EC6602 ANTENNA AND WAVE
PROPAGATION
M.KRISHNAMOORTHY
Asst.Professor/ECE
GOJAN SCHOOL OF BUSINESS AND
TECHNOLOGY
UNIT-II
WIRE ANTENNAS AND
ANTENNA ARRAYS
Categories
Radiation Pattern
a) Engineering point of view
Wire Antennas
b) Analytical point of view
Aperture Antennas
Equivalence
Theorem
Basic Antennas
c) Technical point of view
Composite Antennas
- Dipole, Loop, Helix
- Slot, Horn, Frequ. Indep.
- Arrays (linear, planar, Yagi)
- Reflectors (corner, parab.)
Basic Structures
a) Dipole
- Coordinate system
Blackboard!
x
y
z
Load Tr. Line
r
r … (radial) distance
θ
θ … Elevation
φ
φ … Azimuth
- Electric and Magnetic Field Vector
H
Er
The “longer” the vectors E & H at point r, the more energy is
available at that point.
BUT! We are also interested in the changes from location to location.
Basic Structures
a) Dipole
- Radiation Pattern
Blackboard!
Radiation Pattern is defined as …
“… the variation of the magnitude of the electric or magnetic field
as a function of direction (at a distance far from the antenna).”
half wave one wave length 1.5 wave lengthvery short dipole
Basics of
Antenna Arrays
Current Sheet
x
y
z
P(r, , )
J
( ) =
−
zyxzyxJ
r
e
A z
jkr
z ddd,,
'4
'


Linear Antenna Arrays
Nyquist Criterion
x
y
z
P(r, , )
J
Aperture  Array
 > 2d
Linear Antenna Array
Assumption: equal antenna elements
Current variation along z
( ) ( ) ( )
−
=
−=
1
0
,
N
n
nnz xxzIzxK 
( ) ( )zgIzI nn =
Complex nth terminal current
( ) ( ) 











=






+






 zx
ezxKP
zx
j
z dd,,
212
21
( )21,sin
2


 Array
jkr
P
r
e
jH =
−
Principle of Pattern Multiplication
Individual Pattern
( ) ( )120sin
2
1
 fP
r
e
jH
jkr
=
−
  HE =
Principle of Pattern Multiplication
ARRAY FACTOR
( ) ( ) 





= 

  z
ezgP jkz
d2
20 ( ) 1
1
0
1

 
−
=
=  njkx
N
n
n eIf
( ) ( ) ( )


 1
221,
f
PP =
Collinear Antenna Array
( ) ( ) ( )
−
=
−=
1
0
,
N
n
nnz zzgIxzxK 
( ) ( ) 





= 

  z
ezgP jkz
d2
20
( ) 2
1
0
2

 
−
=
=  njkz
N
n
n eIf
( ) ( ) ( )


 2
221,
f
PP =
Principle of Pattern Multiplication
AF just on elevation
dependent!
M  N Planar Antenna Array
( ) ( ) ( )
−
=
−
=
−−=
1
0
1
0
,
M
m
N
n
nnnmz xxzzgIzxK 
( ) ( ) 





= 

  z
ezgP jkz
d2
20
( ) 
−
=

−
=
=
1
0
1
0
21
21
,
M
m
jkzjkx
N
n
nm
nm
eeIf 

( ) ( ) ( )


 21
221
,
,
f
PP =
Principle of Pattern Multiplication
Uniformly Spaced
Antenna Arrays
Progressive Phaseshift Array
nj
nn eII 
= max,
An array for which the following phase relationship
holds is called progressive phaseshift array:
 nn =
( )






+−
=
= 
121
0
max,1




d
njN
n
n eIf
Progressive Phaseshift
Array Factor:
Main Beam:
d




2
1 −=
Broadside Array
0=
1
2
3
4
5
30
210
60
240
90
270
120
300
150
330
180 0
x
Main Beam orthogonal to the Array
Endfire Array


d
2−= Main Beam along the Array
1
2
3
4
5
30
210
60
240
90
270
120
300
150
330
180 0
x
Uniform Array
Uniform Array
An array with equispaced elements which are fed with
current of equal magnitude and having a progressive
phase-shift along the array is called …
UNIFORM ARRAY
( ) 
−
=

=
1
0
N
n
unj
euf with 

 cos2 1 kd
d
u +=+=
( )
( )
( )u
Nu
uf
2
1sin
2
1sin
=
Principle Maximum:
Zeros:
Secondary Maxima:
0=u
N
n
u 2=
N
m
u
12 +
= 
Uniform Array
1. Sidelobe level = 13.5dB → independent of N!
N
2
N
u
N
 22
+−
-8 -6 -4 -2 0 2 4 6 8
0
1
2
3
4
5
6
7
13.5dB
2. Beamwidth → dependent of N!
Broadside Array
Main beam is for u=0. →
N
kd


 2
2
cos =





+
Broadside Array


 cos2 1 kd
d
u +=+=
kd

 −=cos
2/90  == → 0=
Main Beamwidth (MBW)BS
( ) 





==
Nd

 arcsin22MBW BS
→
Ordinary Endfire Array
Main beam is for u=0. →
( ) 
N
kd


2
1cos =−
Ordinary Endfire Array


 cos2 1 kd
d
u +=+=
kd

 −=cos
00 == → kd−=
Main Beamwidth (MBW)OE
( ) 







=
Nd2
arcsin4MBW OE

→
Endfire Array with increased Directivity
(71% of OE)
( ) 
Nn
kd


2
1cos =−−
Endfire Array with increased Directivity


 cos2 1 kd
d
u +=+=
kd

 −=cos
00 == →






+−=
N
kd


Main Beamwidth (MBW)EID
( ) 







=
Nd4
arcsin4MBW EID

→
Pattern Analysis
Array Polynomial
 cos1 =
( ) 1
1
0
1

 
−
=
=  dnkj
N
n
n eIf nj
nn eII 
= max,
'
nn n  +=
Progressive
Phase Shift
Deviation from
progressive PS
( )nuj
N
n
n
n
eIf +
−
=
= 
'
1
0
max,

)(1
1
0
zPzAf N
n
N
n
n −
−
=
= 
;ju
ez =
'
max,
nj
nn eIA 
=
 coskdu +=
Array Polynomial
Nulls on unity circle indicate no-
radiation in that particular direction!
)(1
1
110 zPzAzAAf N
N
N −
−
− +++= 
( ) ( ) ( )1211 )( −− −−−= NN zzzzzzzP 
i
N
i zzf −= −
=
1
1
u=0
u=/2
1
Visible Region
N=4 Broadside Array
Nulls on unity circle indicate no-
radiation in that particular direction!
123
+++= zzzf
u=0
u=/2
1
z1
z2
z3

2
1
1
j
ez =
j
ez =2

2
1
3
j
ez
−
=
Broader Mainlobe? Narrower Mainlobe?
Binomial Array for d=/2
( ) 1331 233
+++=+= zzzzf
u=0
u=/2
1z1
z2
z3
1−=nz
Broadest Mainlobe
Always just one lobe!
( ) 1
1
−
+=
N
zf
Filled Disk
Westerbork
VLA
EC6602 - AWP UNIT-2

More Related Content

PDF
EC6602 - AWP UNIT3
PDF
EC6602-Antenna fundamentals
PDF
Antenna parameters
PDF
Antenna basic
PDF
8 slides
PPT
FUNDAMENTAL PARAMETERS OF ANTENNA
PPTX
Measurements of Rediation Resistance in Antenna
PDF
EC6602-Antenna fundamentals new
EC6602 - AWP UNIT3
EC6602-Antenna fundamentals
Antenna parameters
Antenna basic
8 slides
FUNDAMENTAL PARAMETERS OF ANTENNA
Measurements of Rediation Resistance in Antenna
EC6602-Antenna fundamentals new

What's hot (18)

DOC
PPTX
Enhancement in phased array antenna
PDF
Antenna parameters part 3 - Input impedance and VSWR
PDF
Rf antenna basics
PPTX
Array Antennas
PDF
Antenna basics from-r&s
PDF
Ece5318 ch2
PDF
Antenna parameters part 1: Frequency bands, Gain and Radiation Pattern
PDF
The basics of antenna arrays
PDF
N 5-antenna fandamentals-f13
PDF
Antennas and Wave Propagation
PDF
Antennas And Wave Propagation Jntu Model Paper{Www.Studentyogi.Com}
PPT
Lec 2 terms and definitions
PPTX
Antenna Parameters Part 2
PPSX
Awp unit i a (1)
PDF
Antenna parameters part 2 - Polarisation
PDF
Antennas and Wave Propagation
PPTX
Antenna and propagation
Enhancement in phased array antenna
Antenna parameters part 3 - Input impedance and VSWR
Rf antenna basics
Array Antennas
Antenna basics from-r&s
Ece5318 ch2
Antenna parameters part 1: Frequency bands, Gain and Radiation Pattern
The basics of antenna arrays
N 5-antenna fandamentals-f13
Antennas and Wave Propagation
Antennas And Wave Propagation Jntu Model Paper{Www.Studentyogi.Com}
Lec 2 terms and definitions
Antenna Parameters Part 2
Awp unit i a (1)
Antenna parameters part 2 - Polarisation
Antennas and Wave Propagation
Antenna and propagation
Ad

Similar to EC6602 - AWP UNIT-2 (20)

PDF
Theoretical analysis of the radiation fields of short backfire antenna fed by...
PDF
A circular cylindrical dipole antenna
PDF
Spherical array of annular ring microstrip antennas
PDF
Magnet basics
PDF
Chapter Chapter Chapter Chapter Chapter 6.pdf
PDF
Metallic rectangular-grooves based 2D reflectarray antenna excited by an open...
PDF
Radar 2009 a 9 antennas 2
PDF
Monopole antenna radiation into a parallel plate waveguide
PDF
Mie theory of light scattering
PPT
Antennas Basic Parameters and Theory Techniquyes
PDF
Modeling Beam forming in Circular Antenna Array with Directional Emitters
PDF
Physics Marking scheme| Class 12 session 2023-2024
PDF
Neutron Star Powered Nebulae
PDF
Jee main questions
PDF
UCSD NANO106 - 12 - X-ray diffraction
PDF
Circular Polarized Carbon-NanotubePatch Antenna embedded in Superstrates Anis...
PPT
Electrycity 2 p c r o 1
PDF
beamformingantennas1-150723193911-lva1-app6892.pdf
PDF
Radiation patterns account of a circular microstrip antenna loaded two annular
PPT
My presentation Jose M. Escalante Fernandez
Theoretical analysis of the radiation fields of short backfire antenna fed by...
A circular cylindrical dipole antenna
Spherical array of annular ring microstrip antennas
Magnet basics
Chapter Chapter Chapter Chapter Chapter 6.pdf
Metallic rectangular-grooves based 2D reflectarray antenna excited by an open...
Radar 2009 a 9 antennas 2
Monopole antenna radiation into a parallel plate waveguide
Mie theory of light scattering
Antennas Basic Parameters and Theory Techniquyes
Modeling Beam forming in Circular Antenna Array with Directional Emitters
Physics Marking scheme| Class 12 session 2023-2024
Neutron Star Powered Nebulae
Jee main questions
UCSD NANO106 - 12 - X-ray diffraction
Circular Polarized Carbon-NanotubePatch Antenna embedded in Superstrates Anis...
Electrycity 2 p c r o 1
beamformingantennas1-150723193911-lva1-app6892.pdf
Radiation patterns account of a circular microstrip antenna loaded two annular
My presentation Jose M. Escalante Fernandez
Ad

Recently uploaded (20)

PDF
distributed database system" (DDBS) is often used to refer to both the distri...
PPTX
ai_satellite_crop_management_20250815030350.pptx
PPTX
Management Information system : MIS-e-Business Systems.pptx
PDF
Exploratory_Data_Analysis_Fundamentals.pdf
PDF
August 2025 - Top 10 Read Articles in Network Security & Its Applications
PPTX
Software Engineering and software moduleing
PPTX
CyberSecurity Mobile and Wireless Devices
PDF
UEFA_Carbon_Footprint_Calculator_Methology_2.0.pdf
PDF
Soil Improvement Techniques Note - Rabbi
PPTX
"Array and Linked List in Data Structures with Types, Operations, Implementat...
PDF
20250617 - IR - Global Guide for HR - 51 pages.pdf
PPTX
A Brief Introduction to IoT- Smart Objects: The "Things" in IoT
PPTX
Building constraction Conveyance of water.pptx
PDF
MLpara ingenieira CIVIL, meca Y AMBIENTAL
PDF
null (2) bgfbg bfgb bfgb fbfg bfbgf b.pdf
PDF
Artificial Superintelligence (ASI) Alliance Vision Paper.pdf
PDF
First part_B-Image Processing - 1 of 2).pdf
PPTX
mechattonicsand iotwith sensor and actuator
PPTX
Information Storage and Retrieval Techniques Unit III
PPT
Chapter 1 - Introduction to Manufacturing Technology_2.ppt
distributed database system" (DDBS) is often used to refer to both the distri...
ai_satellite_crop_management_20250815030350.pptx
Management Information system : MIS-e-Business Systems.pptx
Exploratory_Data_Analysis_Fundamentals.pdf
August 2025 - Top 10 Read Articles in Network Security & Its Applications
Software Engineering and software moduleing
CyberSecurity Mobile and Wireless Devices
UEFA_Carbon_Footprint_Calculator_Methology_2.0.pdf
Soil Improvement Techniques Note - Rabbi
"Array and Linked List in Data Structures with Types, Operations, Implementat...
20250617 - IR - Global Guide for HR - 51 pages.pdf
A Brief Introduction to IoT- Smart Objects: The "Things" in IoT
Building constraction Conveyance of water.pptx
MLpara ingenieira CIVIL, meca Y AMBIENTAL
null (2) bgfbg bfgb bfgb fbfg bfbgf b.pdf
Artificial Superintelligence (ASI) Alliance Vision Paper.pdf
First part_B-Image Processing - 1 of 2).pdf
mechattonicsand iotwith sensor and actuator
Information Storage and Retrieval Techniques Unit III
Chapter 1 - Introduction to Manufacturing Technology_2.ppt

EC6602 - AWP UNIT-2

  • 1. EC6602 ANTENNA AND WAVE PROPAGATION M.KRISHNAMOORTHY Asst.Professor/ECE GOJAN SCHOOL OF BUSINESS AND TECHNOLOGY
  • 3. Categories Radiation Pattern a) Engineering point of view Wire Antennas b) Analytical point of view Aperture Antennas Equivalence Theorem Basic Antennas c) Technical point of view Composite Antennas - Dipole, Loop, Helix - Slot, Horn, Frequ. Indep. - Arrays (linear, planar, Yagi) - Reflectors (corner, parab.)
  • 4. Basic Structures a) Dipole - Coordinate system Blackboard! x y z Load Tr. Line r r … (radial) distance θ θ … Elevation φ φ … Azimuth - Electric and Magnetic Field Vector H Er The “longer” the vectors E & H at point r, the more energy is available at that point. BUT! We are also interested in the changes from location to location.
  • 5. Basic Structures a) Dipole - Radiation Pattern Blackboard! Radiation Pattern is defined as … “… the variation of the magnitude of the electric or magnetic field as a function of direction (at a distance far from the antenna).” half wave one wave length 1.5 wave lengthvery short dipole
  • 7. Current Sheet x y z P(r, , ) J ( ) = − zyxzyxJ r e A z jkr z ddd,, '4 '  
  • 9. Nyquist Criterion x y z P(r, , ) J Aperture  Array  > 2d
  • 10. Linear Antenna Array Assumption: equal antenna elements Current variation along z ( ) ( ) ( ) − = −= 1 0 , N n nnz xxzIzxK  ( ) ( )zgIzI nn = Complex nth terminal current ( ) ( )             =       +        zx ezxKP zx j z dd,, 212 21 ( )21,sin 2    Array jkr P r e jH = −
  • 11. Principle of Pattern Multiplication Individual Pattern ( ) ( )120sin 2 1  fP r e jH jkr = −   HE = Principle of Pattern Multiplication ARRAY FACTOR ( ) ( )       =     z ezgP jkz d2 20 ( ) 1 1 0 1    − = =  njkx N n n eIf ( ) ( ) ( )    1 221, f PP =
  • 12. Collinear Antenna Array ( ) ( ) ( ) − = −= 1 0 , N n nnz zzgIxzxK  ( ) ( )       =     z ezgP jkz d2 20 ( ) 2 1 0 2    − = =  njkz N n n eIf ( ) ( ) ( )    2 221, f PP = Principle of Pattern Multiplication AF just on elevation dependent!
  • 13. M  N Planar Antenna Array ( ) ( ) ( ) − = − = −−= 1 0 1 0 , M m N n nnnmz xxzzgIzxK  ( ) ( )       =     z ezgP jkz d2 20 ( )  − =  − = = 1 0 1 0 21 21 , M m jkzjkx N n nm nm eeIf   ( ) ( ) ( )    21 221 , , f PP = Principle of Pattern Multiplication
  • 15. Progressive Phaseshift Array nj nn eII  = max, An array for which the following phase relationship holds is called progressive phaseshift array:  nn = ( )       +− = =  121 0 max,1     d njN n n eIf Progressive Phaseshift Array Factor: Main Beam: d     2 1 −=
  • 17. Endfire Array   d 2−= Main Beam along the Array 1 2 3 4 5 30 210 60 240 90 270 120 300 150 330 180 0 x
  • 19. Uniform Array An array with equispaced elements which are fed with current of equal magnitude and having a progressive phase-shift along the array is called … UNIFORM ARRAY ( )  − =  = 1 0 N n unj euf with    cos2 1 kd d u +=+= ( ) ( ) ( )u Nu uf 2 1sin 2 1sin = Principle Maximum: Zeros: Secondary Maxima: 0=u N n u 2= N m u 12 + = 
  • 20. Uniform Array 1. Sidelobe level = 13.5dB → independent of N! N 2 N u N  22 +− -8 -6 -4 -2 0 2 4 6 8 0 1 2 3 4 5 6 7 13.5dB 2. Beamwidth → dependent of N!
  • 21. Broadside Array Main beam is for u=0. → N kd    2 2 cos =      + Broadside Array    cos2 1 kd d u +=+= kd   −=cos 2/90  == → 0= Main Beamwidth (MBW)BS ( )       == Nd   arcsin22MBW BS →
  • 22. Ordinary Endfire Array Main beam is for u=0. → ( )  N kd   2 1cos =− Ordinary Endfire Array    cos2 1 kd d u +=+= kd   −=cos 00 == → kd−= Main Beamwidth (MBW)OE ( )         = Nd2 arcsin4MBW OE  →
  • 23. Endfire Array with increased Directivity (71% of OE) ( )  Nn kd   2 1cos =−− Endfire Array with increased Directivity    cos2 1 kd d u +=+= kd   −=cos 00 == →       +−= N kd   Main Beamwidth (MBW)EID ( )         = Nd4 arcsin4MBW EID  →
  • 25. Array Polynomial  cos1 = ( ) 1 1 0 1    − = =  dnkj N n n eIf nj nn eII  = max, ' nn n  += Progressive Phase Shift Deviation from progressive PS ( )nuj N n n n eIf + − = =  ' 1 0 max,  )(1 1 0 zPzAf N n N n n − − = =  ;ju ez = ' max, nj nn eIA  =  coskdu +=
  • 26. Array Polynomial Nulls on unity circle indicate no- radiation in that particular direction! )(1 1 110 zPzAzAAf N N N − − − +++=  ( ) ( ) ( )1211 )( −− −−−= NN zzzzzzzP  i N i zzf −= − = 1 1 u=0 u=/2 1 Visible Region
  • 27. N=4 Broadside Array Nulls on unity circle indicate no- radiation in that particular direction! 123 +++= zzzf u=0 u=/2 1 z1 z2 z3  2 1 1 j ez = j ez =2  2 1 3 j ez − = Broader Mainlobe? Narrower Mainlobe?
  • 28. Binomial Array for d=/2 ( ) 1331 233 +++=+= zzzzf u=0 u=/2 1z1 z2 z3 1−=nz Broadest Mainlobe Always just one lobe! ( ) 1 1 − += N zf
  • 31. VLA