SlideShare a Scribd company logo
Clase 15 dsp
PROCESAMIENTO DIGITAL DE
SEÑALES
SEÑALES Y SISTEMAS EN TIEMPO DISCRETO
Marcelo Fernando Valdiviezo Condolo
Quinto ‘A’
Carrera de Telecomunicaciones
FFT
JULIO - 2020
INTRODUCCIÓN
Existen varios algoritmos para el
cálculo eficiente de la DFT
Función matemática
o
Transformación
Familia específica de
algoritmos para el
cálculo de la DFT
DFT FFT
INTRODUCCIÓN
OPERACIONES PARA LA
EVALUACIÓN DIRECTA
OPERACIONES MEDIANTE EL
ALGORITMO DE FFT
( )2
o N ( )2logo N N
RELACIÓN DE LA FFT CON LA DFT
La transformada rápida de Fourier (Fast Fourier Transform -FFT) es un
algoritmo que reduce el tiempo de cálculo de la DFT.
3
( ) sin(2 1000 ) 0.5sin 2 2000
4
s sx n nt nt

 
 
=   +   + 
 
1
2 /
0
( ) ( )
N
j nk N
n
X k x n e 
−
−
=
= 
( )
1
0
Re ( ) ( )Cos 2 /
N
n
X k x n nk N
−
=
=  ( )
1
0
Im ( ) ( )Sin 2 /
N
n
X k x n nk N
−
=
= −
CÁLCULO DE LA DFT
( )
( )
( )
( )
( )
( )
(1) 0.3535 1.0 0.3535 0.0 0
0.3535 0.707 0.3535 0.707 1
0.6464 0.0 0.6464 1.00 2
1.0607 0.707 1.0607 0.707 3
0.3535 1.0 0.3535 0.0 4
1.0607 0.707 1.0607 0.707 5
1.3535 0.0 1
X j n
j n
j n
j n
j n
j n
j
=  −   =
+  −   =
+  −   =
+ − − −  =
+ − −   =
− − − − −  =
−  − −( )
( )
.3535 1.0 6
0.3535 0.707 0.3535 0.707 7
n
j n
−  =
−  − − −  =
( )
( )
( )
( )
( )
( )
( )
(2) 0.3535 1.0 0.3535 0.0 0
0.3535 0.0 0.3535 1.0 1
0.6464 1.0 0.6464 0.0 2
1.0607 0.0 1.0607 1.0 3
0.3535 1.0 0.3535 0.0 4
1.0607 0.0 1.0607 1.0 5
1.3535 1.0 1.3535 0.0 6
0
X j n
j n
j n
j n
j n
j n
j n
=  −   =
+  −   =
+ − −   =
+  − −  =
+  −   =
−  − −   =
− − − −   =
− ( ).3535 0.0 0.3535 1.0 7j n − − −  =
( )
( )
( )
( )
( )
( )
(3) 0.3535 1.0 0.3535 0.0 0
0.3535 0.707 0.3535 0.707 1
0.6464 0.0 0.6464 1.0 2
1.0607 0.707 1.0607 0.707 3
0.3535 1.0 0.3535 0.0 4
1.0607 0.707 1.0607 0.707 5
1.3535 0.0 1.
X j n
j n
j n
j n
j n
j n
j
=  −   =
+ − −   =
+ − − −  =
+  −   =
+ − −   =
−  − − −  =
−  − −( )
( )
3535 1.0 6
0.3535 0.707 0.3535 0.707 7
n
j n
  =
− − − − −  =
CÁLCULO DE LA DFT
( )
( )
( )
( )
( )
( )
( )
(4) 0.3535 1.0 0.3535 0.0 0
0.3535 1.0 0.3535 0.0 1
0.6464 1.0 0.6464 0.0 2
1.0607 1.0 1.0607 0.0 3
0.3535 1.0 0.3535 0.0 4
1.0607 1.0 1.0607 0.0 5
1.3535 1.0 1.3535 0.0 6
0
X j n
j n
j n
j n
j n
j n
j n
=  −   =
+ − −   =
+  −   =
+ − −   =
+  −   =
− − − −   =
−  − −   =
− ( ).3535 1.0 0.3535 0.0 7j n− − −   =
( )
( )
( )
( )
( )
( )
(5) 0.3535 1.0 0.3535 0.0 0
0.3535 0.707 0.3535 0.707 1
0.6464 0.0 0.6464 1.0 2
1.0607 0.707 1.0607 0.707 3
0.3535 1.0 0.3535 0.0 4
1.0607 0.707 1.0607 0.707 5
1.3535 0.0 1.3
X j n
j n
j n
j n
j n
j n
j
=  −   =
+ − − −  =
+  −   =
+  − −  =
+ − −   =
−  − −   =
−  − −( )
( )
535 1.0 6
0.3535 0.707 0.3535 0.707 7
n
j n
−  =
− − − −   =
( )
( )
( )
( )
( )
( )
( )
(6) 0.3535 1.0 0.3535 0.0 0
0.3535 0.0 0.3535 1.0 1
0.6464 1.0 0.6464 0.0 2
1.0607 0.0 1.0607 1.0 3
0.3535 1.0 0.3535 0.0 4
1.0607 0.0 1.0607 1.0 5
1.3535 1.0 1.3535 0.0 6
X j n
j n
j n
j n
j n
j n
j n
=  −   =
+  − −  =
+ − −   =
+  −   =
+  −   =
−  − − −  =
− − − −   =
− ( )0.3535 0.0 0.3535 1.0 7j n − −   =
CÁLCULO DE LA DFT
( )
( )
( )
( )
( )
( )
(7) 0.3535 1.0 0.3535 0.0 0
0.3535 0.707 0.3535 0.707 1
0.6464 0.0 0.6464 1.0 2
1.0607 0.707 1.0607 0.707 3
0.3535 1.0 0.3535 0.0 4
1.0607 0.707 1.0607 0.707 5
1.3535 0.0 1
X j n
j n
j n
j n
j n
j n
j
=  −   =
+  − −  =
+  − −  =
+ − − −  =
+ − −   =
− − − −   =
−  − −( )
( )
.3535 1.0 6
0.3535 0.707 0.3535 0.707 7
n
j n
  =
−  − −   =
( ) ( )
1 1
0 0
(0) ( ) Cos 0 Sin 0 ( )
N N
n n
X x n j x n
− −
= =
= − =   
CÁLCULO DE LA DFT
OPERACIONES PARA LA
EVALUACIÓN DIRECTA
OPERACIONES MEDIANTE EL
ALGORITMO DE FFT
( )2
o N ( )2logo N N
2
N Multiplicaciones→
( )1N N Sumas− →
2
64N →
DERIVACIÓN DEL ALGORITMO FFT
RADIX-2
1
2 /
0
( ) ( )
N
j nk N
n
X k x n e 
−
−
=
= 
( )
( )
( )
( )2 1 2 1
2 2 / 2 2 1 /
0 0
( ) (2 ) (2 1)
N N
j n k N j n k N
n n
X k x n e x n e 
− −
− − +
= =
= + + 
( )
( )
( )
( )2 1 2 1
2 2 / 2 2 /2 /
0 0
( ) (2 ) (2 1)
N N
j n k N j n k Nj k N
n n
X k x n e e x n e 
− −
− −−
= =
= + + 
DERIVACIÓN DEL ALGORITMO FFT
RADIX-2
2 /j N
NW e −
=
( ) ( )2 1 2 1
2 2
0 0
( ) (2 ) (2 1)
N N
nk k nk
N N N
n n
X k x n W W x n W
− −
= =
= + + 
FACTOR DE ÁNGULO DE
FASE COMPLEJO
2
2 2 2/ 2
N
j
j N
NW e e


 
−  −  
= =
2
2
N NW W
DERIVACIÓN DEL ALGORITMO FFT
RADIX-2
( ) ( )2 1 2 1
0 02 2
( ) (2 ) (2 1)
N N
nk k nk
N N N
n n
X k x n W W x n W
− −
= =
= + + 
2
2
N NW W :0 1
2
N
k a −
2
N
k k+ →
( ) ( )2 1 2 1
2 2 2
0 02 2
(2 ) (2 1)
2
N N NN Nn k k n k
N N N
n n
N
X k x n W W x n W
     − −+ + +     
     
= =
 
+ = + + 
 
 
DERIVACIÓN DEL ALGORITMO FFT
RADIX-2
( )
2 2
2 22
2 2 2 2 2 2
1
N N j n Nn k n
nk nk nk nkN
N N N N N NW W W W e W W
 
+  −   = = = = 
 
( ) ( )2 1 2 1
2 2 2
0 02 2
(2 ) (2 1)
2
N N NN Nn k k n k
N N N
n n
N
X k x n W W x n W
     − −+ + +     
     
= =
 
+ = + + 
 
 
( ) ( )2 22 2
1
N Nk
k k j N N k k
N N N N N NW W W W e W W
 
+  − 
= = = − = −
( ) ( )2 1 2 1
0 02 2
(2 ) (2 1)
2
N N
nk k nk
N N N
n n
N
X k x n W W x n W
− −
= =
 
+ = − + 
 
 
DERIVACIÓN DEL ALGORITMO FFT
RADIX-2
( ) ( )2 1 2 1
0 02 2
(2 ) (2 1)
2
N N
nk k nk
N N N
n n
N
X k x n W W x n W
− −
= =
 
+ = − + 
 
 
( ) ( )2 1 2 1
0 02 2
( ) (2 ) (2 1)
N N
nk k nk
N N N
n n
X k x n W W x n W
− −
= =
= + + 
DERIVACIÓN DEL ALGORITMO FFT
RADIX-2
DERIVACIÓN DEL ALGORITMO FFT
RADIX-2
( ) ( )2 1 2 1
0 02 2
(2 ) (2 1)
2
N N
nk k nk
N N N
n n
N
X k x n W W x n W
− −
= =
 
+ = − + 
 
 
( ) ( )2 1 2 1
0 02 2
( ) (2 ) (2 1)
N N
nk k nk
N N N
n n
X k x n W W x n W
− −
= =
= + + 
( ) ( ) ( )k
NX k A k W B k= +
( ) ( )
2
k
N
N
X k A k W B k
 
+ = − 
 
( ) ( ) ( ) ( ) ( )
1 1 1
2 4 4
2 12
0 0 02 2 2
2 4 4 2
N N N
n knk nk
N N N
n n n
A k x n W x n W x n W
− − −
+
= = =
= = + +  
DERIVACIÓN DEL ALGORITMO FFT
RADIX-2
2
2 4
nk nk
N NW W=
( ) ( ) ( )
1 1
4 4
0 04 2 4
4 4 2
N N
nk k nk
N N N
n n
A k x n W W x n W
− −
= =
= + + 
( ) ( )2 1 2 1
0 02 2
(2 ) (2 1)
2
N N
nk k nk
N N N
n n
N
X k x n W W x n W
− −
= =
 
+ = − + 
 
 
SIMILARES
DERIVACIÓN DEL ALGORITMO FFT
RADIX-2
( ) ( ) ( )
1 1
4 4
0 04 2 4
4 1 4 3
N N
nk k nk
N N N
n n
B k x n W W x n W
− −
= =
= + + + 
( ) ( ) ( )
1 1
4 4
0 04 2 4
4 4 2
N N
nk k nk
N N N
n n
A k x n W W x n W
− −
= =
= + + 
DERIVACIÓN DEL ALGORITMO FFT
RADIX-2
( ) ( ) ( )
1 1
4 4
0 04 2 4
4 1 4 3
N N
nk k nk
N N N
n n
B k x n W W x n W
− −
= =
= + + + 
( ) ( ) ( )
1 1
4 4
0 04 2 4
4 4 2
N N
nk k nk
N N N
n n
A k x n W W x n W
− −
= =
= + + 
( ) ( ) ( )k
NX k A k W B k= +
Clase 15 dsp
PREGUNTAS
GRACIAS…
Clase 15 dsp

More Related Content

PDF
Clase 16 dsp
PDF
Finite Difference Method
PPT
11 x1 t09 03 rules for differentiation (2013)
PDF
Solutions manual for calculus an applied approach brief international metric ...
PDF
POTENCIAS Y RADICALES
DOC
00000070 1 20130107-130231
PDF
Integral table
DOC
00000070 1 20130107-130231
Clase 16 dsp
Finite Difference Method
11 x1 t09 03 rules for differentiation (2013)
Solutions manual for calculus an applied approach brief international metric ...
POTENCIAS Y RADICALES
00000070 1 20130107-130231
Integral table
00000070 1 20130107-130231

What's hot (17)

PDF
Solution Manual : Chapter - 05 Integration
PDF
Hand book of Howard Anton calculus exercises 8th edition
PPT
Solution of simplified neutron diffusion equation by FDM
PDF
Capitulo 7 Soluciones Purcell 9na Edicion
PDF
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...
PDF
resposta do capitulo 15
PDF
Capitulo 4 Soluciones Purcell 9na Edicion
PDF
Solution Manual : Chapter - 01 Functions
PDF
Solution Manual : Chapter - 02 Limits and Continuity
PDF
solucionario de purcell 2
PDF
Summary Of Important Laws Of Differentiation And Integration
PDF
Capitulo 5 Soluciones Purcell 9na Edicion
PDF
Gilat_ch03.pdf
PDF
Gilat_ch02.pdf
PDF
solucionario de purcell 1
PDF
solucionario de purcell 0
Solution Manual : Chapter - 05 Integration
Hand book of Howard Anton calculus exercises 8th edition
Solution of simplified neutron diffusion equation by FDM
Capitulo 7 Soluciones Purcell 9na Edicion
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...
resposta do capitulo 15
Capitulo 4 Soluciones Purcell 9na Edicion
Solution Manual : Chapter - 01 Functions
Solution Manual : Chapter - 02 Limits and Continuity
solucionario de purcell 2
Summary Of Important Laws Of Differentiation And Integration
Capitulo 5 Soluciones Purcell 9na Edicion
Gilat_ch03.pdf
Gilat_ch02.pdf
solucionario de purcell 1
solucionario de purcell 0
Ad

Similar to Clase 15 dsp (20)

PDF
Formulario de Calculo Diferencial-Integral
PDF
Formulario cálculo
PDF
Formulario calculo
PDF
Formulario oficial-calculo
PPTX
Measures of dispersion - united world school of business
PDF
Formulario derivadas e integrales
PDF
Formulas de calculo
PDF
Calculo
PDF
Formulario
PDF
Calculo
PDF
Tablas calculo
PDF
Formulario
PDF
Formulario calculo
PDF
Sistemas de comunicacion 4ta edicion - bruce a. carlson solutions manual
PPT
Dispersion uwsb
PDF
Magnet Design - Hollow Cylindrical Conductor
PPTX
Measures of dispersion unitedworld school of business
PDF
Estadistica U4
PDF
電路學 - [第七章] 正弦激勵, 相量與穩態分析
Formulario de Calculo Diferencial-Integral
Formulario cálculo
Formulario calculo
Formulario oficial-calculo
Measures of dispersion - united world school of business
Formulario derivadas e integrales
Formulas de calculo
Calculo
Formulario
Calculo
Tablas calculo
Formulario
Formulario calculo
Sistemas de comunicacion 4ta edicion - bruce a. carlson solutions manual
Dispersion uwsb
Magnet Design - Hollow Cylindrical Conductor
Measures of dispersion unitedworld school of business
Estadistica U4
電路學 - [第七章] 正弦激勵, 相量與穩態分析
Ad

More from Marcelo Valdiviezo (20)

PDF
Semana 4: Ética Profesional
PDF
Semana 3: Ética Profesional
PDF
Semana 18: Compresión MPEG-4
PDF
Clase 13 cdi: Razones de cambio relacionadas
PDF
Semana 17: Compresión de Audio
PDF
Semana 15: El Sonido
PDF
Semana 15: Integrales Múltiples
PDF
Semana 14: Gradiente, Divergencia y Rotacional
PDF
Semana 13: Planos Tangentes y Rectas Normales
PPTX
Semana 12: Derivada direccional y gradiente
PDF
Semana 10: Derivadas Parciales
PDF
Semana 10: Transformadas de Imágenes
PDF
Semana 9: Funciones de varias variables
PDF
Semana 9: Métricas de Error y Métodos Intuitivos
PDF
Semana 9: Código de Gray
PDF
Semana 8: Introducción a la Compresión de Imágenes
PDF
Semana 8: Longitud de Arco y Curvatura
PDF
Clase 05 CDI
PDF
Semana 7: Derivación e Integración de Funciones Vectoriales
PDF
Semana 6: LZ77
Semana 4: Ética Profesional
Semana 3: Ética Profesional
Semana 18: Compresión MPEG-4
Clase 13 cdi: Razones de cambio relacionadas
Semana 17: Compresión de Audio
Semana 15: El Sonido
Semana 15: Integrales Múltiples
Semana 14: Gradiente, Divergencia y Rotacional
Semana 13: Planos Tangentes y Rectas Normales
Semana 12: Derivada direccional y gradiente
Semana 10: Derivadas Parciales
Semana 10: Transformadas de Imágenes
Semana 9: Funciones de varias variables
Semana 9: Métricas de Error y Métodos Intuitivos
Semana 9: Código de Gray
Semana 8: Introducción a la Compresión de Imágenes
Semana 8: Longitud de Arco y Curvatura
Clase 05 CDI
Semana 7: Derivación e Integración de Funciones Vectoriales
Semana 6: LZ77

Recently uploaded (20)

PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PDF
Trump Administration's workforce development strategy
PPTX
UV-Visible spectroscopy..pptx UV-Visible Spectroscopy – Electronic Transition...
PPTX
master seminar digital applications in india
PDF
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
DOC
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
PDF
A systematic review of self-coping strategies used by university students to ...
PPTX
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
Yogi Goddess Pres Conference Studio Updates
PPTX
History, Philosophy and sociology of education (1).pptx
PDF
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
PDF
Paper A Mock Exam 9_ Attempt review.pdf.
PDF
Microbial disease of the cardiovascular and lymphatic systems
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PPTX
Cell Types and Its function , kingdom of life
PDF
LDMMIA Reiki Yoga Finals Review Spring Summer
PPTX
Lesson notes of climatology university.
Module 4: Burden of Disease Tutorial Slides S2 2025
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
Trump Administration's workforce development strategy
UV-Visible spectroscopy..pptx UV-Visible Spectroscopy – Electronic Transition...
master seminar digital applications in india
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
A systematic review of self-coping strategies used by university students to ...
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
Final Presentation General Medicine 03-08-2024.pptx
Yogi Goddess Pres Conference Studio Updates
History, Philosophy and sociology of education (1).pptx
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
Paper A Mock Exam 9_ Attempt review.pdf.
Microbial disease of the cardiovascular and lymphatic systems
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
Cell Types and Its function , kingdom of life
LDMMIA Reiki Yoga Finals Review Spring Summer
Lesson notes of climatology university.

Clase 15 dsp

  • 2. PROCESAMIENTO DIGITAL DE SEÑALES SEÑALES Y SISTEMAS EN TIEMPO DISCRETO Marcelo Fernando Valdiviezo Condolo Quinto ‘A’ Carrera de Telecomunicaciones
  • 4. INTRODUCCIÓN Existen varios algoritmos para el cálculo eficiente de la DFT Función matemática o Transformación Familia específica de algoritmos para el cálculo de la DFT DFT FFT
  • 5. INTRODUCCIÓN OPERACIONES PARA LA EVALUACIÓN DIRECTA OPERACIONES MEDIANTE EL ALGORITMO DE FFT ( )2 o N ( )2logo N N
  • 6. RELACIÓN DE LA FFT CON LA DFT La transformada rápida de Fourier (Fast Fourier Transform -FFT) es un algoritmo que reduce el tiempo de cálculo de la DFT. 3 ( ) sin(2 1000 ) 0.5sin 2 2000 4 s sx n nt nt      =   +   +    1 2 / 0 ( ) ( ) N j nk N n X k x n e  − − = =  ( ) 1 0 Re ( ) ( )Cos 2 / N n X k x n nk N − = =  ( ) 1 0 Im ( ) ( )Sin 2 / N n X k x n nk N − = = −
  • 7. CÁLCULO DE LA DFT ( ) ( ) ( ) ( ) ( ) ( ) (1) 0.3535 1.0 0.3535 0.0 0 0.3535 0.707 0.3535 0.707 1 0.6464 0.0 0.6464 1.00 2 1.0607 0.707 1.0607 0.707 3 0.3535 1.0 0.3535 0.0 4 1.0607 0.707 1.0607 0.707 5 1.3535 0.0 1 X j n j n j n j n j n j n j =  −   = +  −   = +  −   = + − − −  = + − −   = − − − − −  = −  − −( ) ( ) .3535 1.0 6 0.3535 0.707 0.3535 0.707 7 n j n −  = −  − − −  = ( ) ( ) ( ) ( ) ( ) ( ) ( ) (2) 0.3535 1.0 0.3535 0.0 0 0.3535 0.0 0.3535 1.0 1 0.6464 1.0 0.6464 0.0 2 1.0607 0.0 1.0607 1.0 3 0.3535 1.0 0.3535 0.0 4 1.0607 0.0 1.0607 1.0 5 1.3535 1.0 1.3535 0.0 6 0 X j n j n j n j n j n j n j n =  −   = +  −   = + − −   = +  − −  = +  −   = −  − −   = − − − −   = − ( ).3535 0.0 0.3535 1.0 7j n − − −  = ( ) ( ) ( ) ( ) ( ) ( ) (3) 0.3535 1.0 0.3535 0.0 0 0.3535 0.707 0.3535 0.707 1 0.6464 0.0 0.6464 1.0 2 1.0607 0.707 1.0607 0.707 3 0.3535 1.0 0.3535 0.0 4 1.0607 0.707 1.0607 0.707 5 1.3535 0.0 1. X j n j n j n j n j n j n j =  −   = + − −   = + − − −  = +  −   = + − −   = −  − − −  = −  − −( ) ( ) 3535 1.0 6 0.3535 0.707 0.3535 0.707 7 n j n   = − − − − −  =
  • 8. CÁLCULO DE LA DFT ( ) ( ) ( ) ( ) ( ) ( ) ( ) (4) 0.3535 1.0 0.3535 0.0 0 0.3535 1.0 0.3535 0.0 1 0.6464 1.0 0.6464 0.0 2 1.0607 1.0 1.0607 0.0 3 0.3535 1.0 0.3535 0.0 4 1.0607 1.0 1.0607 0.0 5 1.3535 1.0 1.3535 0.0 6 0 X j n j n j n j n j n j n j n =  −   = + − −   = +  −   = + − −   = +  −   = − − − −   = −  − −   = − ( ).3535 1.0 0.3535 0.0 7j n− − −   = ( ) ( ) ( ) ( ) ( ) ( ) (5) 0.3535 1.0 0.3535 0.0 0 0.3535 0.707 0.3535 0.707 1 0.6464 0.0 0.6464 1.0 2 1.0607 0.707 1.0607 0.707 3 0.3535 1.0 0.3535 0.0 4 1.0607 0.707 1.0607 0.707 5 1.3535 0.0 1.3 X j n j n j n j n j n j n j =  −   = + − − −  = +  −   = +  − −  = + − −   = −  − −   = −  − −( ) ( ) 535 1.0 6 0.3535 0.707 0.3535 0.707 7 n j n −  = − − − −   = ( ) ( ) ( ) ( ) ( ) ( ) ( ) (6) 0.3535 1.0 0.3535 0.0 0 0.3535 0.0 0.3535 1.0 1 0.6464 1.0 0.6464 0.0 2 1.0607 0.0 1.0607 1.0 3 0.3535 1.0 0.3535 0.0 4 1.0607 0.0 1.0607 1.0 5 1.3535 1.0 1.3535 0.0 6 X j n j n j n j n j n j n j n =  −   = +  − −  = + − −   = +  −   = +  −   = −  − − −  = − − − −   = − ( )0.3535 0.0 0.3535 1.0 7j n − −   =
  • 9. CÁLCULO DE LA DFT ( ) ( ) ( ) ( ) ( ) ( ) (7) 0.3535 1.0 0.3535 0.0 0 0.3535 0.707 0.3535 0.707 1 0.6464 0.0 0.6464 1.0 2 1.0607 0.707 1.0607 0.707 3 0.3535 1.0 0.3535 0.0 4 1.0607 0.707 1.0607 0.707 5 1.3535 0.0 1 X j n j n j n j n j n j n j =  −   = +  − −  = +  − −  = + − − −  = + − −   = − − − −   = −  − −( ) ( ) .3535 1.0 6 0.3535 0.707 0.3535 0.707 7 n j n   = −  − −   = ( ) ( ) 1 1 0 0 (0) ( ) Cos 0 Sin 0 ( ) N N n n X x n j x n − − = = = − =   
  • 10. CÁLCULO DE LA DFT OPERACIONES PARA LA EVALUACIÓN DIRECTA OPERACIONES MEDIANTE EL ALGORITMO DE FFT ( )2 o N ( )2logo N N 2 N Multiplicaciones→ ( )1N N Sumas− → 2 64N →
  • 11. DERIVACIÓN DEL ALGORITMO FFT RADIX-2 1 2 / 0 ( ) ( ) N j nk N n X k x n e  − − = =  ( ) ( ) ( ) ( )2 1 2 1 2 2 / 2 2 1 / 0 0 ( ) (2 ) (2 1) N N j n k N j n k N n n X k x n e x n e  − − − − + = = = + +  ( ) ( ) ( ) ( )2 1 2 1 2 2 / 2 2 /2 / 0 0 ( ) (2 ) (2 1) N N j n k N j n k Nj k N n n X k x n e e x n e  − − − −− = = = + + 
  • 12. DERIVACIÓN DEL ALGORITMO FFT RADIX-2 2 /j N NW e − = ( ) ( )2 1 2 1 2 2 0 0 ( ) (2 ) (2 1) N N nk k nk N N N n n X k x n W W x n W − − = = = + +  FACTOR DE ÁNGULO DE FASE COMPLEJO 2 2 2 2/ 2 N j j N NW e e     −  −   = = 2 2 N NW W
  • 13. DERIVACIÓN DEL ALGORITMO FFT RADIX-2 ( ) ( )2 1 2 1 0 02 2 ( ) (2 ) (2 1) N N nk k nk N N N n n X k x n W W x n W − − = = = + +  2 2 N NW W :0 1 2 N k a − 2 N k k+ → ( ) ( )2 1 2 1 2 2 2 0 02 2 (2 ) (2 1) 2 N N NN Nn k k n k N N N n n N X k x n W W x n W      − −+ + +            = =   + = + +     
  • 14. DERIVACIÓN DEL ALGORITMO FFT RADIX-2 ( ) 2 2 2 22 2 2 2 2 2 2 1 N N j n Nn k n nk nk nk nkN N N N N N NW W W W e W W   +  −   = = = =    ( ) ( )2 1 2 1 2 2 2 0 02 2 (2 ) (2 1) 2 N N NN Nn k k n k N N N n n N X k x n W W x n W      − −+ + +            = =   + = + +      ( ) ( )2 22 2 1 N Nk k k j N N k k N N N N N NW W W W e W W   +  −  = = = − = − ( ) ( )2 1 2 1 0 02 2 (2 ) (2 1) 2 N N nk k nk N N N n n N X k x n W W x n W − − = =   + = − +     
  • 15. DERIVACIÓN DEL ALGORITMO FFT RADIX-2 ( ) ( )2 1 2 1 0 02 2 (2 ) (2 1) 2 N N nk k nk N N N n n N X k x n W W x n W − − = =   + = − +      ( ) ( )2 1 2 1 0 02 2 ( ) (2 ) (2 1) N N nk k nk N N N n n X k x n W W x n W − − = = = + + 
  • 17. DERIVACIÓN DEL ALGORITMO FFT RADIX-2 ( ) ( )2 1 2 1 0 02 2 (2 ) (2 1) 2 N N nk k nk N N N n n N X k x n W W x n W − − = =   + = − +      ( ) ( )2 1 2 1 0 02 2 ( ) (2 ) (2 1) N N nk k nk N N N n n X k x n W W x n W − − = = = + +  ( ) ( ) ( )k NX k A k W B k= + ( ) ( ) 2 k N N X k A k W B k   + = −    ( ) ( ) ( ) ( ) ( ) 1 1 1 2 4 4 2 12 0 0 02 2 2 2 4 4 2 N N N n knk nk N N N n n n A k x n W x n W x n W − − − + = = = = = + +  
  • 18. DERIVACIÓN DEL ALGORITMO FFT RADIX-2 2 2 4 nk nk N NW W= ( ) ( ) ( ) 1 1 4 4 0 04 2 4 4 4 2 N N nk k nk N N N n n A k x n W W x n W − − = = = + +  ( ) ( )2 1 2 1 0 02 2 (2 ) (2 1) 2 N N nk k nk N N N n n N X k x n W W x n W − − = =   + = − +      SIMILARES
  • 19. DERIVACIÓN DEL ALGORITMO FFT RADIX-2 ( ) ( ) ( ) 1 1 4 4 0 04 2 4 4 1 4 3 N N nk k nk N N N n n B k x n W W x n W − − = = = + + +  ( ) ( ) ( ) 1 1 4 4 0 04 2 4 4 4 2 N N nk k nk N N N n n A k x n W W x n W − − = = = + + 
  • 20. DERIVACIÓN DEL ALGORITMO FFT RADIX-2 ( ) ( ) ( ) 1 1 4 4 0 04 2 4 4 1 4 3 N N nk k nk N N N n n B k x n W W x n W − − = = = + + +  ( ) ( ) ( ) 1 1 4 4 0 04 2 4 4 4 2 N N nk k nk N N N n n A k x n W W x n W − − = = = + +  ( ) ( ) ( )k NX k A k W B k= +