IoTIO16IoT-Networkinghggggggggggggggggggggggggggggggggggggggggggggggggggggggg...
Lecture02_IoTSystemArchitectureAndStandards.pptx
Lecture01_IntroductionToTheInternetOfThings.pptx
Ad

Recently uploaded (20)

PPTX
6ME3A-Unit-II-Sensors and Actuators_Handouts.pptx
PDF
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
PPTX
Graph Data Structures with Types, Traversals, Connectivity, and Real-Life App...
PPTX
introduction to high performance computing
PPTX
"Array and Linked List in Data Structures with Types, Operations, Implementat...
PDF
Accra-Kumasi Expressway - Prefeasibility Report Volume 1 of 7.11.2018.pdf
PDF
EXPLORING LEARNING ENGAGEMENT FACTORS INFLUENCING BEHAVIORAL, COGNITIVE, AND ...
PPTX
communication and presentation skills 01
PDF
Human-AI Collaboration: Balancing Agentic AI and Autonomy in Hybrid Systems
PDF
A SYSTEMATIC REVIEW OF APPLICATIONS IN FRAUD DETECTION
PPTX
Management Information system : MIS-e-Business Systems.pptx
PDF
BIO-INSPIRED HORMONAL MODULATION AND ADAPTIVE ORCHESTRATION IN S-AI-GPT
PPTX
Amdahl’s law is explained in the above power point presentations
PDF
BIO-INSPIRED ARCHITECTURE FOR PARSIMONIOUS CONVERSATIONAL INTELLIGENCE : THE ...
PPTX
Fundamentals of safety and accident prevention -final (1).pptx
PPTX
Current and future trends in Computer Vision.pptx
PDF
UNIT no 1 INTRODUCTION TO DBMS NOTES.pdf
PDF
SMART SIGNAL TIMING FOR URBAN INTERSECTIONS USING REAL-TIME VEHICLE DETECTI...
PPTX
Sorting and Hashing in Data Structures with Algorithms, Techniques, Implement...
PPTX
CyberSecurity Mobile and Wireless Devices
6ME3A-Unit-II-Sensors and Actuators_Handouts.pptx
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
Graph Data Structures with Types, Traversals, Connectivity, and Real-Life App...
introduction to high performance computing
"Array and Linked List in Data Structures with Types, Operations, Implementat...
Accra-Kumasi Expressway - Prefeasibility Report Volume 1 of 7.11.2018.pdf
EXPLORING LEARNING ENGAGEMENT FACTORS INFLUENCING BEHAVIORAL, COGNITIVE, AND ...
communication and presentation skills 01
Human-AI Collaboration: Balancing Agentic AI and Autonomy in Hybrid Systems
A SYSTEMATIC REVIEW OF APPLICATIONS IN FRAUD DETECTION
Management Information system : MIS-e-Business Systems.pptx
BIO-INSPIRED HORMONAL MODULATION AND ADAPTIVE ORCHESTRATION IN S-AI-GPT
Amdahl’s law is explained in the above power point presentations
BIO-INSPIRED ARCHITECTURE FOR PARSIMONIOUS CONVERSATIONAL INTELLIGENCE : THE ...
Fundamentals of safety and accident prevention -final (1).pptx
Current and future trends in Computer Vision.pptx
UNIT no 1 INTRODUCTION TO DBMS NOTES.pdf
SMART SIGNAL TIMING FOR URBAN INTERSECTIONS USING REAL-TIME VEHICLE DETECTI...
Sorting and Hashing in Data Structures with Algorithms, Techniques, Implement...
CyberSecurity Mobile and Wireless Devices

Chapter Chapter Chapter Chapter Chapter 6.pdf

  • 1. 1 Chapter 6 : Antenna Arrays • Introduction • Two-Element Array • N-element Linear Array: Uniform Amplitude and Spacing • N-element Linear Array: Directivity • N-element Linear Array: Uniform spacing, Non-uniform Amplitude • Planar Array
  • 2. 2 Antenna Array: Introduction • Array is an assembly of antenna elements arranged in an orderly fashion. The elements are usually identical. • Why array? When high gain and/or narrow beam are required: – Single element -> Wide beam (low directivity) – Increasing size -> difficult to build and expensive – Useful especially when the element gain is low.
  • 3. 3 Antenna Array: Introduction (2) • Advantages – Higher directivity – Narrower beam – Lower sidelobes – Electronic steerable beam • Types – Fix direction – Steerable : Mechanical or Electronic (phased arrays)
  • 4. 4 Antenna Array: Introduction (3) • In an array of identical elements, there are in general five controls that can be used to shape the overall pattern of the antenna: 1. Geometrical configuration (linear, circular, etc.) 2. Relative displacement between elements 3. Excitation amplitude of individual elements 4. Excitation phase of individual elements 5. Relative pattern of individual elements
  • 5. The linked image cannot be displayed. The file may have been moved, renamed, or deleted. Verify that the link points to the correct file and location. 5 Examples Very Large Antenna (VLA) Airborne Warning and Control System (AWACS)
  • 6. 6 Two-element Array • Consider two-element array of horizontal infinitesimal dipoles (assume no coupling between elements) Far-field observation Two infinitesimal dipoles
  • 7. 7 Two-element Array (2)     cos 4 ˆ 0 r e l I jk jkr   E Recall the far-zone electric field of horizontal infinitesimal dipole in the y-z plane               2 2 2 1 1 1 2 1 cos 4 cos 4 ˆ 2 1       r e I r e I l jk jkr jkr E E E Thus the total electric field becomes:
  • 8. 8 Two-Element Array (3)  cos 2 1 d r r    cos 2 2 d r r   r r r   2 1 Using the far-field approximation   2 / cos 2 2 / cos 1 4 cos ˆ       jkd jkd jkr e I e I r e l jk     E The total field becomes: ) 2 cos 2 cos( 2 4 cos ˆ 0          d k r e l I jk jkr E difference phase : , ; If 2 / 0 2 2 / 0 1    j j e I I e I I    ) factor(AF) (array factor) (element field total  
  • 10. 10 Electric Field Pattern (2) 4 / , 2 /      d
  • 11. 11 Electric Field Pattern (2) 4 / , 2 /       d
  • 12. 12 Quiz • Find the far-zone electric field of a two- element array of infinitesimal circular loops. Assume that the loops are parallel to the x-y plane and the two elements are aligned along the z axis. • (i) I1=I0, I2=I0, d = λ λ λ λ/4 • (ii) I1=I0, I2=I0, d = λ λ λ λ/2 • (iii) I1=I0, I2=-I0, d = λ λ λ λ/2 • (iv) I1=I0, I2=jI0, d = λ λ λ λ/2
  • 13. 13 N-element Linear Array: Uniform amplitude & spacing                          cos where 1 AF 1 ) 1 ( ) cos )( 1 ( ) cos ( 2 ) cos ( kd e e e e N n n j kd N j kd j kd j L If the amplitude and spacing are both uniform, the array factor becomes
  • 14. 14 N-element Linear Array: Uniform amplitude & spacing (2) 2 sin 2 sin 1 1 AF 2 1 2 2 2 2 2 1                            N e e e e e e e e N j j j N j N j N j j jN thus If the reference point is the physical center of the array 2 2 sin 2 sin 2 sin AF small :                    N N
  • 15. 15 N-element Linear Array: Uniform amplitude & spacing (3)                            2 sinc 2 2 sin 2 sin 2 sin (AF) small : n N N N N N K K , 3 , 2 , ; , 3 , 2 , 1 2 2 cos 2 0 2 sin 1 N N N n n N n d n N N n n                                         Normalized AF Nulls   K , 2 , 1 , 0 2 2 cos 2 1                m m d m m m          Maxima
  • 17. 17 Sinc function plot 0 5 10 15 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 |sin(x)/x|
  • 18. 18 N-element Linear Array: Uniform amplitude & spacing (4)                                              N d N d N N h h 782 . 2 2 sin 2 782 . 2 2 cos 391 . 1 2 2 1 2 sin 2 sin 1 1              HPBW (symmetrical case) 3-dB point Secondary Maxima h m h      2 K , 3 , 2 , 1 ; 1 2 2 cos 2 1 2 2 1 2 sin 1                                  s N s d s N N s s s            
  • 19. 19 N-element Linear Array: Uniform amplitude & spacing (5) First sidelobe                              N d N s s 3 2 cos 2 3 2 1 dB 46 . 13 212 . 0 3 2 2 2 sin (AF) 1 , n                               s s N N First sidelobe level
  • 20. 20 Example #2 #1 #3 d d z y 0 2 I I   2 / 0 1  j e I I   0 3 I I  A 3-element array of isotropic sources has the phase and amplitude relationships shown. The spacing between elements is d=λ/2. (a)Find the array factor. (b)Find all the nulls.
  • 21. 21 Broadside Array 0 cos 2 /            kd 4 / , 10    d N
  • 23. 23
  • 24. 24
  • 25. 25 Ordinary End-fire Array kd kd kd                cos 4 / 10    d N kd kd kd               0 cos
  • 26. 26 Ordinary End-fire Array (2) 4 / , 10    d N
  • 27. 27 Grating Lobes •If d=λ/2, end-fire radiation exists simultaneously in both directions. •If d = nλ, also broad-side radiation. •To avoid grating lobes, 2 max   d
  • 28. 28
  • 29. 29
  • 30. 30 Phased (Scanning) Array 0 0 cos cos cos 0          kd kd kd         4 / , 10    d N
  • 31. 31 Phased (Scanning) Array (2)                                                  Nkd Nkd N kd d N kd d h 782 . 2 cos cos 782 . 2 cos cos 782 . 2 cos 2 cos 782 . 2 cos 2 cos 0 1 0 1 0 1 0 1         HPBW                      d L d L h     443 . 0 cos cos 443 . 0 cos cos 0 1 0 1 Since N = (L+d)/d, Not valid for end-fire arrays, i.e., θ0=0,π.
  • 32. 32 Hansen-Woodyard End-fire Array 0 for 92 . 2 0                       N kd N kd                      0 for 92 . 2 N kd N kd                      | cos | | | ; | cos | | | ; 0 For 0 0 kd N kd Additional Conditions:                       0 0 | cos | | | ; | cos | | | ; For kd N kd which yields 4 4 1 large :   N N N d   
  • 35. 35
  • 36. 36
  • 37. 37 N-Element Array: Directivity • Broadside Array        cos ; 2 2 sin 2 sin 2 sin (AF) small : n kd N N N N                       cos 2 ; ) sin( 2 cos cos 2 sin ) AF ( ) , ( 2 2 2 kd N Z Z Z kd N kd N U n                             Recall that AF for broadside arrays is given by The radiation intensity then becomes: Clearly, the maximum Umax=1 at θ=π/2
  • 38. 38 N-Element Array: Directivity (2) • Broadside Array (cont’d) The “average” radiation intensity can be obtained from Using                                         0 2 2 0 0 2 0 sin cos 2 ) cos 2 sin( 2 1 sin ) sin( 4 1 ) , ( 4 1 4 d kd N kd N d d Z Z d U P U rad    d kd N dZ kd N Z sin 2 ; cos 2                       2 / 2 / 2 / 2 / 2 2 0 ) sin( 1 ) sin( 1 Nkd Nkd Nkd Nkd dZ Z Z Nkd dZ Z Z Nkd U
  • 39. 39 N-Element Array: Directivity (3) • Broadside Array (cont’d)                     dZ Z Z Nkd dZ Z Z Nkd U Nkd Nkd 2 2 / 2 / 2 0 ) sin( 1 ) sin( 1 For a large array (Nkd/2 -> large), The directivity is then given by   d N Nkd U U D 2 0 max 0                dZ Z Z 2 ) sin( Nkd U   0    L d d L d N D d L d N L 2 1 2 2 ) 1 ( 0              Using L=(N-1)d Since
  • 40. 40 N-Element Array: Directivity (4) • Ordinary end-fire Array ) 1 (cos ; 2 2 sin 2 sin 2 sin (AF) small : n                        kd N N N N   ) 1 (cos 2 ; ) sin( 2 ) 1 (cos ) 1 (cos 2 sin ) AF ( ) , ( 2 2 2                                     kd N Z Z Z kd N kd N U n Recall that AF for ordinary end-fire arrays (θ=0) is given by The radiation intensity then becomes: Clearly, the maximum Umax=1 at θ=0
  • 41. 41 N-Element Array: Directivity (5) • Ordinary end-fire Array (cont’d) The “average” radiation intensity can be obtained from Using                                           0 2 2 0 0 2 0 sin ) 1 (cos 2 )) 1 (cos 2 sin( 2 1 sin ) sin( 4 1 ) , ( 4 1 4 d kd N kd N d d Z Z d U P U rad    d kd N dZ kd N Z sin 2 ); 1 (cos 2                       Nkd Nkd dZ Z Z Nkd dZ Z Z Nkd U 0 0 2 2 0 ) sin( 1 ) sin( 1
  • 42. 42 N-Element Array: Directivity (6) • Ordinary end-fire Array (cont’d)                  0 2 0 2 0 ) sin( 1 ) sin( 1 dZ Z Z Nkd dZ Z Z Nkd U Nkd For a large array (Nkd -> large), The directivity is then given by   d N Nkd U U D 4 2 0 max 0    Nkd U 2 0      L d d L d N D d L d N L 4 1 4 4 ) 1 ( 0              Using L=(N-1)d Thus
  • 43. 43 N-Element Array: Directivity (7) • Hansen-Woodyard end-fire Array Nkd Nkd Nkd U 2 554 . 0 871 . 0 8515 . 1 2 2 2 1 2 0                      For a large array (Nkd -> large), The directivity is then given by            d N Nkd U U D 4 805 . 1 2 554 . 0 1 0 max 0                           L d d L D d L d N L 4 805 . 1 1 4 805 . 1 ) 1 ( 0 Using L=(N-1)d
  • 44. 44
  • 45. 45 Example • Design an 18-element uniform linear array with a spacing of λ λ λ λ/4 between elements. Assume that the array is aligned along the z-axis. a) Find the array factor for the broadside array case. b) Find the first null and sidelobe locations of a). c) Find the phase shift such that the maximum of the array factor is at θ0=45°. d) Find the first null and sidelobe locations of c).
  • 46. 46 18-element AF (broadside array) 0 20 40 60 80 100 120 140 160 180 −50 −45 −40 −35 −30 −25 −20 −15 −10 −5 0 θ [Degree] |(AF) n | [dB] 18−element array factor (Broadside scan
  • 47. 47 18-element AF (scan array) 0 20 40 60 80 100 120 140 160 180 −50 −45 −40 −35 −30 −25 −20 −15 −10 −5 0 θ [Degree] |(AF) n | [dB] 18−element array factor
  • 48. 48 Quiz Find the array factor of the 3-element array of isotropic sources shown below. The spacing between elements is d=λ/4 and I1 = 1, I2 = -j2, I3= -1.
  • 49. 49 N-element Array: Non-uniform amplitude, uniform spacing • Uniform amplitude -> High sidelobe • Two popular distributions: – Binomial (maximally flat) – Tschebysheff (equiripple) • HPBW: Uniform<Tschebysheff<Binomial • Sidelobe level: Binomial<Tschebysheff<Uniform
  • 50. 50
  • 51. 51
  • 52. 52
  • 53. 53
  • 54. 54
  • 55. 55
  • 56. 56
  • 57. 57
  • 58. 58
  • 59. 59 Planar Array • Linear Array = one-dimensional array, i.e., can scan the beam only in one plane. • In order to be able to scan the beam in any direction, two-dimensional arrays are needed. Geometries can be planar, circle, cylindrical, spherical and so on.
  • 61. 61 Array Factor      M m kd m j m x x e I 1 ) cos sin )( 1 ( 1 AF    yn xm kd n j M m kd m j m N n n S S e e I I y y x x                 ) sin sin )( 1 ( 1 ) cos sin )( 1 ( 1 1 1 AF       y y y x x x y y x x kd kd N N M M                              sin sin ; cos sin ; 2 sin 2 sin 2 sin 2 sin (AF)n AF for each linear array along x-axis: AF for the entire planar array: For uniform excitation, i.e., |Im1I1n|=I0,
  • 62. 62 Planar Array Example 5 ; 4 / , 6 / ); 2 2 /( ; 2 / 0 0          N M d d y x y x        