SlideShare a Scribd company logo
Software Processes
1
Software Processes
The software process
 A structured set of activities required to develop a
software system.
 Many different software processes but all involve:
 Specification – defining what the system should do;
 Design and implementation – defining the organization of the
system and implementing the system;
 Validation – checking that it does what the customer wants;
 Evolution – changing the system in response to changing
customer needs.
 A software process model is an abstract representation
of a process. It presents a description of a process from
some particular perspective.
2
Chapter 2 Software Processes
Software process descriptions
 When we describe and discuss processes, we usually
talk about the activities in these processes such as
specifying a data model, designing a user interface, etc.
and the ordering of these activities.
 Process descriptions may also include:
 Products, which are the outcomes of a process activity;
 Roles, which reflect the responsibilities of the people involved in
the process;
 Pre- and post-conditions, which are statements that are true
before and after a process activity has been enacted or a
product produced.
3
Software Processes
Plan-driven and agile processes
 Plan-driven processes are processes where all of the
process activities are planned in advance and progress
is measured against this plan.
 In agile processes, planning is incremental and it is
easier to change the process to reflect changing
customer requirements.
 In practice, most practical processes include elements of
both plan-driven and agile approaches.
 There are no right or wrong software processes.
4
Software Processes
Software process models
 The waterfall model
 Plan-driven model. Separate and distinct phases of specification
and development.
 Incremental development
 Specification, development and validation are interleaved. May
be plan-driven or agile.
 Reuse-oriented software engineering
 The system is assembled from existing components. May be
plan-driven or agile.
 In practice, most large systems are developed using a
process that incorporates elements from all of these
models.
5
Software Processes
The waterfall model
6
Software Processes
Waterfall model phases
 There are separate identified phases in the waterfall
model:
 Requirements analysis and definition
 System and software design
 Implementation and unit testing
 Integration and system testing
 Operation and maintenance
 The main drawback of the waterfall model is the difficulty
of accommodating change after the process is
underway. In principle, a phase has to be complete
before moving onto the next phase.
7
Software Processes
Waterfall model problems
 Inflexible partitioning of the project into distinct stages
makes it difficult to respond to changing customer
requirements.
 Therefore, this model is only appropriate when the requirements
are well-understood and changes will be fairly limited during the
design process.
 Few business systems have stable requirements.
 The waterfall model is mostly used for large systems
engineering projects where a system is developed at
several sites.
 In those circumstances, the plan-driven nature of the waterfall
model helps coordinate the work.
8
Software Processes
Incremental development
9
Software Processes
Incremental development benefits
 The cost of accommodating changing customer
requirements is reduced.
 The amount of analysis and documentation that has to be
redone is much less than is required with the waterfall model.
 It is easier to get customer feedback on the development
work that has been done.
 Customers can comment on demonstrations of the software and
see how much has been implemented.
 More rapid delivery and deployment of useful software to
the customer is possible.
 Customers are able to use and gain value from the software
earlier than is possible with a waterfall process.
10
Software Processes
Incremental development problems
 The process is not visible.
 Managers need regular deliverables to measure progress. If
systems are developed quickly, it is not cost-effective to produce
documents that reflect every version of the system.
 System structure tends to degrade as new increments
are added.
 Unless time and money is spent on refactoring to improve the
software, regular change tends to corrupt its structure.
Incorporating further software changes becomes increasingly
difficult and costly.
11
Software Processes
Reuse-oriented software engineering
 Based on systematic reuse where systems are
integrated from existing components or COTS
(Commercial-off-the-shelf) systems.
 Process stages
 Component analysis;
 Requirements modification;
 System design with reuse;
 Development and integration.
 Reuse is now the standard approach for building many
types of business system
 Reuse covered in more depth in Chapter 16.
12
Software Processes
Reuse-oriented software engineering
13
Software Processes
Types of software component
 Web services that are developed according to service
standards and which are available for remote invocation.
 Collections of objects that are developed as a package
to be integrated with a component framework such as
.NET or J2EE.
 Stand-alone software systems (COTS) that are
configured for use in a particular environment.
14
Software Processes
Process activities
 Real software processes are inter-leaved sequences of
technical, collaborative and managerial activities with the
overall goal of specifying, designing, implementing and
testing a software system.
 The four basic process activities of specification,
development, validation and evolution are organized
differently in different development processes. In the
waterfall model, they are organized in sequence,
whereas in incremental development they are inter-
leaved.
15
Software Processes
Software specification
 The process of establishing what services are required
and the constraints on the system’s operation and
development.
 Requirements engineering process
 Feasibility study
• Is it technically and financially feasible to build the system?
 Requirements elicitation and analysis
• What do the system stakeholders require or expect from the system?
 Requirements specification
• Defining the requirements in detail
 Requirements validation
• Checking the validity of the requirements
16
Software Processes
The requirements engineering process
17
Software Processes
Software design and implementation
 The process of converting the system specification into
an executable system.
 Software design
 Design a software structure that realises the specification;
 Implementation
 Translate this structure into an executable program;
 The activities of design and implementation are closely
related and may be inter-leaved.
18
Software Processes
A general model of the design process
19
Software Processes
Design activities
 Architectural design, where you identify the overall
structure of the system, the principal components
(sometimes called sub-systems or modules), their
relationships and how they are distributed.
 Interface design, where you define the interfaces
between system components.
 Component design, where you take each system
component and design how it will operate.
 Database design, where you design the system data
structures and how these are to be represented in a
database.
20
Software Processes
Software validation
 Verification and validation (V & V) is intended to show
that a system conforms to its specification and meets the
requirements of the system customer.
 Involves checking and review processes and system
testing.
 System testing involves executing the system with test
cases that are derived from the specification of the real
data to be processed by the system.
 Testing is the most commonly used V & V activity.
21
Software Processes
Stages of testing
22
Software Processes
Testing stages
 Development or component testing
 Individual components are tested independently;
 Components may be functions or objects or coherent groupings
of these entities.
 System testing
 Testing of the system as a whole. Testing of emergent properties
is particularly important.
 Acceptance testing
 Testing with customer data to check that the system meets the
customer’s needs.
23
Software Processes
Testing phases in a plan-driven software
process
24
Software Processes
Software evolution
 Software is inherently flexible and can change.
 As requirements change through changing business
circumstances, the software that supports the business
must also evolve and change.
 Although there has been a demarcation between
development and evolution (maintenance) this is
increasingly irrelevant as fewer and fewer systems are
completely new.
25
Software Processes
System evolution
26
Software Processes
Software Processes
Lecture 2
27
Software Processes
Coping with change
 Change is inevitable in all large software projects.
 Business changes lead to new and changed system
requirements
 New technologies open up new possibilities for improving
implementations
 Changing platforms require application changes
 Change leads to rework so the costs of change include
both rework (e.g. re-analyzing requirements) as well as
the costs of implementing new functionality
28
Software Processes
Reducing the costs of rework
 Change avoidance, where the software process includes
activities that can anticipate possible changes before
significant rework is required.
 For example, a prototype system may be developed to show
some key features of the system to customers.
 Change tolerance, where the process is designed so that
changes can be accommodated at relatively low cost.
 This normally involves some form of incremental development.
Proposed changes may be implemented in increments that have
not yet been developed. If this is impossible, then only a single
increment (a small part of the system) may have be altered to
incorporate the change.
29
Software Processes
Software prototyping
 A prototype is an initial version of a system used to
demonstrate concepts and try out design options.
 A prototype can be used in:
 The requirements engineering process to help with requirements
elicitation and validation;
 In design processes to explore options and develop a UI design;
 In the testing process to run back-to-back tests.
30
Software Processes
Benefits of prototyping
 Improved system usability.
 A closer match to users’ real needs.
 Improved design quality.
 Improved maintainability.
 Reduced development effort.
31
Software Processes
The process of prototype development
32
Software Processes
Prototype development
 May be based on rapid prototyping languages or tools
 May involve leaving out functionality
 Prototype should focus on areas of the product that are not well-
understood;
 Error checking and recovery may not be included in the
prototype;
 Focus on functional rather than non-functional requirements
such as reliability and security
Software Processes 33
Throw-away prototypes
 Prototypes should be discarded after development as
they are not a good basis for a production system:
 It may be impossible to tune the system to meet non-functional
requirements;
 Prototypes are normally undocumented;
 The prototype structure is usually degraded through rapid
change;
 The prototype probably will not meet normal organisational
quality standards.
34
Software Processes
Incremental delivery
 Rather than deliver the system as a single delivery, the
development and delivery is broken down into
increments with each increment delivering part of the
required functionality.
 User requirements are prioritised and the highest priority
requirements are included in early increments.
 Once the development of an increment is started, the
requirements are frozen though requirements for later
increments can continue to evolve.
35
Software Processes
Incremental development and delivery
 Incremental development
 Develop the system in increments and evaluate each increment
before proceeding to the development of the next increment;
 Normal approach used in agile methods;
 Evaluation done by user/customer proxy.
 Incremental delivery
 Deploy an increment for use by end-users;
 More realistic evaluation about practical use of software;
 Difficult to implement for replacement systems as increments
have less functionality than the system being replaced.
Software Processes 36
Incremental delivery
37
Software Processes
Incremental delivery advantages
 Customer value can be delivered with each increment so
system functionality is available earlier.
 Early increments act as a prototype to help elicit
requirements for later increments.
 Lower risk of overall project failure.
 The highest priority system services tend to receive the
most testing.
38
Software Processes
Incremental delivery problems
 Most systems require a set of basic facilities that are
used by different parts of the system.
 As requirements are not defined in detail until an increment is to
be implemented, it can be hard to identify common facilities that
are needed by all increments.
 The essence of iterative processes is that the
specification is developed in conjunction with the
software.
 However, this conflicts with the procurement model of many
organizations, where the complete system specification is part of
the system development contract.
39
Software Processes
Spiral model
 Process is represented as a spiral rather than as a
sequence of activities with backtracking.
 Each loop in the spiral represents a phase in the
process.
 No fixed phases such as specification or design - loops
in the spiral are chosen depending on what is required.
 Risks are explicitly assessed and resolved throughout
the process.
40
Software Processes
Spiral model of the software process
41
Software Processes
Spiral model sectors
 Objective setting
 Specific objectives for the phase are identified.
 Risk assessment and reduction
 Risks are assessed and activities put in place to reduce the key
risks.
 Development and validation
 A development model for the system is chosen which can be
any of the generic models.
 Planning
 The project is reviewed and the next phase of the spiral is
planned.
42
Software Processes
Spiral model usage
 Spiral model has been very influential in helping people
think about iteration in software processes and
introducing the risk-driven approach to development.
 In practice, however, the model is rarely used as
published for practical software development.
Software Processes 43
The Rational Unified Process
 A modern generic process derived from the work on the
UML and associated process.
 Brings together aspects of the 3 generic process models
discussed previously.
 Normally described from 3 perspectives
 A dynamic perspective that shows phases over time;
 A static perspective that shows process activities;
 A practive perspective that suggests good practice.
44
Software Processes
Phases in the Rational Unified Process
45
Software Processes
RUP phases
 Inception
 Establish the business case for the system.
 Elaboration
 Develop an understanding of the problem domain and the
system architecture.
 Construction
 System design, programming and testing.
 Transition
 Deploy the system in its operating environment.
46
Software Processes
RUP iteration
 In-phase iteration
 Each phase is iterative with results developed incrementally.
 Cross-phase iteration
 As shown by the loop in the RUP model, the whole set of phases
may be enacted incrementally.
Software Processes 47
Static workflows in the Rational Unified Process
Workflow Description
Business modelling The business processes are modelled using business
use cases.
Requirements Actors who interact with the system are identified and
use cases are developed to model the system
requirements.
Analysis and design A design model is created and documented using
architectural models, component models, object
models and sequence models.
Implementation The components in the system are implemented and
structured into implementation sub-systems.
Automatic code generation from design models helps
accelerate this process.
48
Software Processes
Static workflows in the Rational Unified Process
Workflow Description
Testing Testing is an iterative process that is carried out in conjunction
with implementation. System testing follows the completion of
the implementation.
Deployment A product release is created, distributed to users and installed in
their workplace.
Configuration and
change management
This supporting workflow managed changes to the system (see
Chapter 25).
Project management This supporting workflow manages the system development (see
Chapters 22 and 23).
Environment This workflow is concerned with making appropriate software
tools available to the software development team.
49
Software Processes
RUP good practice
 Develop software iteratively
 Plan increments based on customer priorities and deliver highest
priority increments first.
 Manage requirements
 Explicitly document customer requirements and keep track of
changes to these requirements.
 Use component-based architectures
 Organize the system architecture as a set of reusable
components.
50
Software Processes
RUP good practice
 Visually model software
 Use graphical UML models to present static and dynamic views
of the software.
 Verify software quality
 Ensure that the software meet’s organizational quality standards.
 Control changes to software
 Manage software changes using a change management system
and configuration management tools.
Software Processes 51

More Related Content

PPTX
Software process
PPTX
Process in Software Engineering/4'ps in Software Engineerin
PPTX
Ch2-Software Engineering 9
PPTX
PPTX
SE Sumerville 9th Chp 2
PPTX
Lecture - 7-10.pptx
PPT
Ian Sommerville, Software Engineering, 9th Edition Ch2
PDF
ch2swprocesses-150102101840-conversion-gate02.pdf
Software process
Process in Software Engineering/4'ps in Software Engineerin
Ch2-Software Engineering 9
SE Sumerville 9th Chp 2
Lecture - 7-10.pptx
Ian Sommerville, Software Engineering, 9th Edition Ch2
ch2swprocesses-150102101840-conversion-gate02.pdf

Similar to chapter no 2softwareprocess-160107000546.f (20)

PDF
340_18CS35_se_mod1(secab).pdf
PPTX
software process models-software process models
PPTX
Chapter 2 Software Processes Processes.pptx
PDF
Ch2 software engineering and Processes.pdf
PDF
Chapter 2 Software Processes.pdf
PPTX
Ch2 - SW Processes
PPTX
The Software Process in Software Engineering
PPTX
SE - Lecture 2 - SW Devl Process.pptx
PDF
CS 123 Lecture 02 2023-2024.pdf take it s
PPTX
Ch2 sw processes
PPTX
SOFTWARE ENGINEERING PART 1
PDF
COMP401 Software Engineering: Software Processes
PPTX
Ch2
PPTX
Ch 2 Software Engineering
PDF
Ch2 SW Processes.pdf ian simmercille 10th edition
PPTX
Software Engineering Process
PDF
Ch2 SW Processes.pdfru5i56eui5ue65u6e546ywu
PPT
SE2.ppt
PPTX
04_Materi Software Proses-Models(1).pptx
340_18CS35_se_mod1(secab).pdf
software process models-software process models
Chapter 2 Software Processes Processes.pptx
Ch2 software engineering and Processes.pdf
Chapter 2 Software Processes.pdf
Ch2 - SW Processes
The Software Process in Software Engineering
SE - Lecture 2 - SW Devl Process.pptx
CS 123 Lecture 02 2023-2024.pdf take it s
Ch2 sw processes
SOFTWARE ENGINEERING PART 1
COMP401 Software Engineering: Software Processes
Ch2
Ch 2 Software Engineering
Ch2 SW Processes.pdf ian simmercille 10th edition
Software Engineering Process
Ch2 SW Processes.pdfru5i56eui5ue65u6e546ywu
SE2.ppt
04_Materi Software Proses-Models(1).pptx
Ad

Recently uploaded (20)

PPTX
human mycosis Human fungal infections are called human mycosis..pptx
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PPTX
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
PDF
Microbial disease of the cardiovascular and lymphatic systems
PDF
Origin of periodic table-Mendeleev’s Periodic-Modern Periodic table
PPTX
Introduction to Child Health Nursing – Unit I | Child Health Nursing I | B.Sc...
PDF
FourierSeries-QuestionsWithAnswers(Part-A).pdf
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PDF
Abdominal Access Techniques with Prof. Dr. R K Mishra
PPTX
Institutional Correction lecture only . . .
PDF
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
PDF
RMMM.pdf make it easy to upload and study
PDF
Basic Mud Logging Guide for educational purpose
PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PDF
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PPTX
PPH.pptx obstetrics and gynecology in nursing
PDF
Mark Klimek Lecture Notes_240423 revision books _173037.pdf
PDF
O5-L3 Freight Transport Ops (International) V1.pdf
human mycosis Human fungal infections are called human mycosis..pptx
2.FourierTransform-ShortQuestionswithAnswers.pdf
Microbial diseases, their pathogenesis and prophylaxis
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
Microbial disease of the cardiovascular and lymphatic systems
Origin of periodic table-Mendeleev’s Periodic-Modern Periodic table
Introduction to Child Health Nursing – Unit I | Child Health Nursing I | B.Sc...
FourierSeries-QuestionsWithAnswers(Part-A).pdf
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
Abdominal Access Techniques with Prof. Dr. R K Mishra
Institutional Correction lecture only . . .
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
RMMM.pdf make it easy to upload and study
Basic Mud Logging Guide for educational purpose
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PPH.pptx obstetrics and gynecology in nursing
Mark Klimek Lecture Notes_240423 revision books _173037.pdf
O5-L3 Freight Transport Ops (International) V1.pdf
Ad

chapter no 2softwareprocess-160107000546.f

  • 2. The software process  A structured set of activities required to develop a software system.  Many different software processes but all involve:  Specification – defining what the system should do;  Design and implementation – defining the organization of the system and implementing the system;  Validation – checking that it does what the customer wants;  Evolution – changing the system in response to changing customer needs.  A software process model is an abstract representation of a process. It presents a description of a process from some particular perspective. 2 Chapter 2 Software Processes
  • 3. Software process descriptions  When we describe and discuss processes, we usually talk about the activities in these processes such as specifying a data model, designing a user interface, etc. and the ordering of these activities.  Process descriptions may also include:  Products, which are the outcomes of a process activity;  Roles, which reflect the responsibilities of the people involved in the process;  Pre- and post-conditions, which are statements that are true before and after a process activity has been enacted or a product produced. 3 Software Processes
  • 4. Plan-driven and agile processes  Plan-driven processes are processes where all of the process activities are planned in advance and progress is measured against this plan.  In agile processes, planning is incremental and it is easier to change the process to reflect changing customer requirements.  In practice, most practical processes include elements of both plan-driven and agile approaches.  There are no right or wrong software processes. 4 Software Processes
  • 5. Software process models  The waterfall model  Plan-driven model. Separate and distinct phases of specification and development.  Incremental development  Specification, development and validation are interleaved. May be plan-driven or agile.  Reuse-oriented software engineering  The system is assembled from existing components. May be plan-driven or agile.  In practice, most large systems are developed using a process that incorporates elements from all of these models. 5 Software Processes
  • 7. Waterfall model phases  There are separate identified phases in the waterfall model:  Requirements analysis and definition  System and software design  Implementation and unit testing  Integration and system testing  Operation and maintenance  The main drawback of the waterfall model is the difficulty of accommodating change after the process is underway. In principle, a phase has to be complete before moving onto the next phase. 7 Software Processes
  • 8. Waterfall model problems  Inflexible partitioning of the project into distinct stages makes it difficult to respond to changing customer requirements.  Therefore, this model is only appropriate when the requirements are well-understood and changes will be fairly limited during the design process.  Few business systems have stable requirements.  The waterfall model is mostly used for large systems engineering projects where a system is developed at several sites.  In those circumstances, the plan-driven nature of the waterfall model helps coordinate the work. 8 Software Processes
  • 10. Incremental development benefits  The cost of accommodating changing customer requirements is reduced.  The amount of analysis and documentation that has to be redone is much less than is required with the waterfall model.  It is easier to get customer feedback on the development work that has been done.  Customers can comment on demonstrations of the software and see how much has been implemented.  More rapid delivery and deployment of useful software to the customer is possible.  Customers are able to use and gain value from the software earlier than is possible with a waterfall process. 10 Software Processes
  • 11. Incremental development problems  The process is not visible.  Managers need regular deliverables to measure progress. If systems are developed quickly, it is not cost-effective to produce documents that reflect every version of the system.  System structure tends to degrade as new increments are added.  Unless time and money is spent on refactoring to improve the software, regular change tends to corrupt its structure. Incorporating further software changes becomes increasingly difficult and costly. 11 Software Processes
  • 12. Reuse-oriented software engineering  Based on systematic reuse where systems are integrated from existing components or COTS (Commercial-off-the-shelf) systems.  Process stages  Component analysis;  Requirements modification;  System design with reuse;  Development and integration.  Reuse is now the standard approach for building many types of business system  Reuse covered in more depth in Chapter 16. 12 Software Processes
  • 14. Types of software component  Web services that are developed according to service standards and which are available for remote invocation.  Collections of objects that are developed as a package to be integrated with a component framework such as .NET or J2EE.  Stand-alone software systems (COTS) that are configured for use in a particular environment. 14 Software Processes
  • 15. Process activities  Real software processes are inter-leaved sequences of technical, collaborative and managerial activities with the overall goal of specifying, designing, implementing and testing a software system.  The four basic process activities of specification, development, validation and evolution are organized differently in different development processes. In the waterfall model, they are organized in sequence, whereas in incremental development they are inter- leaved. 15 Software Processes
  • 16. Software specification  The process of establishing what services are required and the constraints on the system’s operation and development.  Requirements engineering process  Feasibility study • Is it technically and financially feasible to build the system?  Requirements elicitation and analysis • What do the system stakeholders require or expect from the system?  Requirements specification • Defining the requirements in detail  Requirements validation • Checking the validity of the requirements 16 Software Processes
  • 17. The requirements engineering process 17 Software Processes
  • 18. Software design and implementation  The process of converting the system specification into an executable system.  Software design  Design a software structure that realises the specification;  Implementation  Translate this structure into an executable program;  The activities of design and implementation are closely related and may be inter-leaved. 18 Software Processes
  • 19. A general model of the design process 19 Software Processes
  • 20. Design activities  Architectural design, where you identify the overall structure of the system, the principal components (sometimes called sub-systems or modules), their relationships and how they are distributed.  Interface design, where you define the interfaces between system components.  Component design, where you take each system component and design how it will operate.  Database design, where you design the system data structures and how these are to be represented in a database. 20 Software Processes
  • 21. Software validation  Verification and validation (V & V) is intended to show that a system conforms to its specification and meets the requirements of the system customer.  Involves checking and review processes and system testing.  System testing involves executing the system with test cases that are derived from the specification of the real data to be processed by the system.  Testing is the most commonly used V & V activity. 21 Software Processes
  • 23. Testing stages  Development or component testing  Individual components are tested independently;  Components may be functions or objects or coherent groupings of these entities.  System testing  Testing of the system as a whole. Testing of emergent properties is particularly important.  Acceptance testing  Testing with customer data to check that the system meets the customer’s needs. 23 Software Processes
  • 24. Testing phases in a plan-driven software process 24 Software Processes
  • 25. Software evolution  Software is inherently flexible and can change.  As requirements change through changing business circumstances, the software that supports the business must also evolve and change.  Although there has been a demarcation between development and evolution (maintenance) this is increasingly irrelevant as fewer and fewer systems are completely new. 25 Software Processes
  • 28. Coping with change  Change is inevitable in all large software projects.  Business changes lead to new and changed system requirements  New technologies open up new possibilities for improving implementations  Changing platforms require application changes  Change leads to rework so the costs of change include both rework (e.g. re-analyzing requirements) as well as the costs of implementing new functionality 28 Software Processes
  • 29. Reducing the costs of rework  Change avoidance, where the software process includes activities that can anticipate possible changes before significant rework is required.  For example, a prototype system may be developed to show some key features of the system to customers.  Change tolerance, where the process is designed so that changes can be accommodated at relatively low cost.  This normally involves some form of incremental development. Proposed changes may be implemented in increments that have not yet been developed. If this is impossible, then only a single increment (a small part of the system) may have be altered to incorporate the change. 29 Software Processes
  • 30. Software prototyping  A prototype is an initial version of a system used to demonstrate concepts and try out design options.  A prototype can be used in:  The requirements engineering process to help with requirements elicitation and validation;  In design processes to explore options and develop a UI design;  In the testing process to run back-to-back tests. 30 Software Processes
  • 31. Benefits of prototyping  Improved system usability.  A closer match to users’ real needs.  Improved design quality.  Improved maintainability.  Reduced development effort. 31 Software Processes
  • 32. The process of prototype development 32 Software Processes
  • 33. Prototype development  May be based on rapid prototyping languages or tools  May involve leaving out functionality  Prototype should focus on areas of the product that are not well- understood;  Error checking and recovery may not be included in the prototype;  Focus on functional rather than non-functional requirements such as reliability and security Software Processes 33
  • 34. Throw-away prototypes  Prototypes should be discarded after development as they are not a good basis for a production system:  It may be impossible to tune the system to meet non-functional requirements;  Prototypes are normally undocumented;  The prototype structure is usually degraded through rapid change;  The prototype probably will not meet normal organisational quality standards. 34 Software Processes
  • 35. Incremental delivery  Rather than deliver the system as a single delivery, the development and delivery is broken down into increments with each increment delivering part of the required functionality.  User requirements are prioritised and the highest priority requirements are included in early increments.  Once the development of an increment is started, the requirements are frozen though requirements for later increments can continue to evolve. 35 Software Processes
  • 36. Incremental development and delivery  Incremental development  Develop the system in increments and evaluate each increment before proceeding to the development of the next increment;  Normal approach used in agile methods;  Evaluation done by user/customer proxy.  Incremental delivery  Deploy an increment for use by end-users;  More realistic evaluation about practical use of software;  Difficult to implement for replacement systems as increments have less functionality than the system being replaced. Software Processes 36
  • 38. Incremental delivery advantages  Customer value can be delivered with each increment so system functionality is available earlier.  Early increments act as a prototype to help elicit requirements for later increments.  Lower risk of overall project failure.  The highest priority system services tend to receive the most testing. 38 Software Processes
  • 39. Incremental delivery problems  Most systems require a set of basic facilities that are used by different parts of the system.  As requirements are not defined in detail until an increment is to be implemented, it can be hard to identify common facilities that are needed by all increments.  The essence of iterative processes is that the specification is developed in conjunction with the software.  However, this conflicts with the procurement model of many organizations, where the complete system specification is part of the system development contract. 39 Software Processes
  • 40. Spiral model  Process is represented as a spiral rather than as a sequence of activities with backtracking.  Each loop in the spiral represents a phase in the process.  No fixed phases such as specification or design - loops in the spiral are chosen depending on what is required.  Risks are explicitly assessed and resolved throughout the process. 40 Software Processes
  • 41. Spiral model of the software process 41 Software Processes
  • 42. Spiral model sectors  Objective setting  Specific objectives for the phase are identified.  Risk assessment and reduction  Risks are assessed and activities put in place to reduce the key risks.  Development and validation  A development model for the system is chosen which can be any of the generic models.  Planning  The project is reviewed and the next phase of the spiral is planned. 42 Software Processes
  • 43. Spiral model usage  Spiral model has been very influential in helping people think about iteration in software processes and introducing the risk-driven approach to development.  In practice, however, the model is rarely used as published for practical software development. Software Processes 43
  • 44. The Rational Unified Process  A modern generic process derived from the work on the UML and associated process.  Brings together aspects of the 3 generic process models discussed previously.  Normally described from 3 perspectives  A dynamic perspective that shows phases over time;  A static perspective that shows process activities;  A practive perspective that suggests good practice. 44 Software Processes
  • 45. Phases in the Rational Unified Process 45 Software Processes
  • 46. RUP phases  Inception  Establish the business case for the system.  Elaboration  Develop an understanding of the problem domain and the system architecture.  Construction  System design, programming and testing.  Transition  Deploy the system in its operating environment. 46 Software Processes
  • 47. RUP iteration  In-phase iteration  Each phase is iterative with results developed incrementally.  Cross-phase iteration  As shown by the loop in the RUP model, the whole set of phases may be enacted incrementally. Software Processes 47
  • 48. Static workflows in the Rational Unified Process Workflow Description Business modelling The business processes are modelled using business use cases. Requirements Actors who interact with the system are identified and use cases are developed to model the system requirements. Analysis and design A design model is created and documented using architectural models, component models, object models and sequence models. Implementation The components in the system are implemented and structured into implementation sub-systems. Automatic code generation from design models helps accelerate this process. 48 Software Processes
  • 49. Static workflows in the Rational Unified Process Workflow Description Testing Testing is an iterative process that is carried out in conjunction with implementation. System testing follows the completion of the implementation. Deployment A product release is created, distributed to users and installed in their workplace. Configuration and change management This supporting workflow managed changes to the system (see Chapter 25). Project management This supporting workflow manages the system development (see Chapters 22 and 23). Environment This workflow is concerned with making appropriate software tools available to the software development team. 49 Software Processes
  • 50. RUP good practice  Develop software iteratively  Plan increments based on customer priorities and deliver highest priority increments first.  Manage requirements  Explicitly document customer requirements and keep track of changes to these requirements.  Use component-based architectures  Organize the system architecture as a set of reusable components. 50 Software Processes
  • 51. RUP good practice  Visually model software  Use graphical UML models to present static and dynamic views of the software.  Verify software quality  Ensure that the software meet’s organizational quality standards.  Control changes to software  Manage software changes using a change management system and configuration management tools. Software Processes 51