SlideShare a Scribd company logo
Chapter 5
IoT Design Methodology
Bahga & Madisetti, © 2015
Book website: http://www.internet-of-things-book.com
Outline
• IoT Design Methodology that includes:
• Purpose & Requirements Specification
• Process Specification
• Domain Model Specification
• Information Model Specification
• Service Specifications
• IoT Level Specification
• Functional View Specification
• Operational View Specification
• Device & Component Integration
• Application Development
Bahga & Madisetti, © 2015
Book website: http://www.internet-of-things-book.com
IoT Design Methodology - Steps
Step 1: Purpose & Requirements Specification
• The first step in IoT system design methodology is to define the
purpose and requirements of the system. In this step, the system
purpose, behavior and requirements (such as data collection
requirements, data analysis requirements, system management
requirements, data privacy and security requirements, user interface
requirements, ...) are captured.
Step 2: Process Specification
• The second step in the IoT design methodology is to define the
process specification. In this step, the use cases of the IoT system are
formally described based on and derived from the purpose and
requirement specifications.
Step 3: Domain Model Specification
• The third step in the IoT design methodology is to define the Domain
Model. The domain model describes the main concepts, entities and
objects in the domain of IoT system to be designed. Domain model
defines the attributes of the objects and relationships between
objects. Domain model provides an abstract representation of the
concepts, objects and entities in the IoT domain, independent of any
specific technology or platform. With the domain model, the IoT
system designers can get an understanding of the IoT domain for
which the system is to be designed.
Step 4: Information Model Specification
• The fourth step in the IoT design methodology is to define the
Information Model. Information Model defines the structure of all
the information in the IoT system, for example, attributes of Virtual
Entities, relations, etc. Information model does not describe the
specifics of how the information is represented or stored. To define
the information model, we first list the Virtual Entities defined in the
Domain Model. Information model adds more details to the Virtual
Entities by defining their attributes and relations.
Step 5: Service Specifications
• The fifth step in the IoT design methodology is to define the service
specifications. Service specifications define the services in the IoT
system, service types, service inputs/output, service endpoints,
service schedules, service preconditions and service effects.
Step 6: IoT Level Specification
• The sixth step in the IoT design methodology is to define the IoT level
for the system. In Chapter-1, we defined five IoT deployment levels.
Step 7: Functional View Specification
• The seventh step in the IoT design methodology is to define the
Functional View. The Functional View (FV) defines the functions of
the IoT systems grouped into various Functional Groups (FGs). Each
Functional Group either provides functionalities for interacting with
instances of concepts defined in the Domain Model or provides
information related to these concepts.
Step 8: Operational View Specification
• The eighth step in the IoT design methodology is to define the
Operational View Specifications. In this step, various options
pertaining to the IoT system deployment and operation are defined,
such as, service hosting options, storage options, device options,
application hosting options, etc
Step 9: Device & Component Integration
• The ninth step in the IoT design methodology is the integration of the
devices and components.
Step 10: Application Development
• The final step in the IoT design methodology is to develop the IoT
application.
Home Automation Case Study
Step:1 - Purpose & Requirements
• Applying this to our example of a smart home automation system, the
purpose and requirements for the system may be described as follows:
• Purpose : A home automation system that allows controlling of the lights in a home
remotely using a web application.
• Behavior : The home automation system should have auto and manual modes. In
auto mode, the system measures the light level in the room and switches on the
light when it gets dark. In manual mode, the system provides the option of manually
and remotely switching on/off the light.
• System Management Requirement : The system should provide remote monitoring
and control functions.
• Data Analysis Requirement : The system should perform local analysis of the data.
• Application Deployment Requirement : The application should be deployed locally
on the device, but should be accessible remotely.
• Security Requirement : The system should have basic user authentication capability.
Step:2 - Process Specification
Step 3: Domain Model Specification
Step 4: Information Model Specification
Step 5: Service Specifications
Step 5: Service Specifications
Step 6: IoT Level Specification
Step 7: Functional View Specification
Step 8: Operational View Specification
Step 9: Device & Component Integration
Step 10: Application Development
• Auto
• Controls the light appliance automatically based on the lighting
conditions in the room
• Light
• When Auto mode is off, it is used for manually controlling the
light appliance.
• When Auto mode is on, it reflects the current state of the light
appliance.
Implementation: RESTful Web Services
# Models – models.py
from django.db import models
class Mode(models.Model):
name = models.CharField(max_length=50)
class State(models.Model):
name = models.CharField(max_length=50)
# Serializers – serializers.py
from myapp.models import Mode, State
from rest_framework import serializers
class ModeSerializer(serializers.HyperlinkedModelSerializer):
class Meta:
model = Mode
fields = ('url', 'name')
class StateSerializer(serializers.HyperlinkedModelSerializer):
class Meta:
model = State
fields = ('url', 'name')
REST services implemented with Django REST Framework
1. Map services to models. Model
fields store the states (on/off,
auto/manual)
2. Write Model serializers. Serializers allow
complex data (such as model instances) to be
converted to native Python datatypes that can
then be easily rendered into JSON, XML or
other content types.
Implementation: RESTful Web Services
# Views – views.py
from myapp.models import Mode, State
from rest_framework import viewsets
from myapp.serializers import ModeSerializer, StateSerializer
class ModeViewSet(viewsets.ModelViewSet):
queryset = Mode.objects.all()
serializer_class = ModeSerializer
class StateViewSet(viewsets.ModelViewSet):
queryset = State.objects.all()
serializer_class = StateSerializer
3. Write ViewSets for the Models which
combine the logic for a set of related views in
a single class.
# Models – models.py
from django.db import models
class Mode(models.Model):
name = models.CharField(max_length=50)
class State(models.Model):
name = models.CharField(max_length=50)
4. Write URL patterns for the services.
Since ViewSets are used instead of views, we
can automatically generate the URL conf by
simply registering the viewsets with a router
class.
Routers automatically determining how the
URLs for an application should be mapped to
the logic that deals with handling incoming
requests.
# URL Patterns – urls.py
from django.conf.urls import patterns, include, url
from django.contrib import admin
from rest_framework import routers
from myapp import views
admin.autodiscover()
router = routers.DefaultRouter()
router.register(r'mode', views.ModeViewSet)
router.register(r'state', views.StateViewSet)
urlpatterns = patterns('',
url(r'^', include(router.urls)),
url(r'^api-auth/', include('rest_framework.urls', namespace='rest_framework')),
url(r'^admin/', include(admin.site.urls)),
url(r'^home/', 'myapp.views.home'),
)
Implementation: RESTful Web Services
Screenshot of browsable
State REST API
Screenshot of browsable
Mode REST API
Implementation: Controller Native Service
#Controller service
import RPi.GPIO as GPIO
import time
import sqlite3 as lite
import sys
con = lite.connect('database.sqlite')
cur = con.cursor()
GPIO.setmode(GPIO.BCM)
threshold = 1000
LDR_PIN = 18
LIGHT_PIN = 25
def readldr(PIN):
reading=0
GPIO.setup(PIN, GPIO.OUT)
GPIO.output(PIN, GPIO.LOW)
time.sleep(0.1)
GPIO.setup(PIN, GPIO.IN)
while (GPIO.input(PIN)==GPIO.LOW):
reading=reading+1
return reading
def switchOnLight(PIN):
GPIO.setup(PIN, GPIO.OUT)
GPIO.output(PIN, GPIO.HIGH)
def switchOffLight(PIN):
GPIO.setup(PIN, GPIO.OUT)
GPIO.output(PIN, GPIO.LOW)
def runAutoMode():
ldr_reading = readldr(LDR_PIN)
if ldr_reading < threshold:
switchOnLight(LIGHT_PIN)
setCurrentState('on')
else:
switchOffLight(LIGHT_PIN)
setCurrentState('off')
def runManualMode():
state = getCurrentState()
if state=='on':
switchOnLight(LIGHT_PIN)
setCurrentState('on')
elif state=='off':
switchOffLight(LIGHT_PIN)
setCurrentState('off')
def getCurrentMode():
cur.execute('SELECT * FROM myapp_mode')
data = cur.fetchone() #(1, u'auto')
return data[1]
def getCurrentState():
cur.execute('SELECT * FROM myapp_state')
data = cur.fetchone() #(1, u'on')
return data[1]
def setCurrentState(val):
query='UPDATE myapp_state set name="'+val+'"'
cur.execute(query)
while True:
currentMode=getCurrentMode()
if currentMode=='auto':
runAutoMode()
elif currentMode=='manual':
runManualMode()
time.sleep(5)
Native service deployed locally
1. Implement the native service in
Python and run on the device
Implementation: Application
# Views – views.py
def home(request):
out=‘’
if 'on' in request.POST:
values = {"name": "on"}
r=requests.put('http://127.0.0.1:8000/state/1/', data=values, auth=(‘username', ‘password'))
result=r.text
output = json.loads(result)
out=output['name']
if 'off' in request.POST:
values = {"name": "off"}
r=requests.put('http://127.0.0.1:8000/state/1/', data=values, auth=(‘username', ‘password'))
result=r.text
output = json.loads(result)
out=output['name']
if 'auto' in request.POST:
values = {"name": "auto"}
r=requests.put('http://127.0.0.1:8000/mode/1/', data=values, auth=(‘username', ‘password'))
result=r.text
output = json.loads(result)
out=output['name']
if 'manual' in request.POST:
values = {"name": "manual"}
r=requests.put('http://127.0.0.1:8000/mode/1/', data=values, auth=(‘username', ‘password'))
result=r.text
output = json.loads(result)
out=output['name']
r=requests.get('http://127.0.0.1:8000/mode/1/', auth=(‘username', ‘password'))
result=r.text
output = json.loads(result)
currentmode=output['name']
r=requests.get('http://127.0.0.1:8000/state/1/', auth=(‘username', ‘password'))
result=r.text
output = json.loads(result)
currentstate=output['name']
return render_to_response('lights.html',{'r':out, 'currentmode':currentmode, 'currentstate':currentstate},
context_instance=RequestContext(request))
1. Implement Django Application View
Implementation: Application
<div class="app-content-inner">
<fieldset>
<div class="field clearfix">
<label class="input-label icon-lamp" for="lamp-state">Auto</label>
<input id="lamp-state" class="input js-lamp-state hidden" type="checkbox">
{% if currentmode == 'auto' %}
<div class="js-lamp-state-toggle ui-toggle " data-toggle=".js-lamp-state">
{% else %}
<div class="js-lamp-state-toggle ui-toggle js-toggle-off" data-toggle=".js-lamp-state">
{% endif %}
<span class="ui-toggle-slide clearfix">
<form id="my_form11" action="" method="post">{% csrf_token %}
<input name="auto" value="auto" type="hidden" />
<a href="#" onclick="$(this).closest('form').submit()"><strong class="ui-toggle-off">OFF</strong></a>
</form>
<strong class="ui-toggle-handle brushed-metal"></strong>
<form id="my_form13" action="" method="post">{% csrf_token %}
<input name="manual" value="manual" type="hidden" />
<a href="#" onclick="$(this).closest('form').submit()"><strong class="ui-toggle-on">ON</strong></a>
</form></span>
</div></div>
<div class="field clearfix">
<label class="input-label icon-lamp" for="tv-state">Light</label>
<input id="tv-state" class="input js-tv-state hidden" type="checkbox">
{% if currentstate == 'on' %}
<div class="js-tv-state-toggle ui-toggle " data-toggle=".js-tv-state">
{% else %}
<div class="js-tv-state-toggle ui-toggle js-toggle-off" data-toggle=".js-tv-state">
{% endif %}
{% if currentmode == 'manual' %}
<span class="ui-toggle-slide clearfix">
<form id="my_form2" action="" method="post">{% csrf_token %}
<input name="on" value="on" type="hidden" />
<a href="#" onclick="$(this).closest('form').submit()"><strong class="ui-toggle-off">OFF</strong></a>
</form>
<strong class="ui-toggle-handle brushed-metal"></strong>
<form id="my_form3" action="" method="post">{% csrf_token %}
<input name="off" value="off" type="hidden" />
<a href="#" onclick="$(this).closest('form').submit()"><strong class="ui-toggle-on">ON</strong></a>
</form>
</span>
{% endif %}
{% if currentmode == 'auto' %}
{% if currentstate == 'on' %}
<strong class="ui-toggle-on">&nbsp;&nbsp;&nbsp;&nbsp;ON</strong>
{% else %}
<strong class="ui-toggle-on">&nbsp;&nbsp;&nbsp;&nbsp;OFF</strong>
{% endif %}{% endif %}
</div>
</div>
</fieldset></div></div></div>
2. Implement Django Application
Template
Finally - Integrate the System
Django Application
REST services implemented with Django-REST framework
Native service implemented in Python
SQLite Database
Raspberry Pi device to which sensors and actuators are connected
OS running on Raspberry Pi
• Setup the device
• Deploy and run the REST and Native services
• Deploy and run the Application
• Setup the database

More Related Content

PPTX
IoT ppts unitvxbxbdbdgaqarqfqwrfqa 4.pptx
PPTX
IoT ppts unit 4.pptxdaaaaffffffffffaaaaaaaaaaaaff
PPTX
IOT Platform Design Methodology
PPTX
IOT MODULE - 1-1.11 IOT DESIGN METHODOLOGY.pptx
PDF
uniwtfeydnsbchabdcccccccccccccchbwahcvhwgdwgciuwdhij
PPT
Unit-III internet of things sppu. .ppt
PPTX
iot_application_casestudies.pptx
IoT ppts unitvxbxbdbdgaqarqfqwrfqa 4.pptx
IoT ppts unit 4.pptxdaaaaffffffffffaaaaaaaaaaaaff
IOT Platform Design Methodology
IOT MODULE - 1-1.11 IOT DESIGN METHODOLOGY.pptx
uniwtfeydnsbchabdcccccccccccccchbwahcvhwgdwgciuwdhij
Unit-III internet of things sppu. .ppt
iot_application_casestudies.pptx

Similar to Chapter-5.pdf (20)

PPTX
IOT Unit 3 for engineering second year .pptx
PPTX
IoT Platform Design Methodology for Design Management via and for Design Deve...
PDF
internet-of-things-3.....................pdf
PPTX
IoT.pptx
PPTX
IoTES Unit 3 ppt.pptx
PPTX
Iot unit i
PPTX
Iot unit i present by JAVVAJI VENKATRAO SVEC,TIRUPATI
PPTX
Chapter - 1.pptx
PDF
IOT Material AY(24-25) Regulation R22 Syllabus
PDF
"Exploring the Power of Internet of Things"
PPTX
IoT heap 1
PPTX
Lecture3_IoT_System_Design_Methodology-Ch1.pptx
PDF
[Text Book] IoT Class Material - CoAP, OCF, and IoTivity
PDF
combinepdf
PDF
Designing Internet of things
PDF
iot unit1.pdf
PDF
Things.NET Presentation
PPTX
Logical Design Architecture in Internet of Things
PPTX
Embedded to connected
PDF
Getting Started with IoT by Niraj Shah
IOT Unit 3 for engineering second year .pptx
IoT Platform Design Methodology for Design Management via and for Design Deve...
internet-of-things-3.....................pdf
IoT.pptx
IoTES Unit 3 ppt.pptx
Iot unit i
Iot unit i present by JAVVAJI VENKATRAO SVEC,TIRUPATI
Chapter - 1.pptx
IOT Material AY(24-25) Regulation R22 Syllabus
"Exploring the Power of Internet of Things"
IoT heap 1
Lecture3_IoT_System_Design_Methodology-Ch1.pptx
[Text Book] IoT Class Material - CoAP, OCF, and IoTivity
combinepdf
Designing Internet of things
iot unit1.pdf
Things.NET Presentation
Logical Design Architecture in Internet of Things
Embedded to connected
Getting Started with IoT by Niraj Shah
Ad

More from ssuser01a3d0 (6)

PDF
applicationsofiotinternetofthings-170111184957.pdf
PDF
Chapter-7.pdf
PDF
Chapter-4.pdf
PDF
Chapter-6.pdf
PDF
Chapter-3.pdf
PDF
Chapter-1.pdf
applicationsofiotinternetofthings-170111184957.pdf
Chapter-7.pdf
Chapter-4.pdf
Chapter-6.pdf
Chapter-3.pdf
Chapter-1.pdf
Ad

Recently uploaded (20)

PPTX
CYBER-CRIMES AND SECURITY A guide to understanding
PPTX
Sustainable Sites - Green Building Construction
PPTX
Lesson 3_Tessellation.pptx finite Mathematics
PPTX
UNIT-1 - COAL BASED THERMAL POWER PLANTS
PPTX
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
PPTX
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
PPTX
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
PPTX
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
PDF
composite construction of structures.pdf
PPTX
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
PDF
Operating System & Kernel Study Guide-1 - converted.pdf
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PDF
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PPTX
OOP with Java - Java Introduction (Basics)
PDF
Digital Logic Computer Design lecture notes
DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
PDF
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PPTX
web development for engineering and engineering
CYBER-CRIMES AND SECURITY A guide to understanding
Sustainable Sites - Green Building Construction
Lesson 3_Tessellation.pptx finite Mathematics
UNIT-1 - COAL BASED THERMAL POWER PLANTS
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
composite construction of structures.pdf
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
Operating System & Kernel Study Guide-1 - converted.pdf
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
OOP with Java - Java Introduction (Basics)
Digital Logic Computer Design lecture notes
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
web development for engineering and engineering

Chapter-5.pdf

  • 1. Chapter 5 IoT Design Methodology Bahga & Madisetti, © 2015 Book website: http://www.internet-of-things-book.com
  • 2. Outline • IoT Design Methodology that includes: • Purpose & Requirements Specification • Process Specification • Domain Model Specification • Information Model Specification • Service Specifications • IoT Level Specification • Functional View Specification • Operational View Specification • Device & Component Integration • Application Development Bahga & Madisetti, © 2015 Book website: http://www.internet-of-things-book.com
  • 4. Step 1: Purpose & Requirements Specification • The first step in IoT system design methodology is to define the purpose and requirements of the system. In this step, the system purpose, behavior and requirements (such as data collection requirements, data analysis requirements, system management requirements, data privacy and security requirements, user interface requirements, ...) are captured.
  • 5. Step 2: Process Specification • The second step in the IoT design methodology is to define the process specification. In this step, the use cases of the IoT system are formally described based on and derived from the purpose and requirement specifications.
  • 6. Step 3: Domain Model Specification • The third step in the IoT design methodology is to define the Domain Model. The domain model describes the main concepts, entities and objects in the domain of IoT system to be designed. Domain model defines the attributes of the objects and relationships between objects. Domain model provides an abstract representation of the concepts, objects and entities in the IoT domain, independent of any specific technology or platform. With the domain model, the IoT system designers can get an understanding of the IoT domain for which the system is to be designed.
  • 7. Step 4: Information Model Specification • The fourth step in the IoT design methodology is to define the Information Model. Information Model defines the structure of all the information in the IoT system, for example, attributes of Virtual Entities, relations, etc. Information model does not describe the specifics of how the information is represented or stored. To define the information model, we first list the Virtual Entities defined in the Domain Model. Information model adds more details to the Virtual Entities by defining their attributes and relations.
  • 8. Step 5: Service Specifications • The fifth step in the IoT design methodology is to define the service specifications. Service specifications define the services in the IoT system, service types, service inputs/output, service endpoints, service schedules, service preconditions and service effects.
  • 9. Step 6: IoT Level Specification • The sixth step in the IoT design methodology is to define the IoT level for the system. In Chapter-1, we defined five IoT deployment levels.
  • 10. Step 7: Functional View Specification • The seventh step in the IoT design methodology is to define the Functional View. The Functional View (FV) defines the functions of the IoT systems grouped into various Functional Groups (FGs). Each Functional Group either provides functionalities for interacting with instances of concepts defined in the Domain Model or provides information related to these concepts.
  • 11. Step 8: Operational View Specification • The eighth step in the IoT design methodology is to define the Operational View Specifications. In this step, various options pertaining to the IoT system deployment and operation are defined, such as, service hosting options, storage options, device options, application hosting options, etc
  • 12. Step 9: Device & Component Integration • The ninth step in the IoT design methodology is the integration of the devices and components.
  • 13. Step 10: Application Development • The final step in the IoT design methodology is to develop the IoT application.
  • 15. Step:1 - Purpose & Requirements • Applying this to our example of a smart home automation system, the purpose and requirements for the system may be described as follows: • Purpose : A home automation system that allows controlling of the lights in a home remotely using a web application. • Behavior : The home automation system should have auto and manual modes. In auto mode, the system measures the light level in the room and switches on the light when it gets dark. In manual mode, the system provides the option of manually and remotely switching on/off the light. • System Management Requirement : The system should provide remote monitoring and control functions. • Data Analysis Requirement : The system should perform local analysis of the data. • Application Deployment Requirement : The application should be deployed locally on the device, but should be accessible remotely. • Security Requirement : The system should have basic user authentication capability.
  • 16. Step:2 - Process Specification
  • 17. Step 3: Domain Model Specification
  • 18. Step 4: Information Model Specification
  • 19. Step 5: Service Specifications
  • 20. Step 5: Service Specifications
  • 21. Step 6: IoT Level Specification
  • 22. Step 7: Functional View Specification
  • 23. Step 8: Operational View Specification
  • 24. Step 9: Device & Component Integration
  • 25. Step 10: Application Development • Auto • Controls the light appliance automatically based on the lighting conditions in the room • Light • When Auto mode is off, it is used for manually controlling the light appliance. • When Auto mode is on, it reflects the current state of the light appliance.
  • 26. Implementation: RESTful Web Services # Models – models.py from django.db import models class Mode(models.Model): name = models.CharField(max_length=50) class State(models.Model): name = models.CharField(max_length=50) # Serializers – serializers.py from myapp.models import Mode, State from rest_framework import serializers class ModeSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = Mode fields = ('url', 'name') class StateSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = State fields = ('url', 'name') REST services implemented with Django REST Framework 1. Map services to models. Model fields store the states (on/off, auto/manual) 2. Write Model serializers. Serializers allow complex data (such as model instances) to be converted to native Python datatypes that can then be easily rendered into JSON, XML or other content types.
  • 27. Implementation: RESTful Web Services # Views – views.py from myapp.models import Mode, State from rest_framework import viewsets from myapp.serializers import ModeSerializer, StateSerializer class ModeViewSet(viewsets.ModelViewSet): queryset = Mode.objects.all() serializer_class = ModeSerializer class StateViewSet(viewsets.ModelViewSet): queryset = State.objects.all() serializer_class = StateSerializer 3. Write ViewSets for the Models which combine the logic for a set of related views in a single class. # Models – models.py from django.db import models class Mode(models.Model): name = models.CharField(max_length=50) class State(models.Model): name = models.CharField(max_length=50) 4. Write URL patterns for the services. Since ViewSets are used instead of views, we can automatically generate the URL conf by simply registering the viewsets with a router class. Routers automatically determining how the URLs for an application should be mapped to the logic that deals with handling incoming requests. # URL Patterns – urls.py from django.conf.urls import patterns, include, url from django.contrib import admin from rest_framework import routers from myapp import views admin.autodiscover() router = routers.DefaultRouter() router.register(r'mode', views.ModeViewSet) router.register(r'state', views.StateViewSet) urlpatterns = patterns('', url(r'^', include(router.urls)), url(r'^api-auth/', include('rest_framework.urls', namespace='rest_framework')), url(r'^admin/', include(admin.site.urls)), url(r'^home/', 'myapp.views.home'), )
  • 28. Implementation: RESTful Web Services Screenshot of browsable State REST API Screenshot of browsable Mode REST API
  • 29. Implementation: Controller Native Service #Controller service import RPi.GPIO as GPIO import time import sqlite3 as lite import sys con = lite.connect('database.sqlite') cur = con.cursor() GPIO.setmode(GPIO.BCM) threshold = 1000 LDR_PIN = 18 LIGHT_PIN = 25 def readldr(PIN): reading=0 GPIO.setup(PIN, GPIO.OUT) GPIO.output(PIN, GPIO.LOW) time.sleep(0.1) GPIO.setup(PIN, GPIO.IN) while (GPIO.input(PIN)==GPIO.LOW): reading=reading+1 return reading def switchOnLight(PIN): GPIO.setup(PIN, GPIO.OUT) GPIO.output(PIN, GPIO.HIGH) def switchOffLight(PIN): GPIO.setup(PIN, GPIO.OUT) GPIO.output(PIN, GPIO.LOW) def runAutoMode(): ldr_reading = readldr(LDR_PIN) if ldr_reading < threshold: switchOnLight(LIGHT_PIN) setCurrentState('on') else: switchOffLight(LIGHT_PIN) setCurrentState('off') def runManualMode(): state = getCurrentState() if state=='on': switchOnLight(LIGHT_PIN) setCurrentState('on') elif state=='off': switchOffLight(LIGHT_PIN) setCurrentState('off') def getCurrentMode(): cur.execute('SELECT * FROM myapp_mode') data = cur.fetchone() #(1, u'auto') return data[1] def getCurrentState(): cur.execute('SELECT * FROM myapp_state') data = cur.fetchone() #(1, u'on') return data[1] def setCurrentState(val): query='UPDATE myapp_state set name="'+val+'"' cur.execute(query) while True: currentMode=getCurrentMode() if currentMode=='auto': runAutoMode() elif currentMode=='manual': runManualMode() time.sleep(5) Native service deployed locally 1. Implement the native service in Python and run on the device
  • 30. Implementation: Application # Views – views.py def home(request): out=‘’ if 'on' in request.POST: values = {"name": "on"} r=requests.put('http://127.0.0.1:8000/state/1/', data=values, auth=(‘username', ‘password')) result=r.text output = json.loads(result) out=output['name'] if 'off' in request.POST: values = {"name": "off"} r=requests.put('http://127.0.0.1:8000/state/1/', data=values, auth=(‘username', ‘password')) result=r.text output = json.loads(result) out=output['name'] if 'auto' in request.POST: values = {"name": "auto"} r=requests.put('http://127.0.0.1:8000/mode/1/', data=values, auth=(‘username', ‘password')) result=r.text output = json.loads(result) out=output['name'] if 'manual' in request.POST: values = {"name": "manual"} r=requests.put('http://127.0.0.1:8000/mode/1/', data=values, auth=(‘username', ‘password')) result=r.text output = json.loads(result) out=output['name'] r=requests.get('http://127.0.0.1:8000/mode/1/', auth=(‘username', ‘password')) result=r.text output = json.loads(result) currentmode=output['name'] r=requests.get('http://127.0.0.1:8000/state/1/', auth=(‘username', ‘password')) result=r.text output = json.loads(result) currentstate=output['name'] return render_to_response('lights.html',{'r':out, 'currentmode':currentmode, 'currentstate':currentstate}, context_instance=RequestContext(request)) 1. Implement Django Application View
  • 31. Implementation: Application <div class="app-content-inner"> <fieldset> <div class="field clearfix"> <label class="input-label icon-lamp" for="lamp-state">Auto</label> <input id="lamp-state" class="input js-lamp-state hidden" type="checkbox"> {% if currentmode == 'auto' %} <div class="js-lamp-state-toggle ui-toggle " data-toggle=".js-lamp-state"> {% else %} <div class="js-lamp-state-toggle ui-toggle js-toggle-off" data-toggle=".js-lamp-state"> {% endif %} <span class="ui-toggle-slide clearfix"> <form id="my_form11" action="" method="post">{% csrf_token %} <input name="auto" value="auto" type="hidden" /> <a href="#" onclick="$(this).closest('form').submit()"><strong class="ui-toggle-off">OFF</strong></a> </form> <strong class="ui-toggle-handle brushed-metal"></strong> <form id="my_form13" action="" method="post">{% csrf_token %} <input name="manual" value="manual" type="hidden" /> <a href="#" onclick="$(this).closest('form').submit()"><strong class="ui-toggle-on">ON</strong></a> </form></span> </div></div> <div class="field clearfix"> <label class="input-label icon-lamp" for="tv-state">Light</label> <input id="tv-state" class="input js-tv-state hidden" type="checkbox"> {% if currentstate == 'on' %} <div class="js-tv-state-toggle ui-toggle " data-toggle=".js-tv-state"> {% else %} <div class="js-tv-state-toggle ui-toggle js-toggle-off" data-toggle=".js-tv-state"> {% endif %} {% if currentmode == 'manual' %} <span class="ui-toggle-slide clearfix"> <form id="my_form2" action="" method="post">{% csrf_token %} <input name="on" value="on" type="hidden" /> <a href="#" onclick="$(this).closest('form').submit()"><strong class="ui-toggle-off">OFF</strong></a> </form> <strong class="ui-toggle-handle brushed-metal"></strong> <form id="my_form3" action="" method="post">{% csrf_token %} <input name="off" value="off" type="hidden" /> <a href="#" onclick="$(this).closest('form').submit()"><strong class="ui-toggle-on">ON</strong></a> </form> </span> {% endif %} {% if currentmode == 'auto' %} {% if currentstate == 'on' %} <strong class="ui-toggle-on">&nbsp;&nbsp;&nbsp;&nbsp;ON</strong> {% else %} <strong class="ui-toggle-on">&nbsp;&nbsp;&nbsp;&nbsp;OFF</strong> {% endif %}{% endif %} </div> </div> </fieldset></div></div></div> 2. Implement Django Application Template
  • 32. Finally - Integrate the System Django Application REST services implemented with Django-REST framework Native service implemented in Python SQLite Database Raspberry Pi device to which sensors and actuators are connected OS running on Raspberry Pi • Setup the device • Deploy and run the REST and Native services • Deploy and run the Application • Setup the database