Frequency Distribution
 CLASS     CLASS
                      f
LIMITS BOUNDARIES
23 - 27 22.5 - 27.5    2
28 - 32 27.5 - 32.5    6
33 - 37 32.5 - 37.5    8
38 - 42 37.5 - 42.5   14
43 - 47 42.5 - 47.5   20
48 - 52 47.5 - 52.5   13
53 - 57 52.5 - 57.5   10
58 - 62 57.5 - 62.5    5
63 - 67 62.5 - 67.5    2
Frequency Distribution
 CLASS     CLASS
                      f    Xm
LIMITS BOUNDARIES
23 - 27 22.5 - 27.5    2
28 - 32 27.5 - 32.5    6
33 - 37 32.5 - 37.5    8
38 - 42 37.5 - 42.5   14
43 - 47 42.5 - 47.5   20
48 - 52 47.5 - 52.5   13
53 - 57 52.5 - 57.5   10
58 - 62 57.5 - 62.5    5
63 - 67 62.5 - 67.5    2
Frequency Distribution
 CLASS     CLASS
                      f    Xm   fXm
LIMITS BOUNDARIES
23 - 27 22.5 - 27.5    2   25
28 - 32 27.5 - 32.5    6   30
33 - 37 32.5 - 37.5    8   35
38 - 42 37.5 - 42.5   14   40
43 - 47 42.5 - 47.5   20   45
48 - 52 47.5 - 52.5   13   50
53 - 57 52.5 - 57.5   10   55
58 - 62 57.5 - 62.5    5   60
63 - 67 62.5 - 67.5    2   65
Frequency Distribution
 CLASS     CLASS
                      f    Xm   fXm   Xm2
LIMITS BOUNDARIES
23 - 27 22.5 - 27.5    2   25   50
28 - 32 27.5 - 32.5    6   30   180
33 - 37 32.5 - 37.5    8   35   280
38 - 42 37.5 - 42.5   14   40   560
43 - 47 42.5 - 47.5   20   45   900
48 - 52 47.5 - 52.5   13   50   650
53 - 57 52.5 - 57.5   10   55   550
58 - 62 57.5 - 62.5    5   60   300
63 - 67 62.5 - 67.5    2   65   130
Frequency Distribution
 CLASS     CLASS
                      f    Xm   fXm   Xm2    fXm2
LIMITS BOUNDARIES
23 - 27 22.5 - 27.5    2   25   50     625
28 - 32 27.5 - 32.5    6   30   180    900
33 - 37 32.5 - 37.5    8   35   280   1225
38 - 42 37.5 - 42.5   14   40   560   1600
43 - 47 42.5 - 47.5   20   45   900   2025
48 - 52 47.5 - 52.5   13   50   650   2500
53 - 57 52.5 - 57.5   10   55   550   3025
58 - 62 57.5 - 62.5    5   60   300   3600
63 - 67 62.5 - 67.5    2   65   130   4225
Frequency Distribution
 CLASS     CLASS
                      f    Xm   fXm   Xm2    fXm2
LIMITS BOUNDARIES
23 - 27 22.5 - 27.5    2   25   50     625   1250
28 - 32 27.5 - 32.5    6   30   180    900   5400
33 - 37 32.5 - 37.5    8   35   280   1225   9800
38 - 42 37.5 - 42.5   14   40   560   1600   22400
43 - 47 42.5 - 47.5   20   45   900   2025   40500
48 - 52 47.5 - 52.5   13   50   650   2500   32500
53 - 57 52.5 - 57.5   10   55   550   3025   30250
58 - 62 57.5 - 62.5    5   60   300   3600   18000
63 - 67 62.5 - 67.5    2   65   130   4225   8450
Frequency Distribution
 CLASS     CLASS
                      f    Xm    fXm   Xm2     fXm2
LIMITS BOUNDARIES
23 - 27 22.5 - 27.5    2   25     50   625     1250
28 - 32 27.5 - 32.5    6   30     180  900     5400
33 - 37 32.5 - 37.5    8   35     280 1225     9800
38 - 42 37.5 - 42.5   14   40     560 1600     22400
43 - 47 42.5 - 47.5   20   45     900 2025     40500
48 - 52 47.5 - 52.5   13   50     650 2500     32500
53 - 57 52.5 - 57.5   10   55     550 3025     30250
58 - 62 57.5 - 62.5    5   60     300 3600     18000
63 - 67 62.5 - 67.5    2   65     130 4225     8450
                      80   405   3600 19725   168550
Solutions:                             fX m
                                              2
                             2
                          fX m
                                       n
         fX m
x               s2
         n                       n 1

    3600                          36002
x                     168550
     80                            80
                s2
                             80 1
x   45
                s2    223.73

                s    15
2
           4
               6
                   8
                       10
                            12
                                 14
                                      16
                                           18
                                                20




22.5

27.5

32.5

37.5

42.5

47.5

52.5
                                                     Histogram




57.5

62.5

67.5
2
               4
                   6
                       8
                           10
                                12
                                     14
                                          16
                                               18
                                                    20




    22.5

    27.5




X
s
    32.5

    37.5

    42.5




X
    47.5

    52.5
                                                         Histogram




    57.5

X
s   62.5

    67.5
2
                4
                    6
                        8
                            10
                                 12
                                      14
                                           16
                                                18
                                                     20




     22.5

     27.5

     32.5

     37.5

     42.5




45
     47.5

     52.5
                                                          Histogram




     57.5

     62.5

     67.5
2
                4
                    6
                        8
                            10
                                 12
                                      14
                                           16
                                                18
                                                     20




     22.5

     27.5




30
     32.5

     37.5

     42.5




45
     47.5

     52.5
                                                          Histogram




     57.5

60   62.5

     67.5
Histogram




X   3s   X   2s   X   s   X   X   s   X   2s   X   3s
Pafnuty Lvovich Chebyshev

                                   He specified the proportions
                                   of the spread in terms of the
                                   standard deviation.




Born: 16 May 1821 in Okatovo, Russia
Died: 8 Dec 1894 in St. Petersburg, Russia
Chebyshev's theorem
       The proportion of values from a data set that
will fall within k standard deviations of the mean
will be at least
                           1
                      1
                          k2
     where k is a number greater than 1 (k is not
necessarily an integer).
Chebyshev's theorem
Let k = 2:

             1       1       1       3
     1           1         1              75%
         k2          22      4       4
      This means that at least three-fourths or
75% of the data values fall within 2 standard
deviations of the mean of the data set.
Chebyshev's theorem
Let k = 3:

       1         1         1     8
  1          1       2
                         1            88.89%
      k2         3         9     9
      This means that at least eight-ninths or
88.89% of the data values fall within 3 standard
deviations of the mean of the data set.
Chebyshev's theorem
Example:
       If two variables measured in the same units
have the same mean, say 70, and variable A has a
standard deviation of 1.5 while variable B has a
standard deviation of 5, then the data for variable
B will be more spread out than the data for
variable A.
Chebyshev's theorem
For variable A:
mean = 70
standard deviation = 1.5
X 2s : 70 + 2(1.5) = 73
        70 – 2(1.5) = 67
At least three-fourths, or 75%, of the data values
fall between 67 and 73.
Chebyshev's theorem
                   At least 88.89%

                             At least 75%




65.5         67        68.5       70        71.5        73    74.5

X   3s   X    2s   X     s        X         X   s   X    2s   X   3s
Chebyshev's theorem
                   At least 88.89%

                            At least 75%




    55       60        65        70            75       80        85

X   3s   X    2s   X    s        X         X    s   X    2s   X    3s
Try this out
1. The average price of house and lot in a certain
   subdivision is P2 M, and the standard deviation
   is P250K. Find the price range for which at
   least 75% of the house and lots will sell.
2. A survey of local companies found that the
   mean amount of travel allowance for executives
   was P4.00 per kilometer. The standard
   deviation was P0.50. Using Chebyshev's
   theorem, find the minimum percentage of the
   data values that will fall between P2.75 and
   P5.25.

More Related Content

PPTX
Autocorrelation
PPTX
Chebyshev's Theorem
PPT
Quartiles, Deciles and Percentiles
PPTX
METHOD OF LEAST SQURE
PPT
Chapter 3 Confidence Interval
PPTX
Theoretical probability distributions
PPTX
Ch1 ratio and proportion
Autocorrelation
Chebyshev's Theorem
Quartiles, Deciles and Percentiles
METHOD OF LEAST SQURE
Chapter 3 Confidence Interval
Theoretical probability distributions
Ch1 ratio and proportion

What's hot (16)

PPTX
1_ Sample size determination.pptx
PPTX
Graphs that Enlighten and Graphs that Deceive
PDF
Integration
PPTX
Quartile Deviation
PPTX
Two Means, Independent Samples
PDF
Multiple regression in spss
PPT
grouped data calcualtions
PDF
Role of estimation in statistics
PPT
Multiple Regression
PPTX
Statistical distributions
PPTX
PDF
Sampling & Sampling Distribtutions
PPTX
Lecture 6 Point and Interval Estimation.pptx
PPTX
Stat 2153 Stochastic Process and Markov chain
PPTX
Normal distribution
PPTX
Regression Analysis
1_ Sample size determination.pptx
Graphs that Enlighten and Graphs that Deceive
Integration
Quartile Deviation
Two Means, Independent Samples
Multiple regression in spss
grouped data calcualtions
Role of estimation in statistics
Multiple Regression
Statistical distributions
Sampling & Sampling Distribtutions
Lecture 6 Point and Interval Estimation.pptx
Stat 2153 Stochastic Process and Markov chain
Normal distribution
Regression Analysis
Ad

Viewers also liked (9)

PDF
Pancasila dalam sejarah indonesia
PDF
3. pancasia dalam sejarah indonesia
PPTX
Pancasila Dalam Sejarah Bangsa Indonesia
PPTX
Pancasila dalam konteks perjuangan sejarah bangsa indonesia
PPTX
Pancasila dalam kajian Sejarah bangsa Indonesia
PPTX
PANCASILA DALAM KONTEKS SEJARAH PERJUANGAN BANGSA
PPTX
Pancasila dalam Konteks Sejarah Perjuangan
PDF
Program perkuliahan pendidikan pancasila
PPTX
Pancasila dalam Kajian Sejarah Bangsa Indonesia
Pancasila dalam sejarah indonesia
3. pancasia dalam sejarah indonesia
Pancasila Dalam Sejarah Bangsa Indonesia
Pancasila dalam konteks perjuangan sejarah bangsa indonesia
Pancasila dalam kajian Sejarah bangsa Indonesia
PANCASILA DALAM KONTEKS SEJARAH PERJUANGAN BANGSA
Pancasila dalam Konteks Sejarah Perjuangan
Program perkuliahan pendidikan pancasila
Pancasila dalam Kajian Sejarah Bangsa Indonesia
Ad

Similar to Chebyshevs (20)

PDF
Bolt details
DOCX
การวิจัยพฤติกรรมการบริโภคอาหารของนักศึกษามหาวิทยาลัยราชภัฎนครปฐม
PDF
AA-I & Co. | Simple labor-category Price Curve Model
PDF
10 dimension and properties table upn
PDF
Incremental statistics for partitioned tables in 11g by wwf from ebay COC
XLSX
Actividad 1 funcion lineal
PPT
Resultados Del Concurso 2010
XLS
Triangulation Sample
PDF
R and B SOR FOR BUILDING WORKS AHMEDABAD CITY 2021_22.pdf
PPTX
TBS Medical Case Study
PDF
Standard resistor and_capaciter_values
PDF
8 dimension and properties table of equal leg angle
XLSX
Estadisticas 2 volta temporada 2010 11 alevi d jornada 30
XLS
FULL TIME SUPPORT QUOTAS MARCH 2011
PDF
Tablice beton
XLS
Chapter 9
PDF
9 dimension and properties table of upe
PDF
Flat slab reinf(direct design method)
DOCX
Sistema de agua
PDF
ECE469 proj2_Lakshmi Yasaswi Kamireddy
Bolt details
การวิจัยพฤติกรรมการบริโภคอาหารของนักศึกษามหาวิทยาลัยราชภัฎนครปฐม
AA-I & Co. | Simple labor-category Price Curve Model
10 dimension and properties table upn
Incremental statistics for partitioned tables in 11g by wwf from ebay COC
Actividad 1 funcion lineal
Resultados Del Concurso 2010
Triangulation Sample
R and B SOR FOR BUILDING WORKS AHMEDABAD CITY 2021_22.pdf
TBS Medical Case Study
Standard resistor and_capaciter_values
8 dimension and properties table of equal leg angle
Estadisticas 2 volta temporada 2010 11 alevi d jornada 30
FULL TIME SUPPORT QUOTAS MARCH 2011
Tablice beton
Chapter 9
9 dimension and properties table of upe
Flat slab reinf(direct design method)
Sistema de agua
ECE469 proj2_Lakshmi Yasaswi Kamireddy

Recently uploaded (20)

PDF
HVAC Specification 2024 according to central public works department
PDF
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
PDF
David L Page_DCI Research Study Journey_how Methodology can inform one's prac...
PPTX
Computer Architecture Input Output Memory.pptx
PDF
FORM 1 BIOLOGY MIND MAPS and their schemes
PDF
Skin Care and Cosmetic Ingredients Dictionary ( PDFDrive ).pdf
PDF
BP 505 T. PHARMACEUTICAL JURISPRUDENCE (UNIT 1).pdf
PPTX
Unit 4 Computer Architecture Multicore Processor.pptx
PPTX
Share_Module_2_Power_conflict_and_negotiation.pptx
PDF
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 1)
PDF
Uderstanding digital marketing and marketing stratergie for engaging the digi...
PDF
Complications of Minimal Access-Surgery.pdf
PDF
Empowerment Technology for Senior High School Guide
PDF
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
PDF
Paper A Mock Exam 9_ Attempt review.pdf.
PDF
MBA _Common_ 2nd year Syllabus _2021-22_.pdf
PDF
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
PDF
English Textual Question & Ans (12th Class).pdf
PDF
My India Quiz Book_20210205121199924.pdf
PDF
LEARNERS WITH ADDITIONAL NEEDS ProfEd Topic
HVAC Specification 2024 according to central public works department
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
David L Page_DCI Research Study Journey_how Methodology can inform one's prac...
Computer Architecture Input Output Memory.pptx
FORM 1 BIOLOGY MIND MAPS and their schemes
Skin Care and Cosmetic Ingredients Dictionary ( PDFDrive ).pdf
BP 505 T. PHARMACEUTICAL JURISPRUDENCE (UNIT 1).pdf
Unit 4 Computer Architecture Multicore Processor.pptx
Share_Module_2_Power_conflict_and_negotiation.pptx
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 1)
Uderstanding digital marketing and marketing stratergie for engaging the digi...
Complications of Minimal Access-Surgery.pdf
Empowerment Technology for Senior High School Guide
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
Paper A Mock Exam 9_ Attempt review.pdf.
MBA _Common_ 2nd year Syllabus _2021-22_.pdf
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
English Textual Question & Ans (12th Class).pdf
My India Quiz Book_20210205121199924.pdf
LEARNERS WITH ADDITIONAL NEEDS ProfEd Topic

Chebyshevs

  • 1. Frequency Distribution CLASS CLASS f LIMITS BOUNDARIES 23 - 27 22.5 - 27.5 2 28 - 32 27.5 - 32.5 6 33 - 37 32.5 - 37.5 8 38 - 42 37.5 - 42.5 14 43 - 47 42.5 - 47.5 20 48 - 52 47.5 - 52.5 13 53 - 57 52.5 - 57.5 10 58 - 62 57.5 - 62.5 5 63 - 67 62.5 - 67.5 2
  • 2. Frequency Distribution CLASS CLASS f Xm LIMITS BOUNDARIES 23 - 27 22.5 - 27.5 2 28 - 32 27.5 - 32.5 6 33 - 37 32.5 - 37.5 8 38 - 42 37.5 - 42.5 14 43 - 47 42.5 - 47.5 20 48 - 52 47.5 - 52.5 13 53 - 57 52.5 - 57.5 10 58 - 62 57.5 - 62.5 5 63 - 67 62.5 - 67.5 2
  • 3. Frequency Distribution CLASS CLASS f Xm fXm LIMITS BOUNDARIES 23 - 27 22.5 - 27.5 2 25 28 - 32 27.5 - 32.5 6 30 33 - 37 32.5 - 37.5 8 35 38 - 42 37.5 - 42.5 14 40 43 - 47 42.5 - 47.5 20 45 48 - 52 47.5 - 52.5 13 50 53 - 57 52.5 - 57.5 10 55 58 - 62 57.5 - 62.5 5 60 63 - 67 62.5 - 67.5 2 65
  • 4. Frequency Distribution CLASS CLASS f Xm fXm Xm2 LIMITS BOUNDARIES 23 - 27 22.5 - 27.5 2 25 50 28 - 32 27.5 - 32.5 6 30 180 33 - 37 32.5 - 37.5 8 35 280 38 - 42 37.5 - 42.5 14 40 560 43 - 47 42.5 - 47.5 20 45 900 48 - 52 47.5 - 52.5 13 50 650 53 - 57 52.5 - 57.5 10 55 550 58 - 62 57.5 - 62.5 5 60 300 63 - 67 62.5 - 67.5 2 65 130
  • 5. Frequency Distribution CLASS CLASS f Xm fXm Xm2 fXm2 LIMITS BOUNDARIES 23 - 27 22.5 - 27.5 2 25 50 625 28 - 32 27.5 - 32.5 6 30 180 900 33 - 37 32.5 - 37.5 8 35 280 1225 38 - 42 37.5 - 42.5 14 40 560 1600 43 - 47 42.5 - 47.5 20 45 900 2025 48 - 52 47.5 - 52.5 13 50 650 2500 53 - 57 52.5 - 57.5 10 55 550 3025 58 - 62 57.5 - 62.5 5 60 300 3600 63 - 67 62.5 - 67.5 2 65 130 4225
  • 6. Frequency Distribution CLASS CLASS f Xm fXm Xm2 fXm2 LIMITS BOUNDARIES 23 - 27 22.5 - 27.5 2 25 50 625 1250 28 - 32 27.5 - 32.5 6 30 180 900 5400 33 - 37 32.5 - 37.5 8 35 280 1225 9800 38 - 42 37.5 - 42.5 14 40 560 1600 22400 43 - 47 42.5 - 47.5 20 45 900 2025 40500 48 - 52 47.5 - 52.5 13 50 650 2500 32500 53 - 57 52.5 - 57.5 10 55 550 3025 30250 58 - 62 57.5 - 62.5 5 60 300 3600 18000 63 - 67 62.5 - 67.5 2 65 130 4225 8450
  • 7. Frequency Distribution CLASS CLASS f Xm fXm Xm2 fXm2 LIMITS BOUNDARIES 23 - 27 22.5 - 27.5 2 25 50 625 1250 28 - 32 27.5 - 32.5 6 30 180 900 5400 33 - 37 32.5 - 37.5 8 35 280 1225 9800 38 - 42 37.5 - 42.5 14 40 560 1600 22400 43 - 47 42.5 - 47.5 20 45 900 2025 40500 48 - 52 47.5 - 52.5 13 50 650 2500 32500 53 - 57 52.5 - 57.5 10 55 550 3025 30250 58 - 62 57.5 - 62.5 5 60 300 3600 18000 63 - 67 62.5 - 67.5 2 65 130 4225 8450 80 405 3600 19725 168550
  • 8. Solutions: fX m 2 2 fX m n fX m x s2 n n 1 3600 36002 x 168550 80 80 s2 80 1 x 45 s2 223.73 s 15
  • 9. 2 4 6 8 10 12 14 16 18 20 22.5 27.5 32.5 37.5 42.5 47.5 52.5 Histogram 57.5 62.5 67.5
  • 10. 2 4 6 8 10 12 14 16 18 20 22.5 27.5 X s 32.5 37.5 42.5 X 47.5 52.5 Histogram 57.5 X s 62.5 67.5
  • 11. 2 4 6 8 10 12 14 16 18 20 22.5 27.5 32.5 37.5 42.5 45 47.5 52.5 Histogram 57.5 62.5 67.5
  • 12. 2 4 6 8 10 12 14 16 18 20 22.5 27.5 30 32.5 37.5 42.5 45 47.5 52.5 Histogram 57.5 60 62.5 67.5
  • 13. Histogram X 3s X 2s X s X X s X 2s X 3s
  • 14. Pafnuty Lvovich Chebyshev He specified the proportions of the spread in terms of the standard deviation. Born: 16 May 1821 in Okatovo, Russia Died: 8 Dec 1894 in St. Petersburg, Russia
  • 15. Chebyshev's theorem The proportion of values from a data set that will fall within k standard deviations of the mean will be at least 1 1 k2 where k is a number greater than 1 (k is not necessarily an integer).
  • 16. Chebyshev's theorem Let k = 2: 1 1 1 3 1 1 1 75% k2 22 4 4 This means that at least three-fourths or 75% of the data values fall within 2 standard deviations of the mean of the data set.
  • 17. Chebyshev's theorem Let k = 3: 1 1 1 8 1 1 2 1 88.89% k2 3 9 9 This means that at least eight-ninths or 88.89% of the data values fall within 3 standard deviations of the mean of the data set.
  • 18. Chebyshev's theorem Example: If two variables measured in the same units have the same mean, say 70, and variable A has a standard deviation of 1.5 while variable B has a standard deviation of 5, then the data for variable B will be more spread out than the data for variable A.
  • 19. Chebyshev's theorem For variable A: mean = 70 standard deviation = 1.5 X 2s : 70 + 2(1.5) = 73 70 – 2(1.5) = 67 At least three-fourths, or 75%, of the data values fall between 67 and 73.
  • 20. Chebyshev's theorem At least 88.89% At least 75% 65.5 67 68.5 70 71.5 73 74.5 X 3s X 2s X s X X s X 2s X 3s
  • 21. Chebyshev's theorem At least 88.89% At least 75% 55 60 65 70 75 80 85 X 3s X 2s X s X X s X 2s X 3s
  • 22. Try this out 1. The average price of house and lot in a certain subdivision is P2 M, and the standard deviation is P250K. Find the price range for which at least 75% of the house and lots will sell. 2. A survey of local companies found that the mean amount of travel allowance for executives was P4.00 per kilometer. The standard deviation was P0.50. Using Chebyshev's theorem, find the minimum percentage of the data values that will fall between P2.75 and P5.25.