SlideShare a Scribd company logo
Juho	
  Kim	
  (MIT	
  CSAIL)	
  
Shang-­‐Wen	
  (Daniel)	
  Li	
  (MIT	
  CSAIL)	
  
Carrie	
  J.	
  Cai	
  (MIT	
  CSAIL)	
  
Krzysztof	
  Z.	
  Gajos	
  (Harvard	
  EECS)	
  
Robert	
  C.	
  Miller	
  (MIT	
  CSAIL)	
  
2014.04.27	
  	
  
CHI	
  2014	
  	
  |	
  	
  Workshop	
  on	
  
Learning	
  Innovation	
  at	
  Scale	
  
Leveraging	
  	
  
Video	
  Interaction	
  and	
  Content	
  to	
  
Improve	
  Video	
  Learning	
  
Video	
  Lectures	
  in	
  MOOCs	
  
Classrooms:	
  rich,	
  natural	
  interaction	
  data	
  
armgov	
  on	
  Flickr	
  |	
  CC	
  by-­‐nc-­‐sa	
  Maria	
  Fleischmann	
  /	
  Worldbank	
  on	
  Flickr	
  	
  |	
  	
  CC	
  by-­‐nc-­‐nd	
  
Love	
  Krittaya	
  |	
  public	
  domain	
   unknown	
  author	
  |	
  from	
  pc4all.co.kr	
  
liquidnight	
  on	
  Flickr	
  |	
  CC	
  by-­‐nc-­‐sa	
  
How	
  do	
  learners	
  use	
  videos?	
  
Data-­‐Driven	
  Approach:	
  
Analyze	
  learners’	
  interaction	
  	
  
with	
  the	
  video	
  player	
  	
  
Why	
  does	
  data	
  matter?	
  
•  detailed	
  understanding	
  of	
  video	
  usage	
  
•  design	
  implications	
  for	
  	
  
– Instructors	
  
– Video	
  editors	
  
– Platform	
  designers	
  
•  new	
  video	
  interfaces	
  and	
  formats	
  
Improved	
  video	
  learning	
  experience	
  
~40M	
  video	
  interaction	
  events	
  
from	
  4	
  edX	
  courses	
  
Learners	
   Videos	
  
Mean	
  Video	
  
Length	
  
Processed	
  
Events	
  
127,839	
   862	
   7:46	
   39.3M	
  
Courses:	
  Computer	
  science,	
  Statistics,	
  Chemistry	
  
How	
  do	
  learners	
  use	
  videos?	
  
•  Watch	
  sequentially	
  
•  Pause	
  
•  Re-­‐watch	
  
	
  
•  Skip	
  /	
  Skim	
  
Collective	
  Interaction	
  Traces	
  
video	
  'me	
  
Learner	
  #1	
  
Learner	
  #2	
  
Learner	
  #3	
  
Learner	
  #4	
  
.	
  .	
  .	
  .	
  .	
  .	
  
Learner	
  #7888	
  
Learner	
  #7887	
  
Collective	
  Interaction	
  Traces	
  
into	
  Interaction	
  Patterns	
  
video	
  'me	
  
interac'on	
  
events	
  
second-­‐by-­‐second	
  in-­‐video	
  activity	
  
Data-­‐Driven	
  Analysis	
  and	
  Design	
  	
  
for	
  Educational	
  Videos	
  
1.  Analyze	
  interaction	
  patterns	
  
scalable	
  and	
  automatic	
  methods	
  to	
  	
  
interpret	
  interaction	
  data	
  
2.  Improve	
  video	
  learning	
  
video	
  interfaces	
  that	
  adapt	
  to	
  	
  
collective	
  learner	
  interaction	
  patterns	
  
Research	
  Directions:	
  Data-­‐Driven	
  	
  
Analysis	
  and	
  Design	
  for	
  Educational	
  Videos	
  
1.  Analyze	
  interaction	
  patterns	
  
scalable	
  and	
  automatic	
  methods	
  to	
  	
  
interpret	
  interaction	
  data	
  
2.  Improve	
  video	
  learning	
  
video	
  interfaces	
  that	
  adapt	
  to	
  	
  
collective	
  learner	
  interaction	
  patterns	
  
Research	
  Directions:	
  Data-­‐Driven	
  	
  
Analysis	
  and	
  Design	
  for	
  Educational	
  Videos	
  
Interaction	
  Peaks	
  
Temporal	
  peaks	
  in	
  the	
  number	
  of	
  interaction	
  
events,	
  where	
  a	
  significant	
  number	
  of	
  learners	
  
show	
  similar	
  interaction	
  patterns	
  
video	
  'me	
  
interac'on	
  
events	
  
Understanding	
  In-­‐Video	
  Dropouts	
  and	
  Interaction	
  Peaks	
  in	
  Online	
  Lecture	
  Videos.	
  
Juho	
  Kim,	
  Philip	
  J.	
  Guo,	
  Daniel	
  T.	
  Seaton,	
  Piotr	
  Mitros,	
  Krzysztof	
  Z.	
  Gajos,	
  Robert	
  C.	
  Miller.	
  
Learning	
  at	
  Scale	
  2014.	
  
What	
  causes	
  an	
  interaction	
  peak?	
  
Video	
  interaction	
  log	
  data	
  
	
  
	
  
Video	
  content	
  analysis	
  
– Visual	
  content	
  
– Text	
  from	
  transcript	
  
– Speech	
  &	
  acoustic	
  stream	
  
Observation:	
  Visual	
  transitions	
  in	
  the	
  
video	
  often	
  coincide	
  with	
  a	
  peak.	
  
Type	
  1.	
  Returning	
  to	
  content	
  
interaction	
  
Type	
  2.	
  Beginning	
  of	
  new	
  material	
  
interaction	
  
Text	
  Analysis	
  
•  Topic	
  transitions	
  &	
  interaction	
  peaks	
  
– Topic	
  modeling	
  
•  Linguistic	
  patterns	
  &	
  interaction	
  peaks	
  
– N-­‐gram	
  analysis	
  
node,	
  optimal,	
  goal	
  
cost,	
  equal,	
  path	
  
expand	
  
mean	
  
topic	
  transition	
  	
  
likelihood	
  over	
  time	
  
N-­‐gram	
  Analysis	
  
“<start-­‐of-­‐sentence>	
  So”	
  
•  initiating	
  an	
  explanation	
  	
  
	
  “So	
  let	
  me	
  spend	
  a	
  second	
  on	
  that,”	
  “So	
  that	
  means,”	
  
	
  
•  arriving	
  at	
  the	
  take-­‐home	
  message	
  	
  
“So	
  we	
  can	
  get	
  lots	
  of	
  information	
  just	
  from	
  these	
  five	
  
number	
  summaries.”	
  
N-­‐gram	
  Analysis	
  
“this	
  is”	
  
•  visual	
  explanation	
  
“this	
  is	
  the	
  double	
  bonds	
  here	
  on	
  this	
  oxygen”	
  
•  naming	
  of	
  a	
  particular	
  concept	
  
“and	
  this	
  is	
  called	
  a	
  dislocation”,	
  	
  
“so	
  this	
  is	
  sometimes	
  called	
  the	
  first	
  quartile”	
  
Acoustic	
  Analysis	
  
Speaking	
  rate	
   Pitch	
  
Automatic,	
  multi-­‐channel,	
  scalable	
  
peak	
  detection	
  and	
  classification	
  
Video	
  Analytics:	
  	
  
“debugging”	
  interface	
  for	
  instructors	
  &	
  editors	
  
1.  Analyze	
  interaction	
  patterns	
  
scalable	
  and	
  automatic	
  methods	
  to	
  	
  
interpret	
  interaction	
  data	
  
2.  Improve	
  video	
  learning	
  
video	
  interfaces	
  that	
  adapt	
  to	
  	
  
collective	
  learner	
  interaction	
  patterns	
  
Research	
  Directions:	
  Data-­‐Driven	
  	
  
Analysis	
  and	
  Design	
  for	
  Educational	
  Videos	
  
Data-­‐Driven	
  Interaction	
  Techniques	
  
to	
  Support	
  Video	
  Navigation	
  
For	
  learners:	
  Data-­‐Driven	
  Video	
  UI	
  
Rollercoaster	
  Timeline	
  
•  Embedded	
  visualization	
  of	
  collective	
  interactions	
  
•  Visual	
  &	
  physical	
  emphasis	
  on	
  interaction	
  peaks	
  
Automatic	
  Summarization	
  
•  Keyword	
  summary	
  with	
  word	
  cloud	
  
•  Visual	
  summary	
  with	
  captured	
  highlights	
  
Automatic	
  Side-­‐by-­‐Side	
  View	
  
Pinned	
  slide	
   Video	
  stream	
  
Lab	
  Study:	
  edX	
  &	
  On-­‐Campus	
  Students	
  
“It’s	
  not	
  like	
  cold-­‐watching.	
  	
  
It	
  feels	
  like	
  watching	
  with	
  other	
  students.”	
  
	
  
“[interaction	
  data]	
  makes	
  it	
  seem	
  more	
  classroom-­‐y,	
  
as	
  in	
  you	
  can	
  compare	
  yourself	
  to	
  	
  
what	
  how	
  other	
  students	
  are	
  learning	
  
	
  and	
  what	
  they	
  need	
  to	
  repeat.”	
  
Rethinking	
  	
  
Educational	
  Videos	
  
Are	
  behind-­‐the-­‐encoding-­‐wall	
  
videos	
  the	
  best	
  format?	
  
•  Hard	
  to	
  edit	
  once	
  published	
  
•  Only	
  a	
  single	
  stream	
  is	
  published	
  
•  Lack	
  of	
  useful	
  metadata	
  (concepts,	
  difficulty…)	
  
•  Hard	
  to	
  comment	
  on,	
  point	
  to	
  specific	
  parts	
  
Toward	
  More	
  Direct	
  &	
  Social	
  
Interaction	
  for	
  Video	
  Learning	
  
•  Alternative	
  explanations	
  from	
  learners	
  
	
  
•  Synchronous	
  watching	
  with	
  other	
  learners	
  
•  Linking	
  relevant	
  resources	
  with	
  different	
  
levels	
  of	
  scaffolding	
  
•  Experimenting	
  with	
  in-­‐video	
  examples	
  &	
  data	
  
Leveraging	
  Video	
  Interaction	
  and	
  Content	
  to	
  
Improve	
  Video	
  Learning	
  
Juho	
  Kim	
  
MIT	
  CSAIL	
  
	
  
juhokim@mit.edu	
  
	
  
juhokim.com	
  

More Related Content

PPTX
Understanding In-Video Dropouts and Interaction Peaks in Online Lecture Videos
PDF
Organic Crowdsourcing Systems
PPTX
Learnersourcing: Improving Learning with Collective Learner Activity
PDF
CHI2014 - Crowdsourcing Step-by-Step Information Extraction to Enhance Existi...
PDF
RIMES: Embedding Interactive Multimedia Exercises in Lecture Videos
PPTX
Activity 7 Day Three
PPTX
Cultivating Information Literacy Among Students: Lessons Learned from UCF’s I...
PPT
Digital Badges @ UCF
Understanding In-Video Dropouts and Interaction Peaks in Online Lecture Videos
Organic Crowdsourcing Systems
Learnersourcing: Improving Learning with Collective Learner Activity
CHI2014 - Crowdsourcing Step-by-Step Information Extraction to Enhance Existi...
RIMES: Embedding Interactive Multimedia Exercises in Lecture Videos
Activity 7 Day Three
Cultivating Information Literacy Among Students: Lessons Learned from UCF’s I...
Digital Badges @ UCF

What's hot (20)

PPT
Modding the Metaverse; The Pedagogy of Participation - AoIR 2007
PPT
The chicken or the Elgg? Developing a socially constructed self-paced learnin...
PPTX
Google Hangouts for Group Interaction
PPTX
Bring Out Their Best as You Bring Your Own Blend
PPTX
The Roadmap to Distance Learning Technology: Retooling Traditional Outreach b...
PDF
Synchronous and asynchronous video conferencing tools
PPTX
Blended Learning: Making Sense of All the Options
PDF
Roundtable: Effective Practices for D2L Admins Discussion
PPT
Pgc session 1.3 oct 2011
PPTX
Using Twitter for Teaching, Learning, and Professional Development
PPTX
The Future of Closed Captioning in Higher Education
PPT
Maisie Finalv2.0
PPT
A Survey of Web 2.0 Technologies Pang
PPTX
Empowering YouTube for Higher Education
PPTX
Flipping Not Flopping: Infusing Active Learning in Online and Blended Courses
PPT
The affordances of studying in a virtual world.
PPTX
Task 4.3 instructional design
PPT
Synch AND Swim
PDF
Maintaining Momentum: Successful Faculty Development Strategies 
for Supporti...
PPTX
Ready, Set, Record: Being Present and Engaging Students Online Using YouTube
Modding the Metaverse; The Pedagogy of Participation - AoIR 2007
The chicken or the Elgg? Developing a socially constructed self-paced learnin...
Google Hangouts for Group Interaction
Bring Out Their Best as You Bring Your Own Blend
The Roadmap to Distance Learning Technology: Retooling Traditional Outreach b...
Synchronous and asynchronous video conferencing tools
Blended Learning: Making Sense of All the Options
Roundtable: Effective Practices for D2L Admins Discussion
Pgc session 1.3 oct 2011
Using Twitter for Teaching, Learning, and Professional Development
The Future of Closed Captioning in Higher Education
Maisie Finalv2.0
A Survey of Web 2.0 Technologies Pang
Empowering YouTube for Higher Education
Flipping Not Flopping: Infusing Active Learning in Online and Blended Courses
The affordances of studying in a virtual world.
Task 4.3 instructional design
Synch AND Swim
Maintaining Momentum: Successful Faculty Development Strategies 
for Supporti...
Ready, Set, Record: Being Present and Engaging Students Online Using YouTube
Ad

Viewers also liked (6)

PDF
Análisis Materiales Educativos
DOCX
05 rúbricas reportes de peliculas
PPTX
GuíA Para Ver Un Video Educativo
DOC
RÚBRICA DEL REPORTE DE LA OBSERVACIÓN DEL VIDEO
PPT
Las grandes religiones terminado
PPT
Religiones en el Mundo
Análisis Materiales Educativos
05 rúbricas reportes de peliculas
GuíA Para Ver Un Video Educativo
RÚBRICA DEL REPORTE DE LA OBSERVACIÓN DEL VIDEO
Las grandes religiones terminado
Religiones en el Mundo
Ad

Similar to CHI2014 Workshop - Leveraging Video Interaction Data and Content Analysis to Improve Video Learning (20)

PPT
Using Metrics and Cluster Analysis in Video Based Learning
DOCX
Analysing student behaviour when learning from video-based learning resources
PPTX
Interactive Video for Teaching and Learning
PPT
Exploring student viewing behaviors in online educational videos
PDF
Paul Wang SOED 2016
PPT
An interactive video based Environment supporting learning analytics
PDF
Online Teaching Best Practices
PDF
5009a270
PPT
Visual Learning Lab
PPTX
Lecture capture in your toolkit: building digital media into course design
PPT
Avlm Training 2
PPTX
DE BRUYN Bridging the gap between archives and education
PPTX
Technology in the classroom
PPTX
軒銘Icalt.pptx
PPTX
Educational video ppt v3
PPT
Judy Stern
PDF
Continuing the Transition Into the Age of Video
PDF
Interactive E-Lecture Using Video Annotation in Learning Groups
PDF
Visual Aids Action Research in action research.
Using Metrics and Cluster Analysis in Video Based Learning
Analysing student behaviour when learning from video-based learning resources
Interactive Video for Teaching and Learning
Exploring student viewing behaviors in online educational videos
Paul Wang SOED 2016
An interactive video based Environment supporting learning analytics
Online Teaching Best Practices
5009a270
Visual Learning Lab
Lecture capture in your toolkit: building digital media into course design
Avlm Training 2
DE BRUYN Bridging the gap between archives and education
Technology in the classroom
軒銘Icalt.pptx
Educational video ppt v3
Judy Stern
Continuing the Transition Into the Age of Video
Interactive E-Lecture Using Video Annotation in Learning Groups
Visual Aids Action Research in action research.

Recently uploaded (20)

PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PDF
FORM 1 BIOLOGY MIND MAPS and their schemes
PDF
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
PDF
Practical Manual AGRO-233 Principles and Practices of Natural Farming
PPTX
Virtual and Augmented Reality in Current Scenario
PDF
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
PPTX
History, Philosophy and sociology of education (1).pptx
PDF
HVAC Specification 2024 according to central public works department
PDF
What if we spent less time fighting change, and more time building what’s rig...
PDF
Trump Administration's workforce development strategy
PPTX
Computer Architecture Input Output Memory.pptx
PDF
1_English_Language_Set_2.pdf probationary
PPTX
20th Century Theater, Methods, History.pptx
PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PPTX
A powerpoint presentation on the Revised K-10 Science Shaping Paper
PDF
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
PDF
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
PDF
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
PDF
Empowerment Technology for Senior High School Guide
PPTX
Introduction to Building Materials
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
FORM 1 BIOLOGY MIND MAPS and their schemes
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
Practical Manual AGRO-233 Principles and Practices of Natural Farming
Virtual and Augmented Reality in Current Scenario
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
History, Philosophy and sociology of education (1).pptx
HVAC Specification 2024 according to central public works department
What if we spent less time fighting change, and more time building what’s rig...
Trump Administration's workforce development strategy
Computer Architecture Input Output Memory.pptx
1_English_Language_Set_2.pdf probationary
20th Century Theater, Methods, History.pptx
Chinmaya Tiranga quiz Grand Finale.pdf
A powerpoint presentation on the Revised K-10 Science Shaping Paper
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
Empowerment Technology for Senior High School Guide
Introduction to Building Materials

CHI2014 Workshop - Leveraging Video Interaction Data and Content Analysis to Improve Video Learning

  • 1. Juho  Kim  (MIT  CSAIL)   Shang-­‐Wen  (Daniel)  Li  (MIT  CSAIL)   Carrie  J.  Cai  (MIT  CSAIL)   Krzysztof  Z.  Gajos  (Harvard  EECS)   Robert  C.  Miller  (MIT  CSAIL)   2014.04.27     CHI  2014    |    Workshop  on   Learning  Innovation  at  Scale   Leveraging     Video  Interaction  and  Content  to   Improve  Video  Learning  
  • 3. Classrooms:  rich,  natural  interaction  data   armgov  on  Flickr  |  CC  by-­‐nc-­‐sa  Maria  Fleischmann  /  Worldbank  on  Flickr    |    CC  by-­‐nc-­‐nd   Love  Krittaya  |  public  domain   unknown  author  |  from  pc4all.co.kr  
  • 4. liquidnight  on  Flickr  |  CC  by-­‐nc-­‐sa  
  • 5. How  do  learners  use  videos?   Data-­‐Driven  Approach:   Analyze  learners’  interaction     with  the  video  player    
  • 6. Why  does  data  matter?   •  detailed  understanding  of  video  usage   •  design  implications  for     – Instructors   – Video  editors   – Platform  designers   •  new  video  interfaces  and  formats   Improved  video  learning  experience  
  • 7. ~40M  video  interaction  events   from  4  edX  courses   Learners   Videos   Mean  Video   Length   Processed   Events   127,839   862   7:46   39.3M   Courses:  Computer  science,  Statistics,  Chemistry  
  • 8. How  do  learners  use  videos?   •  Watch  sequentially   •  Pause   •  Re-­‐watch     •  Skip  /  Skim  
  • 9. Collective  Interaction  Traces   video  'me   Learner  #1   Learner  #2   Learner  #3   Learner  #4   .  .  .  .  .  .   Learner  #7888   Learner  #7887  
  • 10. Collective  Interaction  Traces   into  Interaction  Patterns   video  'me   interac'on   events   second-­‐by-­‐second  in-­‐video  activity  
  • 11. Data-­‐Driven  Analysis  and  Design     for  Educational  Videos  
  • 12. 1.  Analyze  interaction  patterns   scalable  and  automatic  methods  to     interpret  interaction  data   2.  Improve  video  learning   video  interfaces  that  adapt  to     collective  learner  interaction  patterns   Research  Directions:  Data-­‐Driven     Analysis  and  Design  for  Educational  Videos  
  • 13. 1.  Analyze  interaction  patterns   scalable  and  automatic  methods  to     interpret  interaction  data   2.  Improve  video  learning   video  interfaces  that  adapt  to     collective  learner  interaction  patterns   Research  Directions:  Data-­‐Driven     Analysis  and  Design  for  Educational  Videos  
  • 14. Interaction  Peaks   Temporal  peaks  in  the  number  of  interaction   events,  where  a  significant  number  of  learners   show  similar  interaction  patterns   video  'me   interac'on   events   Understanding  In-­‐Video  Dropouts  and  Interaction  Peaks  in  Online  Lecture  Videos.   Juho  Kim,  Philip  J.  Guo,  Daniel  T.  Seaton,  Piotr  Mitros,  Krzysztof  Z.  Gajos,  Robert  C.  Miller.   Learning  at  Scale  2014.  
  • 15. What  causes  an  interaction  peak?  
  • 16. Video  interaction  log  data       Video  content  analysis   – Visual  content   – Text  from  transcript   – Speech  &  acoustic  stream  
  • 17. Observation:  Visual  transitions  in  the   video  often  coincide  with  a  peak.  
  • 18. Type  1.  Returning  to  content   interaction  
  • 19. Type  2.  Beginning  of  new  material   interaction  
  • 20. Text  Analysis   •  Topic  transitions  &  interaction  peaks   – Topic  modeling   •  Linguistic  patterns  &  interaction  peaks   – N-­‐gram  analysis  
  • 21. node,  optimal,  goal   cost,  equal,  path   expand   mean   topic  transition     likelihood  over  time  
  • 22. N-­‐gram  Analysis   “<start-­‐of-­‐sentence>  So”   •  initiating  an  explanation      “So  let  me  spend  a  second  on  that,”  “So  that  means,”     •  arriving  at  the  take-­‐home  message     “So  we  can  get  lots  of  information  just  from  these  five   number  summaries.”  
  • 23. N-­‐gram  Analysis   “this  is”   •  visual  explanation   “this  is  the  double  bonds  here  on  this  oxygen”   •  naming  of  a  particular  concept   “and  this  is  called  a  dislocation”,     “so  this  is  sometimes  called  the  first  quartile”  
  • 24. Acoustic  Analysis   Speaking  rate   Pitch  
  • 25. Automatic,  multi-­‐channel,  scalable   peak  detection  and  classification  
  • 26. Video  Analytics:     “debugging”  interface  for  instructors  &  editors  
  • 27. 1.  Analyze  interaction  patterns   scalable  and  automatic  methods  to     interpret  interaction  data   2.  Improve  video  learning   video  interfaces  that  adapt  to     collective  learner  interaction  patterns   Research  Directions:  Data-­‐Driven     Analysis  and  Design  for  Educational  Videos  
  • 28. Data-­‐Driven  Interaction  Techniques   to  Support  Video  Navigation  
  • 30. Rollercoaster  Timeline   •  Embedded  visualization  of  collective  interactions   •  Visual  &  physical  emphasis  on  interaction  peaks  
  • 31. Automatic  Summarization   •  Keyword  summary  with  word  cloud   •  Visual  summary  with  captured  highlights  
  • 32. Automatic  Side-­‐by-­‐Side  View   Pinned  slide   Video  stream  
  • 33. Lab  Study:  edX  &  On-­‐Campus  Students   “It’s  not  like  cold-­‐watching.     It  feels  like  watching  with  other  students.”     “[interaction  data]  makes  it  seem  more  classroom-­‐y,   as  in  you  can  compare  yourself  to     what  how  other  students  are  learning    and  what  they  need  to  repeat.”  
  • 35. Are  behind-­‐the-­‐encoding-­‐wall   videos  the  best  format?   •  Hard  to  edit  once  published   •  Only  a  single  stream  is  published   •  Lack  of  useful  metadata  (concepts,  difficulty…)   •  Hard  to  comment  on,  point  to  specific  parts  
  • 36. Toward  More  Direct  &  Social   Interaction  for  Video  Learning   •  Alternative  explanations  from  learners     •  Synchronous  watching  with  other  learners   •  Linking  relevant  resources  with  different   levels  of  scaffolding   •  Experimenting  with  in-­‐video  examples  &  data  
  • 37. Leveraging  Video  Interaction  and  Content  to   Improve  Video  Learning   Juho  Kim   MIT  CSAIL     juhokim@mit.edu     juhokim.com