SlideShare a Scribd company logo
“Chiral Separations by HPLC”
Anand Khatavkar
DAICEL CHIRAL TECHNOLOGIES (INDIA) Pvt Ltd
Email : anand@chiral.daicel.com
Mobile : 09373313040
Seminar on Chromatographic Techniques in Pharma [API]
7th October 2015
• What is Chirality
• Importance of Chirality
• Chiral Chromatography
• Types of Chiral Stationary Phases (CSP’s)
• Method development on Polysaccharide CSP’s
• API Applications
Overview
What’s chiral?
What's a “Chiral” Molecule?
Non-super imposable mirror image isomers
Chirality due to assymetric centre:
.
c
Lamp
Slit
standard light plane-polarized light
Sample/Cell
Analyzer
Observe
plane-polarized light
(twisted)
Levorotatory: Rotates in a counter-
clockwise direction. (-), (l )
Dextrorotatory: Rotates in a
clockwise direction. (+), (d )
Any compound that rotates plane polarized light in a clockwise or
counterclockwise direction.
Optical Activity
Importance of Chirality
• In an achiral environment, all physical properties of
enantiomers are identical, except for optical activity
• Enantiomers often behave differently in animals and plants
because they are chiral. Enzymes & proteins discriminate
between enantiomers.
Compound R-enantiomer S-enantiomer
Vomiting
(Dexamisole)
Antihelmenthic
(Levamisole)
Anti-
inflamatory
No activity
5 times less active
than its antipode
Anticoagulant
Thalidomide
N
O
O
N
H
O
O
Sedative Teratogenic
N
SN
Tetramisole
CH3
COOH
O
Ketoprofen
Activity differences between enantiomers
O O
OH
OWarfarin
Drug Discovery Today, vol. 9, No. 3, 105-111 (2005)
Distribution of Worldwide-Approved Drugs
Which Technique
Chiral Chromatography from
Analytical to Production Scale
CHIRAL CHROMATOGRAPHY
Fastest and more economical way to:
 Analyse chiral compounds
 Isolate individual enantiomers
 Obtain the two enantiomers for
clinical/toxicological studies
 Scale-up from bench- to pilot-scale
Early Stages of Development
Highly competitive way to:
 Isolate single enantiomers (final
drugs or intermediates) at
production-scale
Full Development / Production
5 kg to 100 tons
Until Industrial Scale Production
mg to 10 Kg
Types of CSP
Introduction to Chiral Stationary Phases
Types of CSPs and Their Loading Capacities
Drug discovery today, volume 10, Number 8, April 2005
Type CSPs Loading capacity
(mg solute / g CSP)
I Pirkle type (Brush type) 1-50
II Polysaccharide derivatives 5-150
III Macrocyclic type
Cyclodextrins 0.1-5
Glycopeptides 0.1-5
Chiral Crown ether 0.1-5
IV Ligand exchange 0.1-1
V Protein type 0.1-0.2
Chiral Recognition Mechanism
Y. Okamoto, E. Yashima, Angew. Chem. Intl. Ed. Engl. 37 (1998) 1020-1043.
•Attractive interactions
Hydrogen bonding
pi-pi interactions
dipole -dipole
•Inclusion complexes
Chiral Recognition Mechanism
1999 2001 2003 2008
Polysaccharide
80%
5%
3%
12%
87%
4%
2% 7%
86%
2%
1% 11%
92%
4%
2% 2%
1995-2003: Tetrahedron Asymmetry
2008 : J. Am. Chem. Soc.
Which type of CSP?
Pirkle
Protein
Others
Coated Chiral Stationary Phases
Coated Polysaccharide derived CSP’s
Normal phase conditions:
 Alkane/2-propanol
 Alkane/Ethanol
Polar mode:
 Acetonitrile
 Ethanol
 Methanol
 Other alcohols
Reversed Phase Conditions (for RH-versions):
 Water/alcohol or acetonitrile
 Phosphate buffer (pH 2-8)/alcohol or acetonitrile
 KPF6 pH 2/acetonitrile
 Bicarbonate buffer (pH 9)/alcohol or acetonitrile
Mobile Phases for Coated CSPs’
These will
irreversibly destroy
the Coated CSP
Coated CSPs Are Not Stable With All Solvents
NEVER USE
(even as a sample solvent)
 Chloroform
 Methylene chloride
 Ethyl acetate
 Acetone
 THF
 DMF
 DMSO
 Dioxane
 MtBE
Mobile Phases for Coated CSPs
TO AVOID ABSOLUTELY
1. Flush all the HPLC unit with a compatible solvent – preferably 2-propanol.
2. Flush the entire unit with the column storage mobile phase.
Before connecting the column to the system:
Pump Column to detector connection
ALL inlet solvent lines Pump to
Injector
connection
Injection Loop
Injection Wash
Solvent
Injector to column connection
Detector
Before Use
Immobilized
Chiral Stationary Phases
Traditionally Prepared by Coating
the Polysaccharide Derivative onto
the Silica Support
Immobilised Polysaccharide derived CSP’s
Coated Polysaccharide - Derived
Chiral Stationary Phases (CSPs)
 Highly Selective
 Broad Application Domain
 High Loading Capacity
LIMITED CHOICE OF SOLVENTS
Immobilisation of the Chiral Polymer on the silica support
 Makes the CSP resistant to a broader range of solvents
 Enlarges the application domain of polysaccharide-derived CSPs, when the appropriate
immobilisation process is applied
Immobilised Polysaccharide derived CSPs
Immobilised Polysaccharide derived CSPs
ADVANTAGES
New Generation Chiral Stationary Phases
•High Sucess Rate and Broad Application Domain
•Highly Durable and can be Regenerated
•Compatible with All Miscible Solvents
• Rugged Phases Hence Carefree Operation
• High Preparative Potential
•Compatibility with RP, NP and Polar mode
+
Coated
polymer
SiO2SiO2
THF
EA
CHCl3
CH2Cl2
MtBE
ACT
Dioxane
…
Non-standardsolvents
IMMOBILISATION
SiO2
SiO2
SiO2
SiO2
SiO2
SiO2
SiO2
SiO2
SiO2
SiO2
SiO2
SiO2
SiO2
SiO2
SiO2
Immobilised
polymer
Non-standard
solvents
Any solvents
 Compatible with All Solvents
 New Selectivity Profile
 Robustness
 Extended Durability
Coated & Immobilised Polysaccharide derived CSPs
Solvent Compatibility
Conventional
NP Mode
CHIRALPAK IA
CHIRALPAK IB
CHIRALPAK IC
CHIRALPAK ID
CHIRALPAK IE
CHIRALPAK IF
Polar Mode
Non Standard
NP Mode
RP Mode
New Generation Chiral Columns - Applications
Chromatographic Modes
NP Mode Polar Mode /
RP Mode
Switching the Chromatographic Modes
New Generation Chiral Columns - Applications
NP Mode
Transition Solvent: Ethanol / IPA (50/50)
Polar Mode
RP Mode NP Mode /
Polar Mode
New Generation Chiral Columns - Applications
Step 1: Wash the column with EtOH @0.5mL/min for 30 min
Step 2: Wash the column with DMF or THF @0.5mL/min for 2 hrs
Step 3: Wash the column with EtOH @0.5mL/min for 30 min
Switching the Chromatographic Modes
Method Development –
Immobilized Phases
Screening Approach- i CHIRAL-6
Normal Phase Mode:
 n-Hexane/ EtOH (80/20)
 n-Hexane/ 2-PrOH (80/20)
 MtBE /EtOH (95/5)
 n-Hexane /DCM/ EtOH (49/49/2)
Polar Mode:
 Ethanol (100%)
 Methanol (100%)
 Acetonitrile (100%)
Reverse Phase mode:
 H2O / ACN (50/50)
 Formic acid (pH:2.0) / ACN (50/50)
 Bicarbonate buffer (pH:9.0) / ACN
(50/50)
0 2 4 6 8 10 12
50
100
150
200
250
300
= 2.81
MtBE/EtOH
95:5
0 10 20
0.00
0.01
0.02
0.03
0.04
0.05 n-hexane/CH2Cl2
75:25
= 2.36
Method Development on CHIRALPAK® IA
Applications with Different Solvents
CH3
N
N
O
CH3
Methaqualone
= 1.96
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
0.1
0.2
0.3
toluene/n-hexane/EtOH
70:25:5
0 2 4 6 8 10 12 14
0.0
0.2
0.4
0.6
0.8
1.0
= 1.79
n-hexane/CHCl3
50:50
0 10 20
0.00
0.01
0.02
0.03
0.04
= 1.70
n-hexane/methyl acetate
80:20
0 2 4 6 8 10 12 14
0
50
100
150
200
250
= 1.65
n-hexane/2-PrOH
80:20
0 10 20
0.0
0.1
0.2
= 1.63
n-hexane/THF
85:15
= 1.33
0 2 4 6 8 10 12 14
0.0
0.2
0.4
0.6
0.8
1.0
n-hexane/acetone
85:15
Method Development on CHIRALPAK® IA
Effect of Solvent Modifiers
Lorazepam
N
N
H
Cl
O
OH
Cl
MtBE/EtOH
95:5
 = 1.33
12.1
15.0
MtBE 100%
 = 1.32
27.8 35.7
The addition of 5% of alcohol
significantly improves peak shape and
reduces retention times
MtBE/MeOH
95:5
 = 1.29
9.7
11.7
min
UV 230
Prilocaine
Immobilised CSPs -
Complementary with Each Other
Prilocaine
Immobilised CSPs -
Complementary with Each Other
Prilocaine
Immobilised CSPs -
Complementary with Each Other
CHIRALPAK® IC
Operating under Various Chromatographic Modes
THF 100%
1.0ml/min
min0 2 4 6 8 10 12 14 16
N
N
O
O
Praziquantel
min0 2 4 6 8 10 12 14 16
O
NH
O
OH
O
OH
n-hexane / EtOH / TFA (85:15/0.1 v/v/v)
1.0ml/min
CBZ-DL-Serine
min0 2 4 6 8 10 12 14
N
N
S
Tetramisole
ACN / DEA (100:0.1 v/v)
1.0ml/min
Polar mode
ACN / H2O (50:50 v/v)
0.5ml/min
OH
OH
min0 2.5 5 7.5 10 12.5 15 17.5
1,1'-Bi(2-Naphthol)
RP mode
N
H
N
O
O O
O
9.7
21.1
UV 270nm
in DMF
Mobile phase: MeOH 100% 1.0ml/min. 25°C
9.7
21.1
UV 270nm
in Dioxane
UV 294nm
9.6
20.8
in Pyridine
9.6
20.9
UV 270nm
in DMSO
Diverse Injection Media on CHIRALPAK® IA
Mobile Phases Additives
Amines, Acids, Salts
Analyte Additive Form of Analyte
Acid TFA, CH3COOH Neutral
Amine
DEA, Butylamine,
Ethanolamine, Ethylenediamine
Neutral
TFA Charged
Amino Acid /
Amphoteric
Compounds
TFA
Amine Charged, Acid
Neutral
0
10
20
30
mV
0 2 4 6 8 10
Minutes
5.41
5.93
Hexane / 2-Propanol / Diethylamine
(90:10:0.1)
N
H
Cl
N
Chlorpheniramine
Hexane / 2-Propanol (90:10)
0.0
0.4
0.8
1.2
1.6
2.0
mV
0 2 4 6 8 10 12 14
Minutes
6.98
Column: CHIRALPAK® AD-H
Temp.: 25°C
Flow rate: 1.0 ml/min.
Detection: UV 254 nm
Mobile Phases Additives
Effects-1
6.44
9.15
0 2 4 6 8 10 12 14
Retention Time (min)
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
Intensity(AU)
n-heptane/EtOH/AcOH
(60:40:0.5)
O
OH
O
O
Warfarin
5.62
8.15
0 2 4 6 8 10 12 14
Retention Time (min)
0.0
0.1
0.2
0.3
0.4
0.5
Intensity(AU)
n-heptane/EtOH/TFA
(60:40:0.5)
Column: CHIRALCEL® OD
Temp.: 25°C
Flow rate: 0.7 ml/min.
Detection: UV 254nm
Mobile Phases Additives
Effects-2
CHIRALPAK®AD (250 x 4.6 mm, 10µm)
Acetonitrile 0.1% DEA
6.72
8.37
0 2 4 6 8 10 12 14
RetentionTime(min)
0.00
0.01
0.02
0.03
0.04
0.05
0.06
Absorbance(AU)
Acetonitrile 0.1% Butylamine
R R'
NH2
xO
Primary amine
Mobile Phases Additives
Effects-3
Additive Memory Effect
• Sometimes a new column is found not to reproduce a separation
developed on an existing one.
• The problem is often blamed on the new column when in fact it is
due to the previous use and “Memory’ of the old one.
A column, once used with acidic or basic solvent additives, often is
found to exhibit a modified selectivity when re-tested under neutral
conditions.
This is due to a “memory Effect” as the additive remains adsorbed on
the CSP surface long after it is removed from the mobile phase.
Illustration of additive memory effect
NH2
1-(1-Naphthyl)ethylamine
How to Avoid Memory Effect
Column Regeneration - Immobilized
Phases
Mobile Phase History & Column Performance
Regeneration in Practice
PURPOSE
Recover the specific supra molecular structure
Ensure the consistency of the column performance
PROCEDURES
CHIRALPAK® IA, IB, IC, ID, IE & IF
 Flush with EtOH at 0.5 ml/min for 30 min
 Flush with DMF 100% at 0.3 ml/min for 2 h
 Flush with EtOH at 0.5 ml/min for 30 min
API Applications
Ezetimibe
tR1: 10.7 tR2:
12.6
Rs: 3.0
CHIRALPAK IC
n-Hexane/IPA/TFA (85/15/0.1, v/v/v)
Flow rate:1.0 ml/min ; UV at 240 nm;
Col Temp: 35 °C
tR1: 7.6
tR2: 9.3
Rs: 4.0
n-Hexane/EtOH/DEA (50/50/0.3, v/v/v)
Flow rate: 1.0 ml/min ; UV at 225 nm;
Col Temp: 25 °C
Darifenacin
iCHIRAL-6 Applications: NP mode
Tirofiban
CHIRALPAK IC
Mobile phase: n-Hexane/ MeOH/IPA/EDA/TFA (30/30/40/0.3/0.3, v/v/v/v/v)
Flow rate: 1.0 ml/min ; Detection: UV at 230 nm; Temp: 25 °C
Sample diluent: n-Hexane/ MeOH/IPA/TFA (30/30/40/0.3, v/v/v/v)
tR1: 6.7
tR2: 8.7
Rs: 3.5
iCHIRAL-6 Applications: NP mode
CHIRALPAK IE
Fexofenadine-Meta isomer separation
n-Hexane/EtOH/DEA/TFA 65/35/0.1/0.1
Flow rate: 1.0 ml/min ; UV at 220 nm;
Col Temp: 25 °C
Alvimopan
n-Hexane: EtOH: TFA (75:25:0.1)
Flow rate: 1.0 ml/min ; UV at 275 nm;
Col Temp: 40 °C
m in2 4 6 8 10
m AU
0
200
400
600
800
DAD1 A, Sig=220,4 Ref=off (123280912278.D)
6.064-Meta-Isomer
7.346-Fexofenadine
iCHIRAL-6 Applications: NP mode
Montelukast sodium
CHIRALPAK IA
Mobile phase: n-Hexane/EtOH/Dioxane/TFA/DEA (70/20/10/0.3/0.05, v/v/v/v/v)
Flow rate: 1.0 ml/min ; Detection: UV at 280 nm; Temp: 25 °C
tR1: 7.0
tR2: 8.0
Rs: 3.1
iCHIRAL-6 Applications: non-std NP mode
Fulvestrant
CHIRALPAK IA
Mobile phase: MtBE:EtOH (70/30, v/v)
Flow rate: 1.0 ml/min ; Detection: UV at 280 nm; Temp: 25 °C
tR1: 5.4
tR2: 6.9
Rs: 4.2
Note: Diastereomeric separation
iCHIRAL-6 Applications: non-std NP mode
CHIRALPAK IE
Sitagliptin
MtBE: ACN: MeOH: DEA (80:10:10:0.1)
Flow rate: 1.0 ml/min ; UV at 265 nm;
Col Temp: 25 °C
min2 4 6 8 10 12
mAU
0
50
100
150
200
250
DAD1A,Sig=270,4Ref=off(122750812124.D)
NH2 F
F
F
N N
N
N
FF
F
O
min2 4 6 8 10 12 14 16 18
mAU
0
50
100
150
200
250
VWD1A,Wavelength=215nm(121030612009.D)
Mitiglinide
MtBE: ACN: TFA (80:20:0.3)
Flow rate: 1.0 ml/min ; UV at 215 nm;
Col Temp: 25 °C
iCHIRAL-6 Applications: non-std NP mode
Mirabegron
Mobile phase: n-Hexane / MtBE/ MeOH/DEA (30/30/40/0.1, v/v/v/v)
Flow rate: 1.0 ml/min ; Detection: UV at 250 nm; Temp: 25 °C
CHIRALPAK IF-3
tR1: 8.2
tR2: 10.0
Rs: 3.1
iCHIRAL-6 Applications: non-std NP mode
Pramipexole
Mobile phase: MeOH/DEA (100/0.1, v/v)
Flow rate: 1.0 ml/min ; Detection: UV at 260 nm; Temp: 25 °C
CHIRALPAK IA
tR1: 3.7
tR2: 4.4
Rs: 3.5
iCHIRAL-6 Applications: Polar Organic mode
Propafenone
tR1: 4.4
tR2: 5.6
Rs: 5.5
CHIRALPAK IA
Mobile phase: MeOH/DEA (100/0.1, v/v)
Flow rate: 1.0 ml/min ; Detection: UV at 245 nm; Temp: 25 °C
iCHIRAL-6 Applications: Polar Organic mode
Emtricitabine
Mobile phase: Ethanol/IPA (50/50, v/v)
Flow rate: 0.5 ml/min ; Detection: UV at 280nm; Temp: 25 °C
CHIRALPAK IC
tR1: 8.1
tR2: 9.2
Rs: 3.1
iCHIRAL-6 Applications: Polar Organic mode
Dexrazoxane
Mobile phase: MeOH/ACN/DEA (60/40/0.1, v/v/v)
Flow rate: 1.0 ml/min ; Detection: UV at 235 nm; Temp: 40 °C
CHIRALPAK ID
tR1: 3.7
tR2: 5.0
Rs: 6.5
iCHIRAL-6 Applications: Polar Organic mode
Lamivudine
CHIRALPAK IC
Mobile phase: Ethanol/IPA /DEA (90/10/0.1, v/v/v)
Flow rate: 0.5 ml/min ; Detection: UV at 270nm; Temp: 25 °C
tR1: 8.0
tR2: 9.1
Rs: 3.1
iCHIRAL-6 Applications: Polar Organic mode
Bicalutamide
CHIRALPAK IA
Mobile phase: 10 mM HCOONH4/ACN (60/40, v/v)
Flow rate: 1.0 ml/min ; Detection: UV at 270nm; Temp: 40 °C
tR1: 6.8
tR2: 7.4
Rs: 2.0
iCHIRAL-6 Applications: RP mode
STIRIPENTOL DOLUTEGRAVIR
Conditions:
CHIRALPAK IF-3 (4.6x250mm, 3µm);
10mM KPF6 in (water:MTBE:ACN 40/05/55, v/v/v);
Flow Rate: 1.0mL/min; Col Temperature: 25°C;
Detection: 260nm (UV)
tR1: 12.28,
tR2: 13.85;
Rs:3.96
Conditions:
CHIRALPAK IF-3 (4.6x150mm, 3µm) ;
10mM Ammonium acetate: ACN (30/70, v/v);
Flow Rate: 1.0mL/min; Col Temperature: 25°C;
Detection: 268nm (UV)
iCHIRAL-6 Applications: RP mode
CHIRALPAK IF-3
tR1: 3.77,
tR2: 4.52;
Rs:3.57
Entecavir
CHIRALPAK IE-3 (150 x 4.6) mm
Mobile phase: 5 mM Aq Amm bicarbonate / EtOH (5/95, v/v)
Flow rate: 0.4 ml/min ; Detection: UV at 260nm; Temp: 25 °C
tR1: 5.7
tR2: 6.6
Rs: 2.6
iCHIRAL-6 Applications: RP mode
CHIRALPAK IE-3
Sertraline
CHIRALPAK IA-3
n-Hexane/EtOH/MeOH/DEA (98/01/01/0.1, v/v/v)
Flow rate: 1.0 ml/min ; UV at 270 nm;
ColTemp: 25 °C
iCHIRAL-6 Applications– 4 isomers analysis
Pitavastatin
n-Hexane/EtOH/HCOOH (90/10/0.1, v/v/v)
Flow rate: 1.5 ml/min; UV at 245 nm;
Col Temp: 25 °C
Diluent 1: MeOH;
Diluent 2: n-Hexane / EtOH (90/10)
Darunavir
CHIRALPAK IE
n-Hexane/EtOH/DEA (70/30/0.1)
Flow rate: 1.0 ml/min ; UV at 265 nm;
Col Temp: 25 °C
Aliskiren
MtBE:ACN:1.4-Dioxan:EDA (80:20:01:0.05)
Flow Rate: 1.0 mL/min; UV: 280 nm;
Column Temp: 40ºC
CHIRALPAK IE-3
CHIRALPAK IE/IE-3
iCHIRAL-6 Applications– 4 isomers analysis
Rosuvastatin
CHIRALPAK IB-3
n-Hexane/EtOH/IPA/TFA (90/05/05/0.3)
Flow rate: 1.0 ml/min; UV at 250 nm;
Col Temp: 25 °C
Diluent 1: MeOH; Diluent 2: n-Hexane / EtOH (90/10)
Solifenacin
CHIRALPAK IC
n-Hexane:IPA/EtOH:DEA (60/25/15/0.1)
Flow Rate: 1.0 mL/min; UV: 220 nm;
Column Temp: 30ºC
iCHIRAL-6 Applications– 4 isomers analysis
CHIRALPAK IE-3
n-Hexane/EtOH/THF/DEA (80/10/10/0.1)
Flow rate: 1.0 ml/min; UV at 250 nm;
Col Temp: 25 °C
Diluent 1: MeOH; Diluent 2: n-Hexane / EtOH (90/10)
Lurasidone
iCHIRAL-6 Applications– Multiple isomers analysis
Daclatasvir: Gradient elution
Column : Chiralpak ID-3, 250x4.6mm (3mm)
Mobile Phase A : ACN/DEA 100/0.1 v/v
Mobile Phase B : MeOH / DEA 100/0.1 v/v
Flow Rate : 1.0 mL/min
T/%B : 0/20, 10/80, 15/80, 15.1/20, 22/20
Injection Volume: 10 mL
Detection : 315 nm
Column Temp : 400 C
Concentration : 0.5 mg / mL (refer sample preparation)
Diluent : ACN/MeOH/DEA 50/50/0.1 v/v/v
Warfarin5micron3micron
Mobile phase: H2O: ACN:HCOOH (5/95/0.1, v/v/v)
Flow Rate: 1.0 mL/min, Column Temp: 40°C
3 3.5
LC-MS Compatible methods - 3 µm Chiral Columns
Licarbazepine
CHIRALPAK IC-3 (150 x 4.6)mm
Mobile phase: 5 mM Aq. CH3COONH4 / MeOH (10/90, v/v)
Flow rate: 1.0 ml/min ; Detection: UV at 220nm; Temp: 25 °C
tR1: 3.5
tR2: 4.1
Rs: 2.6
LC-MS Compatible methods
3 µm Chiral Columns
Esomeprazole
CHIRALPAK IC-3 (150 x 4.6)mm
Mobile phase: 5 mM NH4HCO3 in H2O / MeOH (10/90, v/v)
Flow rate: 1.0 ml/min ; Detection: UV at 300nm; Temp: 25 °C
tR1: 4.3
tR2: 5.4
Rs: 3.6
LC-MS Compatible methods
3 µm Chiral Columns
Conclusions
 Chiral HPLC is a versatile technique for determining the enantiomeric
purity of APIs
 Polysaccharide derived CSPs have very high success rate
 Immobilised CSPs + few mobile phases have simplified the chiral
HPLC method development process.
 Immobilised CSPs provide carefree column operation
 Immobilised chiral columns are suitable for the analysis of complex
Chiral APIs while including process impurities
THANK YOU

More Related Content

PPTX
Chiral seperation lovely.ppt
PPT
Chiral chromatography & ion pair chromatography
PPTX
CHIRAL HPLC
PDF
Msc chiral chromatography
PDF
chiral chromatography
PPTX
Ion pair chromatography for pharmacy students
PPTX
Flash and chiral chromatography
PPTX
CE-MS Hyphenation
Chiral seperation lovely.ppt
Chiral chromatography & ion pair chromatography
CHIRAL HPLC
Msc chiral chromatography
chiral chromatography
Ion pair chromatography for pharmacy students
Flash and chiral chromatography
CE-MS Hyphenation

What's hot (20)

PPTX
General considerations and method development in ce,
PPTX
extraction of drug from biological matrix.pptx
PPTX
Microsomal assays toxicokinetics taxicokinetic evaluation in preclinical st...
PPTX
PPTX
Chiral hplc intro
PPTX
Sample preparation and protocols in metabolite identification
PPTX
validation and calibration of HPLC
PPTX
HPLC method development
PPTX
Human liver microsomes & rat liver microsomes
PPTX
Uplc&nano
PPTX
HPLC Trouble Shotting
PDF
Stationary and mobile_phase_selection_m_ab_ph_gradient_analysis_33974
PPTX
C H N S ANALYSIS.pptx
PPTX
Impurity profiling and degradent characterization {presented by shameer m.pha...
PPTX
Nano liquid chromatography (ncl)
PPT
analytical method validation and validation of hplc
PPTX
Flash chromatography
PPTX
Nano LC and UPLC
PPT
Hplc method development
PPTX
Hplc parameters, factors affecting resolution
General considerations and method development in ce,
extraction of drug from biological matrix.pptx
Microsomal assays toxicokinetics taxicokinetic evaluation in preclinical st...
Chiral hplc intro
Sample preparation and protocols in metabolite identification
validation and calibration of HPLC
HPLC method development
Human liver microsomes & rat liver microsomes
Uplc&nano
HPLC Trouble Shotting
Stationary and mobile_phase_selection_m_ab_ph_gradient_analysis_33974
C H N S ANALYSIS.pptx
Impurity profiling and degradent characterization {presented by shameer m.pha...
Nano liquid chromatography (ncl)
analytical method validation and validation of hplc
Flash chromatography
Nano LC and UPLC
Hplc method development
Hplc parameters, factors affecting resolution
Ad

Viewers also liked (20)

PPT
Chiral Separation A pharma Industry Perspective
PPT
Analysis of racemic acid derivitives by chiral high performance liquid chroma...
PPTX
Balaram Lecture slides
PDF
Chromcol Catalog
PPTX
Flash and chiral chromatography
PDF
Analsys Sciences - Introduction to HPLC
PPTX
Chiral resolution by Vamsi Anil Krishna Chandu
PPTX
Analysis of Perchlorate, Chromate, and Inorganic Anions in Drinking Water
PPT
chromatography Gc.ppt (1)
PPT
Pharmagupshup supercritical fluid chrometography and flash chromatography p...
PPTX
Flash chromatography
PPSX
What is HPLC
PPTX
Flash chromatography
PPTX
Flash chromatography
PPT
Supercritical fluid chromatography
PPSX
Presentation on principle of paper chromatography and Rf Value
PDF
Handling an OOS in a QC Lab
PPTX
Supercritical Fluid Chromatography
PPTX
Protein microarrays, ICAT, and HPLC protein purification
Chiral Separation A pharma Industry Perspective
Analysis of racemic acid derivitives by chiral high performance liquid chroma...
Balaram Lecture slides
Chromcol Catalog
Flash and chiral chromatography
Analsys Sciences - Introduction to HPLC
Chiral resolution by Vamsi Anil Krishna Chandu
Analysis of Perchlorate, Chromate, and Inorganic Anions in Drinking Water
chromatography Gc.ppt (1)
Pharmagupshup supercritical fluid chrometography and flash chromatography p...
Flash chromatography
What is HPLC
Flash chromatography
Flash chromatography
Supercritical fluid chromatography
Presentation on principle of paper chromatography and Rf Value
Handling an OOS in a QC Lab
Supercritical Fluid Chromatography
Protein microarrays, ICAT, and HPLC protein purification
Ad

Similar to Chiral separations by hplc (20)

PPT
Finding the best separation for enantiomeric mixtures
PPT
Seminar on Chromatographic techniques
PPTX
CHIRAL HPLC- Presented by- DHANASHREE Kolhekar.pptx
PPTX
Applications of Chiral Supercritical Fluid Chromatography
PPTX
Chiral chromatography
PPT
SupraZn(II)/Mg(II)Bisporphyrin Based System
PPTX
1 Fundamentals of HPLC , tChromotography
PPT
05 - Stereochemistry - Wade 7th
PPT
05 stereochemistry-wade7th-140409015221-phpapp01
PDF
stereochemistry
PPT
Stereochemistry
PDF
30-21.pdf
PPTX
Sterioisomerism B. Pharmacy Fourth Semester
PDF
Rapid Method Scouting of Chiral Compounds
PPT
chiralgc.ppt
PPTX
Mode of Interactions.pptx
PPTX
Stereochemistry
PDF
HPLC method development by DrA.S Charan
PDF
Stability Indicating HPLC Method Development A Review
PPTX
Stereochemistry-Organic Chemistry
Finding the best separation for enantiomeric mixtures
Seminar on Chromatographic techniques
CHIRAL HPLC- Presented by- DHANASHREE Kolhekar.pptx
Applications of Chiral Supercritical Fluid Chromatography
Chiral chromatography
SupraZn(II)/Mg(II)Bisporphyrin Based System
1 Fundamentals of HPLC , tChromotography
05 - Stereochemistry - Wade 7th
05 stereochemistry-wade7th-140409015221-phpapp01
stereochemistry
Stereochemistry
30-21.pdf
Sterioisomerism B. Pharmacy Fourth Semester
Rapid Method Scouting of Chiral Compounds
chiralgc.ppt
Mode of Interactions.pptx
Stereochemistry
HPLC method development by DrA.S Charan
Stability Indicating HPLC Method Development A Review
Stereochemistry-Organic Chemistry

Recently uploaded (20)

PPTX
Uterus anatomy embryology, and clinical aspects
PPTX
15.MENINGITIS AND ENCEPHALITIS-elias.pptx
PPTX
neonatal infection(7392992y282939y5.pptx
PPTX
Acid Base Disorders educational power point.pptx
PPT
genitourinary-cancers_1.ppt Nursing care of clients with GU cancer
PDF
Handout_ NURS 220 Topic 10-Abnormal Pregnancy.pdf
PPT
1b - INTRODUCTION TO EPIDEMIOLOGY (comm med).ppt
PPTX
CME 2 Acute Chest Pain preentation for education
PPTX
POLYCYSTIC OVARIAN SYNDROME.pptx by Dr( med) Charles Amoateng
PPTX
Neuropathic pain.ppt treatment managment
PPTX
Pathophysiology And Clinical Features Of Peripheral Nervous System .pptx
PPT
Breast Cancer management for medicsl student.ppt
PDF
Deadly Stampede at Yaounde’s Olembe Stadium Forensic.pdf
PPT
CHAPTER FIVE. '' Association in epidemiological studies and potential errors
PPTX
NEET PG 2025 Pharmacology Recall | Real Exam Questions from 3rd August with D...
PPTX
CEREBROVASCULAR DISORDER.POWERPOINT PRESENTATIONx
PPTX
ca esophagus molecula biology detailaed molecular biology of tumors of esophagus
PPTX
1 General Principles of Radiotherapy.pptx
DOCX
RUHS II MBBS Microbiology Paper-II with Answer Key | 6th August 2025 (New Sch...
PPTX
Imaging of parasitic D. Case Discussions.pptx
Uterus anatomy embryology, and clinical aspects
15.MENINGITIS AND ENCEPHALITIS-elias.pptx
neonatal infection(7392992y282939y5.pptx
Acid Base Disorders educational power point.pptx
genitourinary-cancers_1.ppt Nursing care of clients with GU cancer
Handout_ NURS 220 Topic 10-Abnormal Pregnancy.pdf
1b - INTRODUCTION TO EPIDEMIOLOGY (comm med).ppt
CME 2 Acute Chest Pain preentation for education
POLYCYSTIC OVARIAN SYNDROME.pptx by Dr( med) Charles Amoateng
Neuropathic pain.ppt treatment managment
Pathophysiology And Clinical Features Of Peripheral Nervous System .pptx
Breast Cancer management for medicsl student.ppt
Deadly Stampede at Yaounde’s Olembe Stadium Forensic.pdf
CHAPTER FIVE. '' Association in epidemiological studies and potential errors
NEET PG 2025 Pharmacology Recall | Real Exam Questions from 3rd August with D...
CEREBROVASCULAR DISORDER.POWERPOINT PRESENTATIONx
ca esophagus molecula biology detailaed molecular biology of tumors of esophagus
1 General Principles of Radiotherapy.pptx
RUHS II MBBS Microbiology Paper-II with Answer Key | 6th August 2025 (New Sch...
Imaging of parasitic D. Case Discussions.pptx

Chiral separations by hplc

  • 1. “Chiral Separations by HPLC” Anand Khatavkar DAICEL CHIRAL TECHNOLOGIES (INDIA) Pvt Ltd Email : anand@chiral.daicel.com Mobile : 09373313040 Seminar on Chromatographic Techniques in Pharma [API] 7th October 2015
  • 2. • What is Chirality • Importance of Chirality • Chiral Chromatography • Types of Chiral Stationary Phases (CSP’s) • Method development on Polysaccharide CSP’s • API Applications Overview
  • 4. What's a “Chiral” Molecule? Non-super imposable mirror image isomers Chirality due to assymetric centre: . c
  • 5. Lamp Slit standard light plane-polarized light Sample/Cell Analyzer Observe plane-polarized light (twisted) Levorotatory: Rotates in a counter- clockwise direction. (-), (l ) Dextrorotatory: Rotates in a clockwise direction. (+), (d ) Any compound that rotates plane polarized light in a clockwise or counterclockwise direction. Optical Activity
  • 6. Importance of Chirality • In an achiral environment, all physical properties of enantiomers are identical, except for optical activity • Enantiomers often behave differently in animals and plants because they are chiral. Enzymes & proteins discriminate between enantiomers.
  • 7. Compound R-enantiomer S-enantiomer Vomiting (Dexamisole) Antihelmenthic (Levamisole) Anti- inflamatory No activity 5 times less active than its antipode Anticoagulant Thalidomide N O O N H O O Sedative Teratogenic N SN Tetramisole CH3 COOH O Ketoprofen Activity differences between enantiomers O O OH OWarfarin
  • 8. Drug Discovery Today, vol. 9, No. 3, 105-111 (2005) Distribution of Worldwide-Approved Drugs
  • 11. CHIRAL CHROMATOGRAPHY Fastest and more economical way to:  Analyse chiral compounds  Isolate individual enantiomers  Obtain the two enantiomers for clinical/toxicological studies  Scale-up from bench- to pilot-scale Early Stages of Development Highly competitive way to:  Isolate single enantiomers (final drugs or intermediates) at production-scale Full Development / Production 5 kg to 100 tons Until Industrial Scale Production mg to 10 Kg
  • 12. Types of CSP Introduction to Chiral Stationary Phases
  • 13. Types of CSPs and Their Loading Capacities Drug discovery today, volume 10, Number 8, April 2005 Type CSPs Loading capacity (mg solute / g CSP) I Pirkle type (Brush type) 1-50 II Polysaccharide derivatives 5-150 III Macrocyclic type Cyclodextrins 0.1-5 Glycopeptides 0.1-5 Chiral Crown ether 0.1-5 IV Ligand exchange 0.1-1 V Protein type 0.1-0.2
  • 14. Chiral Recognition Mechanism Y. Okamoto, E. Yashima, Angew. Chem. Intl. Ed. Engl. 37 (1998) 1020-1043. •Attractive interactions Hydrogen bonding pi-pi interactions dipole -dipole •Inclusion complexes
  • 16. 1999 2001 2003 2008 Polysaccharide 80% 5% 3% 12% 87% 4% 2% 7% 86% 2% 1% 11% 92% 4% 2% 2% 1995-2003: Tetrahedron Asymmetry 2008 : J. Am. Chem. Soc. Which type of CSP? Pirkle Protein Others
  • 19. Normal phase conditions:  Alkane/2-propanol  Alkane/Ethanol Polar mode:  Acetonitrile  Ethanol  Methanol  Other alcohols Reversed Phase Conditions (for RH-versions):  Water/alcohol or acetonitrile  Phosphate buffer (pH 2-8)/alcohol or acetonitrile  KPF6 pH 2/acetonitrile  Bicarbonate buffer (pH 9)/alcohol or acetonitrile Mobile Phases for Coated CSPs’
  • 20. These will irreversibly destroy the Coated CSP Coated CSPs Are Not Stable With All Solvents NEVER USE (even as a sample solvent)  Chloroform  Methylene chloride  Ethyl acetate  Acetone  THF  DMF  DMSO  Dioxane  MtBE Mobile Phases for Coated CSPs TO AVOID ABSOLUTELY
  • 21. 1. Flush all the HPLC unit with a compatible solvent – preferably 2-propanol. 2. Flush the entire unit with the column storage mobile phase. Before connecting the column to the system: Pump Column to detector connection ALL inlet solvent lines Pump to Injector connection Injection Loop Injection Wash Solvent Injector to column connection Detector Before Use
  • 23. Traditionally Prepared by Coating the Polysaccharide Derivative onto the Silica Support Immobilised Polysaccharide derived CSP’s Coated Polysaccharide - Derived Chiral Stationary Phases (CSPs)  Highly Selective  Broad Application Domain  High Loading Capacity LIMITED CHOICE OF SOLVENTS Immobilisation of the Chiral Polymer on the silica support  Makes the CSP resistant to a broader range of solvents  Enlarges the application domain of polysaccharide-derived CSPs, when the appropriate immobilisation process is applied
  • 26. ADVANTAGES New Generation Chiral Stationary Phases •High Sucess Rate and Broad Application Domain •Highly Durable and can be Regenerated •Compatible with All Miscible Solvents • Rugged Phases Hence Carefree Operation • High Preparative Potential •Compatibility with RP, NP and Polar mode
  • 28. Conventional NP Mode CHIRALPAK IA CHIRALPAK IB CHIRALPAK IC CHIRALPAK ID CHIRALPAK IE CHIRALPAK IF Polar Mode Non Standard NP Mode RP Mode New Generation Chiral Columns - Applications Chromatographic Modes
  • 29. NP Mode Polar Mode / RP Mode Switching the Chromatographic Modes New Generation Chiral Columns - Applications NP Mode Transition Solvent: Ethanol / IPA (50/50) Polar Mode
  • 30. RP Mode NP Mode / Polar Mode New Generation Chiral Columns - Applications Step 1: Wash the column with EtOH @0.5mL/min for 30 min Step 2: Wash the column with DMF or THF @0.5mL/min for 2 hrs Step 3: Wash the column with EtOH @0.5mL/min for 30 min Switching the Chromatographic Modes
  • 32. Screening Approach- i CHIRAL-6 Normal Phase Mode:  n-Hexane/ EtOH (80/20)  n-Hexane/ 2-PrOH (80/20)  MtBE /EtOH (95/5)  n-Hexane /DCM/ EtOH (49/49/2) Polar Mode:  Ethanol (100%)  Methanol (100%)  Acetonitrile (100%) Reverse Phase mode:  H2O / ACN (50/50)  Formic acid (pH:2.0) / ACN (50/50)  Bicarbonate buffer (pH:9.0) / ACN (50/50)
  • 33. 0 2 4 6 8 10 12 50 100 150 200 250 300 = 2.81 MtBE/EtOH 95:5 0 10 20 0.00 0.01 0.02 0.03 0.04 0.05 n-hexane/CH2Cl2 75:25 = 2.36 Method Development on CHIRALPAK® IA Applications with Different Solvents CH3 N N O CH3 Methaqualone = 1.96 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0 0.1 0.2 0.3 toluene/n-hexane/EtOH 70:25:5 0 2 4 6 8 10 12 14 0.0 0.2 0.4 0.6 0.8 1.0 = 1.79 n-hexane/CHCl3 50:50 0 10 20 0.00 0.01 0.02 0.03 0.04 = 1.70 n-hexane/methyl acetate 80:20 0 2 4 6 8 10 12 14 0 50 100 150 200 250 = 1.65 n-hexane/2-PrOH 80:20 0 10 20 0.0 0.1 0.2 = 1.63 n-hexane/THF 85:15 = 1.33 0 2 4 6 8 10 12 14 0.0 0.2 0.4 0.6 0.8 1.0 n-hexane/acetone 85:15
  • 34. Method Development on CHIRALPAK® IA Effect of Solvent Modifiers Lorazepam N N H Cl O OH Cl MtBE/EtOH 95:5  = 1.33 12.1 15.0 MtBE 100%  = 1.32 27.8 35.7 The addition of 5% of alcohol significantly improves peak shape and reduces retention times MtBE/MeOH 95:5  = 1.29 9.7 11.7 min UV 230
  • 38. CHIRALPAK® IC Operating under Various Chromatographic Modes THF 100% 1.0ml/min min0 2 4 6 8 10 12 14 16 N N O O Praziquantel min0 2 4 6 8 10 12 14 16 O NH O OH O OH n-hexane / EtOH / TFA (85:15/0.1 v/v/v) 1.0ml/min CBZ-DL-Serine min0 2 4 6 8 10 12 14 N N S Tetramisole ACN / DEA (100:0.1 v/v) 1.0ml/min Polar mode ACN / H2O (50:50 v/v) 0.5ml/min OH OH min0 2.5 5 7.5 10 12.5 15 17.5 1,1'-Bi(2-Naphthol) RP mode
  • 39. N H N O O O O 9.7 21.1 UV 270nm in DMF Mobile phase: MeOH 100% 1.0ml/min. 25°C 9.7 21.1 UV 270nm in Dioxane UV 294nm 9.6 20.8 in Pyridine 9.6 20.9 UV 270nm in DMSO Diverse Injection Media on CHIRALPAK® IA
  • 40. Mobile Phases Additives Amines, Acids, Salts Analyte Additive Form of Analyte Acid TFA, CH3COOH Neutral Amine DEA, Butylamine, Ethanolamine, Ethylenediamine Neutral TFA Charged Amino Acid / Amphoteric Compounds TFA Amine Charged, Acid Neutral
  • 41. 0 10 20 30 mV 0 2 4 6 8 10 Minutes 5.41 5.93 Hexane / 2-Propanol / Diethylamine (90:10:0.1) N H Cl N Chlorpheniramine Hexane / 2-Propanol (90:10) 0.0 0.4 0.8 1.2 1.6 2.0 mV 0 2 4 6 8 10 12 14 Minutes 6.98 Column: CHIRALPAK® AD-H Temp.: 25°C Flow rate: 1.0 ml/min. Detection: UV 254 nm Mobile Phases Additives Effects-1
  • 42. 6.44 9.15 0 2 4 6 8 10 12 14 Retention Time (min) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Intensity(AU) n-heptane/EtOH/AcOH (60:40:0.5) O OH O O Warfarin 5.62 8.15 0 2 4 6 8 10 12 14 Retention Time (min) 0.0 0.1 0.2 0.3 0.4 0.5 Intensity(AU) n-heptane/EtOH/TFA (60:40:0.5) Column: CHIRALCEL® OD Temp.: 25°C Flow rate: 0.7 ml/min. Detection: UV 254nm Mobile Phases Additives Effects-2
  • 43. CHIRALPAK®AD (250 x 4.6 mm, 10µm) Acetonitrile 0.1% DEA 6.72 8.37 0 2 4 6 8 10 12 14 RetentionTime(min) 0.00 0.01 0.02 0.03 0.04 0.05 0.06 Absorbance(AU) Acetonitrile 0.1% Butylamine R R' NH2 xO Primary amine Mobile Phases Additives Effects-3
  • 44. Additive Memory Effect • Sometimes a new column is found not to reproduce a separation developed on an existing one. • The problem is often blamed on the new column when in fact it is due to the previous use and “Memory’ of the old one. A column, once used with acidic or basic solvent additives, often is found to exhibit a modified selectivity when re-tested under neutral conditions. This is due to a “memory Effect” as the additive remains adsorbed on the CSP surface long after it is removed from the mobile phase.
  • 45. Illustration of additive memory effect NH2 1-(1-Naphthyl)ethylamine
  • 46. How to Avoid Memory Effect
  • 47. Column Regeneration - Immobilized Phases
  • 48. Mobile Phase History & Column Performance Regeneration in Practice PURPOSE Recover the specific supra molecular structure Ensure the consistency of the column performance PROCEDURES CHIRALPAK® IA, IB, IC, ID, IE & IF  Flush with EtOH at 0.5 ml/min for 30 min  Flush with DMF 100% at 0.3 ml/min for 2 h  Flush with EtOH at 0.5 ml/min for 30 min
  • 50. Ezetimibe tR1: 10.7 tR2: 12.6 Rs: 3.0 CHIRALPAK IC n-Hexane/IPA/TFA (85/15/0.1, v/v/v) Flow rate:1.0 ml/min ; UV at 240 nm; Col Temp: 35 °C tR1: 7.6 tR2: 9.3 Rs: 4.0 n-Hexane/EtOH/DEA (50/50/0.3, v/v/v) Flow rate: 1.0 ml/min ; UV at 225 nm; Col Temp: 25 °C Darifenacin iCHIRAL-6 Applications: NP mode
  • 51. Tirofiban CHIRALPAK IC Mobile phase: n-Hexane/ MeOH/IPA/EDA/TFA (30/30/40/0.3/0.3, v/v/v/v/v) Flow rate: 1.0 ml/min ; Detection: UV at 230 nm; Temp: 25 °C Sample diluent: n-Hexane/ MeOH/IPA/TFA (30/30/40/0.3, v/v/v/v) tR1: 6.7 tR2: 8.7 Rs: 3.5 iCHIRAL-6 Applications: NP mode
  • 52. CHIRALPAK IE Fexofenadine-Meta isomer separation n-Hexane/EtOH/DEA/TFA 65/35/0.1/0.1 Flow rate: 1.0 ml/min ; UV at 220 nm; Col Temp: 25 °C Alvimopan n-Hexane: EtOH: TFA (75:25:0.1) Flow rate: 1.0 ml/min ; UV at 275 nm; Col Temp: 40 °C m in2 4 6 8 10 m AU 0 200 400 600 800 DAD1 A, Sig=220,4 Ref=off (123280912278.D) 6.064-Meta-Isomer 7.346-Fexofenadine iCHIRAL-6 Applications: NP mode
  • 53. Montelukast sodium CHIRALPAK IA Mobile phase: n-Hexane/EtOH/Dioxane/TFA/DEA (70/20/10/0.3/0.05, v/v/v/v/v) Flow rate: 1.0 ml/min ; Detection: UV at 280 nm; Temp: 25 °C tR1: 7.0 tR2: 8.0 Rs: 3.1 iCHIRAL-6 Applications: non-std NP mode
  • 54. Fulvestrant CHIRALPAK IA Mobile phase: MtBE:EtOH (70/30, v/v) Flow rate: 1.0 ml/min ; Detection: UV at 280 nm; Temp: 25 °C tR1: 5.4 tR2: 6.9 Rs: 4.2 Note: Diastereomeric separation iCHIRAL-6 Applications: non-std NP mode
  • 55. CHIRALPAK IE Sitagliptin MtBE: ACN: MeOH: DEA (80:10:10:0.1) Flow rate: 1.0 ml/min ; UV at 265 nm; Col Temp: 25 °C min2 4 6 8 10 12 mAU 0 50 100 150 200 250 DAD1A,Sig=270,4Ref=off(122750812124.D) NH2 F F F N N N N FF F O min2 4 6 8 10 12 14 16 18 mAU 0 50 100 150 200 250 VWD1A,Wavelength=215nm(121030612009.D) Mitiglinide MtBE: ACN: TFA (80:20:0.3) Flow rate: 1.0 ml/min ; UV at 215 nm; Col Temp: 25 °C iCHIRAL-6 Applications: non-std NP mode
  • 56. Mirabegron Mobile phase: n-Hexane / MtBE/ MeOH/DEA (30/30/40/0.1, v/v/v/v) Flow rate: 1.0 ml/min ; Detection: UV at 250 nm; Temp: 25 °C CHIRALPAK IF-3 tR1: 8.2 tR2: 10.0 Rs: 3.1 iCHIRAL-6 Applications: non-std NP mode
  • 57. Pramipexole Mobile phase: MeOH/DEA (100/0.1, v/v) Flow rate: 1.0 ml/min ; Detection: UV at 260 nm; Temp: 25 °C CHIRALPAK IA tR1: 3.7 tR2: 4.4 Rs: 3.5 iCHIRAL-6 Applications: Polar Organic mode
  • 58. Propafenone tR1: 4.4 tR2: 5.6 Rs: 5.5 CHIRALPAK IA Mobile phase: MeOH/DEA (100/0.1, v/v) Flow rate: 1.0 ml/min ; Detection: UV at 245 nm; Temp: 25 °C iCHIRAL-6 Applications: Polar Organic mode
  • 59. Emtricitabine Mobile phase: Ethanol/IPA (50/50, v/v) Flow rate: 0.5 ml/min ; Detection: UV at 280nm; Temp: 25 °C CHIRALPAK IC tR1: 8.1 tR2: 9.2 Rs: 3.1 iCHIRAL-6 Applications: Polar Organic mode
  • 60. Dexrazoxane Mobile phase: MeOH/ACN/DEA (60/40/0.1, v/v/v) Flow rate: 1.0 ml/min ; Detection: UV at 235 nm; Temp: 40 °C CHIRALPAK ID tR1: 3.7 tR2: 5.0 Rs: 6.5 iCHIRAL-6 Applications: Polar Organic mode
  • 61. Lamivudine CHIRALPAK IC Mobile phase: Ethanol/IPA /DEA (90/10/0.1, v/v/v) Flow rate: 0.5 ml/min ; Detection: UV at 270nm; Temp: 25 °C tR1: 8.0 tR2: 9.1 Rs: 3.1 iCHIRAL-6 Applications: Polar Organic mode
  • 62. Bicalutamide CHIRALPAK IA Mobile phase: 10 mM HCOONH4/ACN (60/40, v/v) Flow rate: 1.0 ml/min ; Detection: UV at 270nm; Temp: 40 °C tR1: 6.8 tR2: 7.4 Rs: 2.0 iCHIRAL-6 Applications: RP mode
  • 63. STIRIPENTOL DOLUTEGRAVIR Conditions: CHIRALPAK IF-3 (4.6x250mm, 3µm); 10mM KPF6 in (water:MTBE:ACN 40/05/55, v/v/v); Flow Rate: 1.0mL/min; Col Temperature: 25°C; Detection: 260nm (UV) tR1: 12.28, tR2: 13.85; Rs:3.96 Conditions: CHIRALPAK IF-3 (4.6x150mm, 3µm) ; 10mM Ammonium acetate: ACN (30/70, v/v); Flow Rate: 1.0mL/min; Col Temperature: 25°C; Detection: 268nm (UV) iCHIRAL-6 Applications: RP mode CHIRALPAK IF-3 tR1: 3.77, tR2: 4.52; Rs:3.57
  • 64. Entecavir CHIRALPAK IE-3 (150 x 4.6) mm Mobile phase: 5 mM Aq Amm bicarbonate / EtOH (5/95, v/v) Flow rate: 0.4 ml/min ; Detection: UV at 260nm; Temp: 25 °C tR1: 5.7 tR2: 6.6 Rs: 2.6 iCHIRAL-6 Applications: RP mode CHIRALPAK IE-3
  • 65. Sertraline CHIRALPAK IA-3 n-Hexane/EtOH/MeOH/DEA (98/01/01/0.1, v/v/v) Flow rate: 1.0 ml/min ; UV at 270 nm; ColTemp: 25 °C iCHIRAL-6 Applications– 4 isomers analysis Pitavastatin n-Hexane/EtOH/HCOOH (90/10/0.1, v/v/v) Flow rate: 1.5 ml/min; UV at 245 nm; Col Temp: 25 °C Diluent 1: MeOH; Diluent 2: n-Hexane / EtOH (90/10)
  • 66. Darunavir CHIRALPAK IE n-Hexane/EtOH/DEA (70/30/0.1) Flow rate: 1.0 ml/min ; UV at 265 nm; Col Temp: 25 °C Aliskiren MtBE:ACN:1.4-Dioxan:EDA (80:20:01:0.05) Flow Rate: 1.0 mL/min; UV: 280 nm; Column Temp: 40ºC CHIRALPAK IE-3 CHIRALPAK IE/IE-3 iCHIRAL-6 Applications– 4 isomers analysis
  • 67. Rosuvastatin CHIRALPAK IB-3 n-Hexane/EtOH/IPA/TFA (90/05/05/0.3) Flow rate: 1.0 ml/min; UV at 250 nm; Col Temp: 25 °C Diluent 1: MeOH; Diluent 2: n-Hexane / EtOH (90/10) Solifenacin CHIRALPAK IC n-Hexane:IPA/EtOH:DEA (60/25/15/0.1) Flow Rate: 1.0 mL/min; UV: 220 nm; Column Temp: 30ºC iCHIRAL-6 Applications– 4 isomers analysis
  • 68. CHIRALPAK IE-3 n-Hexane/EtOH/THF/DEA (80/10/10/0.1) Flow rate: 1.0 ml/min; UV at 250 nm; Col Temp: 25 °C Diluent 1: MeOH; Diluent 2: n-Hexane / EtOH (90/10) Lurasidone iCHIRAL-6 Applications– Multiple isomers analysis
  • 69. Daclatasvir: Gradient elution Column : Chiralpak ID-3, 250x4.6mm (3mm) Mobile Phase A : ACN/DEA 100/0.1 v/v Mobile Phase B : MeOH / DEA 100/0.1 v/v Flow Rate : 1.0 mL/min T/%B : 0/20, 10/80, 15/80, 15.1/20, 22/20 Injection Volume: 10 mL Detection : 315 nm Column Temp : 400 C Concentration : 0.5 mg / mL (refer sample preparation) Diluent : ACN/MeOH/DEA 50/50/0.1 v/v/v
  • 70. Warfarin5micron3micron Mobile phase: H2O: ACN:HCOOH (5/95/0.1, v/v/v) Flow Rate: 1.0 mL/min, Column Temp: 40°C 3 3.5 LC-MS Compatible methods - 3 µm Chiral Columns
  • 71. Licarbazepine CHIRALPAK IC-3 (150 x 4.6)mm Mobile phase: 5 mM Aq. CH3COONH4 / MeOH (10/90, v/v) Flow rate: 1.0 ml/min ; Detection: UV at 220nm; Temp: 25 °C tR1: 3.5 tR2: 4.1 Rs: 2.6 LC-MS Compatible methods 3 µm Chiral Columns
  • 72. Esomeprazole CHIRALPAK IC-3 (150 x 4.6)mm Mobile phase: 5 mM NH4HCO3 in H2O / MeOH (10/90, v/v) Flow rate: 1.0 ml/min ; Detection: UV at 300nm; Temp: 25 °C tR1: 4.3 tR2: 5.4 Rs: 3.6 LC-MS Compatible methods 3 µm Chiral Columns
  • 73. Conclusions  Chiral HPLC is a versatile technique for determining the enantiomeric purity of APIs  Polysaccharide derived CSPs have very high success rate  Immobilised CSPs + few mobile phases have simplified the chiral HPLC method development process.  Immobilised CSPs provide carefree column operation  Immobilised chiral columns are suitable for the analysis of complex Chiral APIs while including process impurities