SlideShare a Scribd company logo
65/C/3 JJJJ Page 1 P.T.O.
narjmWu àíZ-nÌ H$moS> >H$mo CÎma-nwpñVH$m Ho$
_wI-n¥ð >na Adí` {bIo§ &
Candidates must write the Q.P. Code on
the title page of the answer-book.
Series EF1GH/C SET~3
Q.P. Code
Roll No.
J{UV
MATHEMATICS
*
: 3 : 80
Time allowed : 3 hours Maximum Marks : 80
NOTE :
(i) - 23
Please check that this question paper contains 23 printed pages.
(ii) - - -
-
Q.P. Code given on the right hand side of the question paper should be written on the title
page of the answer-book by the candidate.
(iii) - 38
Please check that this question paper contains 38 questions.
(iv) -
Please write down the serial number of the question in the answer-book before
attempting it.
(v) - 15 -
10.15 10.15 10.30 -
-
15 minute time has been allotted to read this question paper. The question paper will be
distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the
question paper only and will not write any answer on the answer-book during this period.
65/C/3
^
65/C/3 JJJJ Page 2
:
:
(i) 38
(ii)
(iii) 1 18 19 20
(iv) 21 25 (VSA)
(v) 26 31 (SA)
(vi) 32 35 (LA)
(vii) 36 38
(viii) 2 3
2 2
(ix)
IÊS> H$
1
1. AdH$b g_rH$aU x
dx
dy
2y = 4x2 H$m g_mH$bZ JwUH$ h¡ :
(a) x2 (b)
2
x
1
(c)
2
x
1
(d) x2
2. `h {X`m J`m h¡ {H$ X
1
1
2
3
=
3
2
1
4
h¡ & Vmo Amì`yh X h¡ :
(a)
1
0
0
1
(b)
1
1
1
0
(c)
1
1
1
1
(d)
1
1
1
1
65/C/3 JJJJ Page 3 P.T.O.
General Instructions :
Read the following instructions very carefully and strictly follow them :
(i) This question paper contains 38 questions. All questions are compulsory.
(ii) This question paper is divided into five Sections A, B, C, D and E.
(iii) In Section A, Questions no. 1 to 18 are multiple choice questions (MCQs) and
questions number 19 and 20 are Assertion-Reason based questions of 1 mark
each.
(iv) In Section B, Questions no. 21 to 25 are very short answer (VSA) type
questions, carrying 2 marks each.
(v) In Section C, Questions no. 26 to 31 are short answer (SA) type questions,
carrying 3 marks each.
(vi) In Section D, Questions no. 32 to 35 are long answer (LA) type questions
carrying 5 marks each.
(vii) In Section E, Questions no. 36 to 38 are case study based questions carrying
4 marks each.
(viii) There is no overall choice. However, an internal choice has been provided in
2 questions in Section B, 3 questions in Section C, 2 questions in Section D and
2 questions in Section E.
(ix) Use of calculators is not allowed.
SECTION A
This section comprises multiple choice questions (MCQs) of 1 mark each.
1. Integrating factor of the differential equation x
dx
dy
2y = 4x2 is :
(a) x2 (b)
2
x
1
(c)
2
x
1
(d) x2
2. It is given that X
1
1
2
3
=
3
2
1
4
. Then matrix X is :
(a)
1
0
0
1
(b)
1
1
1
0
(c)
1
1
1
1
(d)
1
1
1
1
65/C/3 JJJJ Page 4
3. x Ho$ {H$g _mZ Ho$ {bE, gma{UH$
x
5
3
x
2
Am¡a
2
3
1
10
g_mZ h¢ ?
(a) 3 (b) 3 (c) 2 (d) 2
4. EH$ LPP Ho$ n[a~Õ gwg§JV joÌ Ho$ H$moUr` q~Xþ O(0, 0), A(250, 0), B(200, 50) Am¡a
C(0, 175) h¢ & `{X CÔoí` $bZ Z = 2ax + by H$m A{YH$V_ _mZ q~XþAm| A(250, 0)
Am¡a B(200, 50) na h¡, Vmo a Am¡a b Ho$ ~rM H$m g§~§Y hmoJm :
(a) 2a = b (b) 2a = 3b (c) a = b (d) a = 2b
5. aoImAm|
1
1
x
=
1
y
4
=
2
5
z
Am¡a
3
3
x
=
5
2
y
=
4
5
z
Ho$ ~rM H$m H$moU h¡ :
(a) cos 1
3
2
(b) cos 1
3
1
(c)
2
(d)
4
6. EH$ {Zînj nmgo H$mo CN>mbm J`m & KQ>ZmE± E Am¡a F H«$_e: E = {1, 3, 5} Am¡a F = {2, 3}
h¢ & P(E|F) H$m _mZ h¡ :
(a)
3
2
(b)
3
1
(c)
6
1
(d)
2
1
65/C/3 JJJJ Page 5 P.T.O.
3. For which value of x, are the determinants
x
5
3
x
2
and
2
3
1
10
equal ?
(a) 3 (b) 3 (c) 2 (d) 2
4. The corner points of the bounded feasible region of an LPP are O(0, 0),
A(250, 0), B(200, 50) and C(0, 175). If the maximum value of the objective
function Z = 2ax + by occurs at the points A(250, 0) and B(200, 50), then
the relation between a and b is :
(a) 2a = b (b) 2a = 3b (c) a = b (d) a = 2b
5. The angle between the lines
1
1
x
=
1
y
4
=
2
5
z
and
3
3
x
=
5
2
y
=
4
5
z
is :
(a) cos 1
3
2
(b) cos 1
3
1
(c)
2
(d)
4
6. A fair die is rolled. Events E and F are E = {1, 3, 5} and F = {2, 3}
respectively. Value of P(E|F) is :
(a)
3
2
(b)
3
1
(c)
6
1
(d)
2
1
65/C/3 JJJJ Page 6
7. `{X a , b Am¡a ( a + b ) g^r _mÌH$ g{Xe h¢ Am¡a a VWm b Ho$ ~rM H$m H$moU
h¡, Vmo H$m _mZ hmoJm :
(a)
3
2
(b)
6
5
(c)
3
(d)
6
8. `{X ABCD EH$ g_m§Va MVw^w©O h¡ Am¡a AC VWm BD BgHo$ {dH$U© h¢, Vmo AC + BD h¡ :
(a) 2DA (b) 2 AB (c) 2BC (d) 2BD
9. `{X x = a cos + b sin , y = a sin b cos h¡, Vmo {ZåZ{b{IV _| go H$m¡Z-gm
ghr h¡ ?
(a) y2
2
2
dx
y
d
x
dx
dy
+ y = 0 (b) y2
2
2
dx
y
d
+ x
dx
dy
+ y = 0
(c) y2
2
2
dx
y
d
+ x
dx
dy
y = 0 (d) y2
2
2
dx
y
d
x
dx
dy
y = 0
10. `{X Amì`yh A =
1
1
1
1
Am¡a A
2
= kA h¡, Vmo k H$m _mZ hmoJm :
(a) 1 (b) 2 (c) 2 (d) 1
11. AdH$b g_rH$aU
2
2
2
dx
y
d
+
3
dx
dy
+ x4 = 0 H$s H$mo{Q> Am¡a KmV _| A§Va h¡ :
(a) 1 (b) 2 (c) 1 (d) 0
12. dx
x
cos
x
sin
x
2
cos
2
2
.
~am~a h¡ :
(a) tan x cot x + C (b) cot x tan x + C
(c) cot x + tan x + C (d) tan x cot x C
65/C/3 JJJJ Page 7 P.T.O.
7. If a , b and ( a + b ) are all unit vectors and is the angle between a
and b , then the value of is :
(a)
3
2
(b)
6
5
(c)
3
(d)
6
8. If ABCD is a parallelogram and AC and BD are its diagonals, then
AC + BD is :
(a) 2DA (b) 2 AB (c) 2BC (d) 2BD
9. If x = a cos + b sin , y = a sin b cos , then which one of the
following is true ?
(a) y2
2
2
dx
y
d
x
dx
dy
+ y = 0 (b) y2
2
2
dx
y
d
+ x
dx
dy
+ y = 0
(c) y2
2
2
dx
y
d
+ x
dx
dy
y = 0 (d) y2
2
2
dx
y
d
x
dx
dy
y = 0
10. If matrix A =
1
1
1
1
and A2
= kA, then the value of k is :
(a) 1 (b) 2 (c) 2 (d) 1
11. The difference of the order and the degree of the differential equation
2
2
2
dx
y
d
+
3
dx
dy
+ x4 = 0 is :
(a) 1 (b) 2 (c) 1 (d) 0
12. dx
x
cos
x
sin
x
2
cos
2
2
.
is equal to
(a) tan x cot x + C (b) cot x tan x + C
(c) cot x + tan x + C (d) tan x cot x C
65/C/3 JJJJ Page 8
13. `{X A, H$mo{Q> 3 H$m EH$ dJ© Amì`yh h¡ Am¡a |A| = 6 h¡, Vmo |adj A| H$m _mZ h¡ :
(a) 6 (b) 36
(c) 27 (d) 216
14. Amì`yh g_rH$aU
z
2
y
z
x
z
y
x
=
1
2
3
, _| z H$m _mZ h¡ :
(a) 1 (b) 2
(c) 1 (d) 2
15. `{X$y = log
2
x
4
tan h¡, Vmo
dx
dy
h¡ :
(a) sec x (b) cosec x
(c) tan x (d) sec x tan x
16. AY©-Vb 2x + y 4 0 _| pñWV q~Xþ h¡ :
(a) (0, 8) (b) (1, 1)
(c) (5, 5) (d) (2, 2)
17. dx
x
3
sin
6
/
0
H$m _mZ h¡ :
(a)
2
3
(b)
3
1
(c)
2
3
(d)
3
1
18. g{Xe ^
i H$m g{Xe ^
i +
^
j + 2
^
k na àjon h¡ :
(a)
6
1
(b) 6 (c)
6
2
(d)
6
3
65/C/3 JJJJ Page 9 P.T.O.
13. If A is a square matrix of order 3 and |A| = 6, then the value of |adj A|
is :
(a) 6 (b) 36
(c) 27 (d) 216
14. In the matrix equation
z
2
y
z
x
z
y
x
=
1
2
3
, the value of z is :
(a) 1 (b) 2
(c) 1 (d) 2
15. If y = log
2
x
4
tan , then
dx
dy
is :
(a) sec x (b) cosec x
(c) tan x (d) sec x tan x
16. The point which lies in the half-plane 2x + y 4 0 is :
(a) (0, 8) (b) (1, 1)
(c) (5, 5) (d) (2, 2)
17. The value of dx
x
3
sin
6
/
0
is :
(a)
2
3
(b)
3
1
(c)
2
3
(d)
3
1
18. The projection of vector
^
i on the vector
^
i +
^
j + 2
^
k is :
(a)
6
1
(b) 6 (c)
6
2
(d)
6
3
65/C/3 JJJJ Page 10
19 20 1
(A) (R)
(a), (b), (c) (d)
(a) A{^H$WZ (A) Am¡a VH©$ (R) XmoZm| ghr h¢ Am¡a VH©$ (R), A{^H$WZ (A) H$s ghr
ì¶m»¶m H$aVm h¡ &
(b) A{^H$WZ (A) Am¡a VH©$ (R) XmoZm| ghr h¢ Am¡a VH©$ (R), A{^H$WZ (A) H$s ghr
ì¶m»¶m H$aVm h¡ &
(c) A{^H$WZ (A) ghr h¡, naÝVw VH©$ (R) µJbV h¡ &
(d) A{^H$WZ (A) µJbV h¡, naÝVw VH©$ (R) ghr h¡ &
19. (A) : ímrfmªo A(0, 0, 0), B(3, 4, 5), C(8, 8, 8) Am¡a D(5, 4, 3) go ~Zm
MVw^w©O EH$ g_MVw^w©O h¡ &
(R) : ABCD EH$ g_MVw^©wO h¡, `{X AB = BC = CD = DA, AC BD h¡ &
20. (A) : cot 1 ( 3 ) H$m _w»` _mZ
6
h¡ &
(R) : cot 1 x H$m àm§V { 1, 1} h¡ &
IÊS> I
(VSA) 2
21. EH$ Eogm g{Xe kmV H$s{OE, {OgH$m n[a_mU 6 h¡ VWm dh àË`oH$ g{Xe a + b Am¡a
a b Ho$ bå~dV² h¡, Ohm±$ a =
^
i +
^
j +
^
k Am¡a b =
^
i + 2
^
j + 3
^
k h¢ &
22. (H$) `{X a , b Am¡a c VrZ g{Xe Bg àH$ma h¢ {H$ | a | = 7,
| b | = 24, | c | = 25 Am¡a a + b + c = 0 h¡, Vmo
a . b + b . c + c . a H$m _mZ kmV H$s{OE &
AWdm
(I) `{X EH$ aoIm x-Aj, y-Aj Am¡a z-Aj Ho$ gmW H«$_e: , Am¡a H$moU ~ZmVr
h¡, Vmo {gÕ H$s{OE {H$ sin2 + sin2 + sin2 = 2 h¡ &
65/C/3 JJJJ Page 11 P.T.O.
Questions number 19 and 20 are Assertion and Reason based questions carrying
1 mark each. Two statements are given, one labelled Assertion (A) and the other
labelled Reason (R). Select the correct answer from the codes (a), (b), (c) and (d)
as given below.
(a) Both Assertion (A) and Reason (R) are true and Reason (R) is the
correct explanation of the Assertion (A).
(b) Both Assertion (A) and Reason (R) are true and Reason (R) is not
the correct explanation of the Assertion (A).
(c) Assertion (A) is true, but Reason (R) is false.
(d) Assertion (A) is false, but Reason (R) is true.
19. Assertion (A) : Quadrilateral formed by vertices A(0, 0, 0), B(3, 4, 5),
C(8, 8, 8) and D(5, 4, 3) is a rhombus.
Reason (R) : ABCD is a rhombus if AB = BC = CD = DA, AC BD.
20. Assertion (A) : The principal value of cot 1 ( 3 ) is
6
.
Reason (R) : Domain of cot 1 x is { 1, 1}.
SECTION B
This section comprises very short answer (VSA) type questions of 2 marks each.
21. Find a vector of magnitude 6, which is perpendicular to each
of the vectors a + b and a b , where a =
^
i +
^
j +
^
k and
b =
^
i + 2
^
j + 3
^
k .
22. (a) If a , b and c are three vectors such that | a | = 7, | b | = 24,
| c | = 25 and a + b + c = 0 , then find the value of
a . b + b . c + c . a .
OR
(b) If a line makes angles , and with x-axis, y-axis and z-axis
respectively, then prove that sin2 + sin2 + sin2 = 2.
65/C/3 JJJJ Page 12
23. $bZ
f(x) =
1
x
,
b
2
ax
5
1
x
,
11
1
x
,
b
ax
3
`{X
`{X
`{X
x = 1 na g§VV h¡ & a Am¡a b Ho$ _mZ kmV H$s{OE &
24. dh A§Vamb kmV H$s{OE {Og_| $bZ f(x) = x3 +
3
x
1
, x 0 õmg_mZ h¡ &
25. (H$) gab H$s{OE :
tan 1
x
sin
1
x
cos
AWdm
(I) {gÕ H$s{OE {H$ f(x) = [x] Ûmam àXÎm _hÎm_ nyUmªH$ $bZ f : Z Vmo
EH¡$H$s h¡ Am¡a Z hr AmÀN>mXH$ h¡ &
IÊS> J
(SA) 3
26. (H$) Xmo W¡bm| _| go W¡bo A _| 2 gµo$X Am¡a 3 bmb J|X| h¢ Am¡a W¡bo B _| 4 gµo$X Am¡a
5 bmb J|X| h¢ & `mÑÀN>`m EH$ J§oX H$mo EH$ W¡bo _| go {ZH$mbm J`m Am¡a nm`m J`m
{H$ `h bmb h¡ & àm{`H$Vm kmV H$s{OE {H$ Bgo W¡bo B _| go {ZH$mbm J`m Wm &
AWdm
(I) 50 ì`{º$`m| Ho$ g_yh _| go 20 gX¡d gM ~mobVo h¢ & Bg g_yh _| go `mÑÀN>`m
2 ì`{º$`m| H$mo MwZm J`m ({~Zm à{VñWmnZm Ho$) & MwZo JE CZ ì`{º$`m| H$s g§»`m
H$m àm{`H$Vm ~§Q>Z kmV H$s{OE Omo gX¡d gM ~mobVo h¢ &
27. kmV H$s{OE :
2
cos
sin
3
3
cos
d
65/C/3 JJJJ Page 13 P.T.O.
23. The function
f(x) =
1
x
if
,
b
2
ax
5
1
x
if
,
11
1
x
if
,
b
ax
3
is continuous at x = 1. Find the values of a and b.
24. Find the interval in which the function f(x) = x3 +
3
x
1
, x 0 is decreasing.
25. (a) Simplify :
tan 1
x
sin
1
x
cos
OR
(b) Prove that the greatest integer function f : , given by
f(x) = [x], is neither one-one nor onto.
SECTION C
This section comprises short answer (SA) type questions of 3 marks each.
26. (a) Out of two bags, bag A contains 2 white and 3 red balls and bag B
contains 4 white and 5 red balls. One ball is drawn at random from
one of the bags and is found to be red. Find the probability that it
was drawn from bag B.
OR
(b) Out of a group of 50 people, 20 always speak the truth. Two
persons are selected at random from the group (without
replacement). Find the probability distribution of number of
selected persons who always speak the truth.
27. Find :
2
cos
sin
3
3
cos
d
65/C/3 JJJJ Page 14
28. (H$) _mZ kmV H$s{OE :
x
cos
x
sin
x
cos
x
sin
x
4
4
2
/
0
dx
AWdm
(I) _mZ kmV H$s{OE :
3
1
(|x 1| +|x 2|) dx
29. kmV H$s{OE :
dx
)
1
x
(
)
1
x
(
x
2
30. {ZåZ{b{IV a¡{IH$ àmoJ«m_Z g_ñ`m H$mo AmboIr` {d{Y go hb H$s{OE :
{ZåZ{b{IV ì`damoYm| Ho$ A§VJ©V,
z = 6x + 7y H$m Ý`yZV_rH$aU H$s{OE :
2x + y 8
x + 2y 10
x, y 0
31. (H$) AdH$b g_rH$aU
dx
dy
= 2
2
y
x
xy
H$m {d{eîQ> hb kmV H$s{OE, {X`m J`m h¡
{H$ O~ x = 0 h¡, Vmo y = 1 h¡ &
AWdm
(I) AdH$b g_rH$aU (1 + x2)
dx
dy
+ 2xy = 2
x
1
1
H$m {d{eîQ> hb kmV H$s{OE,
{X`m J`m h¡ {H$ O~ x = 1 h¡, Vmo y = 0 h¡ &
65/C/3 JJJJ Page 15 P.T.O.
28. (a) Evaluate :
x
cos
x
sin
x
cos
x
sin
x
4
4
2
/
0
dx
OR
(b) Evaluate :
3
1
(|x 1| +|x 2|) dx
29. Find :
dx
)
1
x
(
)
1
x
(
x
2
30. Solve the following Linear Programming Problem graphically:
Minimise z = 6x + 7y
subject to the constraints
2x + y 8
x + 2y 10
x, y 0
31. (a) Find the particular solution of the differential equation
dx
dy
= 2
2
y
x
xy
, given that y = 1 when x = 0.
OR
(b) Find the particular solution of the differential equation
(1 + x2)
dx
dy
+ 2xy = 2
x
1
1
, given that y = 0 when x = 1.
65/C/3 JJJJ Page 16
IÊS> K
(LA) 5
32. g_mH$bZ H$m Cn`moJ H$aVo hþE, EH$ Eogo {Ì^wO go {Kao joÌ H$m joÌ$b kmV H$s{OE {OgHo$
erf© ( 1, 2), (1, 5) Am¡a (3, 4) h¢ &
33. `{X A =
1
1
3
2
0
1
1
1
1
h¡, Vmo A 1 kmV H$s{OE, AV: {ZåZ{b{IV a¡{IH$ g_rH$aU
{ZH$m` H$mo hb H$s{OE :
x + y + z = 6
x + 2z = 7
3x + y + z = 12
34. (H$) _|
S = {(a, b) : a b3, a , b }
Ûmam n[a^m{fV g§~§Y S Z Vmo ñdVwë` h¡, Z g_{_V h¡ Am¡a Z hr g§H«$m_H$ h¡ &
AWdm
(I) A = {1, 2, 3, 4, 5, 6, 7} _| g§~§Y R Bg àH$ma n[a^m{fV h¡
R = {(a, b) : a Am¡a b XmoZm| `m Vmo {df_ h¢ `m g_ h¢} Xem©BE {H$ R EH$
Vwë`Vm g§~§Y h¡ & AV:, Vwë`Vm dJ© [1] Ho$ Ad`d kmV H$s{OE &
35. (H$) Xem©BE {H$ aoImE±
3
1
x
=
5
3
y
=
7
5
z
Am¡a
1
2
x
=
3
4
y
=
5
6
z
à{VÀN>oXr aoImE± h¢ & BZH$m à{VÀN>oXZ {~ÝXþ ^r kmV H$s{OE &
AWdm
(I) aoIm `w½_m|
2
1
x
=
3
1
y
= z Am¡a
5
1
x
=
1
2
y
; z = 2 Ho$ ~rM H$s Ý`yZV_
Xÿar kmV H$s{OE &
65/C/3 JJJJ Page 17 P.T.O.
SECTION D
This section comprises long answer type questions (LA) of 5 marks each.
32. Using integration, find the area of the region bounded by the triangle
whose vertices are ( 1, 2), (1, 5) and (3, 4).
33. If A =
1
1
3
2
0
1
1
1
1
, find A 1 and hence solve the following system of
linear equations :
x + y + z = 6
x + 2z = 7
3x + y + z = 12
34. (a) Show that the relation S in set of real numbers defined by
S = {(a, b) : a b3, a , b }
is neither reflexive, nor symmetric, nor transitive.
OR
(b) Let R be the relation defined in the set A = {1, 2, 3, 4, 5, 6, 7} by
R = {(a, b) : both a and b are either odd or even}. Show that
R is an equivalence relation. Hence, find the elements of
equivalence class [1].
35. (a) Show that the lines
3
1
x
=
5
3
y
=
7
5
z
and
1
2
x
=
3
4
y
=
5
6
z
intersect. Also find their point of
intersection.
OR
(b) Find the shortest distance between the pair of lines
2
1
x
=
3
1
y
= z and
5
1
x
=
1
2
y
; z = 2.
65/C/3 JJJJ Page 18
IÊS> L>
3 4
àH$aU AÜ``Z 1
36. EH$ hmCqgJ gmogmBQ>r AnZo {Zdm{g`m| Ho$ {bE V¡amH$s hoVw EH$ nyb (Vmbm~) ~ZmZm MmhVr
h¡ & BgHo$ {bE CÝh| EH$ dJm©H$ma ^y{_ IarXZr h¡ Am¡a Bg JhamB© VH$ ImoXZm h¡ {H$ Bg nyb
H$s j_Vm 250 KZ _rQ>a hmo OmE & ^y{_ H$s H$s_V < 500 à{V dJ© _rQ>a h¡ &
ImoXZo H$s H$s_V _| JhamB© H$s A{YH$Vm Ho$ AZwgma d¥{Õ hmoVr OmVr h¡ VWm nyao nyb H$s bmJV
< 4000 (JhamB©)2 h¡ &
_mZ br{OE {H$ dJm©H$ma ßbm°Q> H$s ^wOm x _rQ>a Am¡a JhamB© h _rQ>a h¡ &
Cn`w©º$ gyMZm Ho$ AmYma na, {ZåZ àíZm| Ho$ CÎma Xr{OE :
(i) bmJV $bZ C(h) H$mo h Ho$ nXm| _| {b{IE & 1
(ii) H«$m§{VH$ q~Xþ kmV H$s{OE & 1
65/C/3 JJJJ Page 19 P.T.O.
SECTION E
This section comprises 3 case study based questions of 4 marks each.
Case Study 1
36. A housing society wants to commission a swimming pool for its residents.
For this, they have to purchase a square piece of land and dig this to such
a depth that its capacity is 250 cubic metres. Cost of land is < 500 per
square metre. The cost of digging increases with the depth and cost for
the whole pool is < 4000 (depth)2.
Suppose the side of the square plot is x metres and depth is h metres.
On the basis of the above information, answer the following questions :
(i) Write cost C(h) as a function in terms of h. 1
(ii) Find critical point. 1
65/C/3 JJJJ Page 20
(iii) (H$) {ÛVr` AdH$bO narjU Ûmam h H$m dh _mZ kmV H$s{OE, {OgHo$ {bE nyb
? 2
AWdm
(iii) (I) àW_ AdH$bO narjU go nyb H$s Eogr JhamB© kmV H$s{OE {H$ nyb ~ZmZo
H$s bmJV Ý`yZV_ hmo & Ý`yZV_ bmJV Ho$ {bE x Am¡a h Ho$ ~rM H$m g§~§Y
^r kmV H$s{OE & 2
àH$aU AÜ``Z 2
37. EH$ H¥${f g§ñWmZ _|, d¡km{ZH$ ~rOm| H$s {H$ñ_m§o H$mo AbJ-AbJ dmVmdaUm| _| CJmZo H$m
à`moJ H$aVo h¢ {Oggo {H$ ñdñW nm¡Yo CJ| Am¡a A{YH$ CnO àmá hmo &
EH$ d¡km{ZH$ Zo AdbmoH$Z {H$`m {H$ EH$ {deof ~rO A§Hw$[aV hmoZo Ho$ ~mX ~hþV VoµOr go
CgZo H$hm {H$ Bg d¥{Õ H$mo $bZ f(x) =
3
1
x3 4x2 + 15x + 2, 0 x 10
go n[a^m{fV {H$`m Om gH$Vm h¡, Ohm± x {XZm| H$s dh g§»`m h¡ {OZ_| nm¡Ym gy`© Ho$ àH$me
go COmJa Wm &
Cn`w©º$ gyMZm Ho$ AmYma na, {ZåZ àíZm| Ho$ CÎma Xr{OE :
(i) Bg $bZ f(x) Ho$ H«$m§{VH$ q~Xþ H$m¡Z-go h¢ ? 2
(ii) {ÛVr` AdH$bO narjU H$m à`moJ H$aHo$, $bZ H$m Ý`yZV_ _mZ kmV H$s{OE & 2
65/C/3 JJJJ Page 21 P.T.O.
(iii) (a) Use second derivative test to find the value of h for which cost
of constructing the pool is minimum. What is the minimum
cost of construction of the pool ? 2
OR
(iii) (b) Use first derivative test to find the depth of the pool so that
cost of construction is minimum. Also, find relation between x
and h for minimum cost. 2
Case Study 2
37. In an agricultural institute, scientists do experiments with varieties of
seeds to grow them in different environments to produce healthy plants
and get more yield.
A scientist observed that a particular seed grew very fast after
germination. He had recorded growth of plant since germination and he
said that its growth can be defined by the function
f(x) =
3
1
x3 4x2 + 15x + 2, 0 x 10
where x is the number of days the plant is exposed to sunlight.
On the basis of the above information, answer the following questions :
(i) What are the critical points of the function f(x) ? 2
(ii) Using second derivative test, find the minimum value of the
function. 2
65/C/3 JJJJ Page 22
àH$aU AÜ``Z 3
38. EH$ g_yh {H«$`mH$bmn H$s H$jm _| 10 {dÚmWu h¢ {OZH$s Am`w 16, 17, 15, 14, 19,
17, 16, 19, 16 Am¡a 15 df© h¢ & EH$ {dÚmWu H$mo `mÑÀN>`m Bg àH$ma MwZm J`m {H$
àË`oH$ {dÚmWu Ho$ MwZo OmZo H$s g§^mdZm g_mZ h¡ Am¡a MwZo JE {dÚmWu H$s Am`w H$mo {bIm
J`m &
Cn`w©º$ gyMZm Ho$ AmYma na, {ZåZ àíZm| Ho$ CÎma Xr{OE :
(i) àm{`H$Vm kmV H$s{OE {H$ MwZo JE {dÚmWu H$s Am`w EH$ ^mÁ` g§»`m h¡ & 1
(ii) _mZm X MwZo hþE {dÚmWu H$s Am`w h¡, Vmo X ? 1
(iii) (H$) `mÑÀN>`m Ma X H$m àm{`H$Vm ~§Q>Z kmV H$s{OE VWm _mÜ` Am`w kmV
H$s{OE & 2
AWdm
(iii) (I) EH$ `mÑÀN>`m MwZo JE {dÚmWu H$s Am`w 15 df© go A{YH$ nmB© JB© &
àm{`H$Vm kmV H$s{OE {H$ CgH$s Am`w EH$ A^mÁ` g§»`m h¡ & 2
65/C/3 JJJJ Page 23 P.T.O.
Case Study 3
38. In a group activity class, there are 10 students whose ages are 16, 17, 15,
14, 19, 17, 16, 19, 16 and 15 years. One student is selected at random
such that each has equal chance of being chosen and age of the student is
recorded.
On the basis of the above information, answer the following questions :
(i) Find the probability that the age of the selected student is a
composite number. 1
(ii) Let X be the age of the selected student. What can be the value
of X ? 1
(iii) (a) Find the probability distribution of random variable X and
hence find the mean age. 2
OR
(iii) (b) A student was selected at random and his age was found to be
greater than 15 years. Find the probability that his age is a
prime number. 2

More Related Content

PDF
2015 12 lyp_mathematics_allahabad_dehradun_set1_qp
PDF
2015 12 lyp_mathematics_trivandrum_chennai_set1_outside_qp
PDF
PDF
CBSE Class XII -2015 Mathematics
PDF
Maths sqp
PDF
2015 12 lyp_mathematics_patna_set1_outside_qp
PDF
Mathematics
2015 12 lyp_mathematics_allahabad_dehradun_set1_qp
2015 12 lyp_mathematics_trivandrum_chennai_set1_outside_qp
CBSE Class XII -2015 Mathematics
Maths sqp
2015 12 lyp_mathematics_patna_set1_outside_qp
Mathematics

Similar to Class 12 mathematics pre board sample paper 2023-24 (20)

PDF
Mathematics xii 2014 sample paper
PDF
Mathematics 2014 sample paper and blue print
PDF
Class 12 Cbse Maths Sample Paper 2013-14
PDF
Test yourself for JEE(Main)TP-2
DOCX
Class XII Mathematics long assignment
PDF
Class XII CBSE Mathematics Sample question paper with solution
PDF
TMUA 2021 Paper 1 Solutions (Handwritten).pdf
PDF
Nbhm m. a. and m.sc. scholarship test 2005
PDF
Changed pattern of CBSE Class XII Mathematics -2016-17-with_marking_scheme
PDF
Maths imp questions for 2018
PDF
Maths important questions for 2018
DOC
12th mcq
DOC
12th mcq
PDF
Test yourself for JEE(Main)TP-3
DOCX
Mcq exemplar class 12
DOCX
Mcq exemplar class 12
PDF
maths 12th.pdf
PDF
Nbhm m. a. and m.sc. scholarship test 2007
PDF
Assignment chapters 3 to 7
PDF
Cbse Class 12 Maths Sample Paper 2012-13
Mathematics xii 2014 sample paper
Mathematics 2014 sample paper and blue print
Class 12 Cbse Maths Sample Paper 2013-14
Test yourself for JEE(Main)TP-2
Class XII Mathematics long assignment
Class XII CBSE Mathematics Sample question paper with solution
TMUA 2021 Paper 1 Solutions (Handwritten).pdf
Nbhm m. a. and m.sc. scholarship test 2005
Changed pattern of CBSE Class XII Mathematics -2016-17-with_marking_scheme
Maths imp questions for 2018
Maths important questions for 2018
12th mcq
12th mcq
Test yourself for JEE(Main)TP-3
Mcq exemplar class 12
Mcq exemplar class 12
maths 12th.pdf
Nbhm m. a. and m.sc. scholarship test 2007
Assignment chapters 3 to 7
Cbse Class 12 Maths Sample Paper 2012-13
Ad

Recently uploaded (20)

PPTX
History, Philosophy and sociology of education (1).pptx
PPTX
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
PPTX
Digestion and Absorption of Carbohydrates, Proteina and Fats
DOC
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
PPTX
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
PDF
What if we spent less time fighting change, and more time building what’s rig...
PDF
Classroom Observation Tools for Teachers
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PDF
1_English_Language_Set_2.pdf probationary
PDF
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
PDF
Computing-Curriculum for Schools in Ghana
PDF
Weekly quiz Compilation Jan -July 25.pdf
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PDF
Complications of Minimal Access Surgery at WLH
PPTX
Cell Types and Its function , kingdom of life
PPTX
Lesson notes of climatology university.
PDF
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
PDF
LDMMIA Reiki Yoga Finals Review Spring Summer
PDF
Indian roads congress 037 - 2012 Flexible pavement
History, Philosophy and sociology of education (1).pptx
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
Digestion and Absorption of Carbohydrates, Proteina and Fats
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
202450812 BayCHI UCSC-SV 20250812 v17.pptx
What if we spent less time fighting change, and more time building what’s rig...
Classroom Observation Tools for Teachers
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
1_English_Language_Set_2.pdf probationary
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
Computing-Curriculum for Schools in Ghana
Weekly quiz Compilation Jan -July 25.pdf
Supply Chain Operations Speaking Notes -ICLT Program
Complications of Minimal Access Surgery at WLH
Cell Types and Its function , kingdom of life
Lesson notes of climatology university.
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
LDMMIA Reiki Yoga Finals Review Spring Summer
Indian roads congress 037 - 2012 Flexible pavement
Ad

Class 12 mathematics pre board sample paper 2023-24

  • 1. 65/C/3 JJJJ Page 1 P.T.O. narjmWu àíZ-nÌ H$moS> >H$mo CÎma-nwpñVH$m Ho$ _wI-n¥ð >na Adí` {bIo§ & Candidates must write the Q.P. Code on the title page of the answer-book. Series EF1GH/C SET~3 Q.P. Code Roll No. J{UV MATHEMATICS * : 3 : 80 Time allowed : 3 hours Maximum Marks : 80 NOTE : (i) - 23 Please check that this question paper contains 23 printed pages. (ii) - - - - Q.P. Code given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate. (iii) - 38 Please check that this question paper contains 38 questions. (iv) - Please write down the serial number of the question in the answer-book before attempting it. (v) - 15 - 10.15 10.15 10.30 - - 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period. 65/C/3 ^
  • 2. 65/C/3 JJJJ Page 2 : : (i) 38 (ii) (iii) 1 18 19 20 (iv) 21 25 (VSA) (v) 26 31 (SA) (vi) 32 35 (LA) (vii) 36 38 (viii) 2 3 2 2 (ix) IÊS> H$ 1 1. AdH$b g_rH$aU x dx dy 2y = 4x2 H$m g_mH$bZ JwUH$ h¡ : (a) x2 (b) 2 x 1 (c) 2 x 1 (d) x2 2. `h {X`m J`m h¡ {H$ X 1 1 2 3 = 3 2 1 4 h¡ & Vmo Amì`yh X h¡ : (a) 1 0 0 1 (b) 1 1 1 0 (c) 1 1 1 1 (d) 1 1 1 1
  • 3. 65/C/3 JJJJ Page 3 P.T.O. General Instructions : Read the following instructions very carefully and strictly follow them : (i) This question paper contains 38 questions. All questions are compulsory. (ii) This question paper is divided into five Sections A, B, C, D and E. (iii) In Section A, Questions no. 1 to 18 are multiple choice questions (MCQs) and questions number 19 and 20 are Assertion-Reason based questions of 1 mark each. (iv) In Section B, Questions no. 21 to 25 are very short answer (VSA) type questions, carrying 2 marks each. (v) In Section C, Questions no. 26 to 31 are short answer (SA) type questions, carrying 3 marks each. (vi) In Section D, Questions no. 32 to 35 are long answer (LA) type questions carrying 5 marks each. (vii) In Section E, Questions no. 36 to 38 are case study based questions carrying 4 marks each. (viii) There is no overall choice. However, an internal choice has been provided in 2 questions in Section B, 3 questions in Section C, 2 questions in Section D and 2 questions in Section E. (ix) Use of calculators is not allowed. SECTION A This section comprises multiple choice questions (MCQs) of 1 mark each. 1. Integrating factor of the differential equation x dx dy 2y = 4x2 is : (a) x2 (b) 2 x 1 (c) 2 x 1 (d) x2 2. It is given that X 1 1 2 3 = 3 2 1 4 . Then matrix X is : (a) 1 0 0 1 (b) 1 1 1 0 (c) 1 1 1 1 (d) 1 1 1 1
  • 4. 65/C/3 JJJJ Page 4 3. x Ho$ {H$g _mZ Ho$ {bE, gma{UH$ x 5 3 x 2 Am¡a 2 3 1 10 g_mZ h¢ ? (a) 3 (b) 3 (c) 2 (d) 2 4. EH$ LPP Ho$ n[a~Õ gwg§JV joÌ Ho$ H$moUr` q~Xþ O(0, 0), A(250, 0), B(200, 50) Am¡a C(0, 175) h¢ & `{X CÔoí` $bZ Z = 2ax + by H$m A{YH$V_ _mZ q~XþAm| A(250, 0) Am¡a B(200, 50) na h¡, Vmo a Am¡a b Ho$ ~rM H$m g§~§Y hmoJm : (a) 2a = b (b) 2a = 3b (c) a = b (d) a = 2b 5. aoImAm| 1 1 x = 1 y 4 = 2 5 z Am¡a 3 3 x = 5 2 y = 4 5 z Ho$ ~rM H$m H$moU h¡ : (a) cos 1 3 2 (b) cos 1 3 1 (c) 2 (d) 4 6. EH$ {Zînj nmgo H$mo CN>mbm J`m & KQ>ZmE± E Am¡a F H«$_e: E = {1, 3, 5} Am¡a F = {2, 3} h¢ & P(E|F) H$m _mZ h¡ : (a) 3 2 (b) 3 1 (c) 6 1 (d) 2 1
  • 5. 65/C/3 JJJJ Page 5 P.T.O. 3. For which value of x, are the determinants x 5 3 x 2 and 2 3 1 10 equal ? (a) 3 (b) 3 (c) 2 (d) 2 4. The corner points of the bounded feasible region of an LPP are O(0, 0), A(250, 0), B(200, 50) and C(0, 175). If the maximum value of the objective function Z = 2ax + by occurs at the points A(250, 0) and B(200, 50), then the relation between a and b is : (a) 2a = b (b) 2a = 3b (c) a = b (d) a = 2b 5. The angle between the lines 1 1 x = 1 y 4 = 2 5 z and 3 3 x = 5 2 y = 4 5 z is : (a) cos 1 3 2 (b) cos 1 3 1 (c) 2 (d) 4 6. A fair die is rolled. Events E and F are E = {1, 3, 5} and F = {2, 3} respectively. Value of P(E|F) is : (a) 3 2 (b) 3 1 (c) 6 1 (d) 2 1
  • 6. 65/C/3 JJJJ Page 6 7. `{X a , b Am¡a ( a + b ) g^r _mÌH$ g{Xe h¢ Am¡a a VWm b Ho$ ~rM H$m H$moU h¡, Vmo H$m _mZ hmoJm : (a) 3 2 (b) 6 5 (c) 3 (d) 6 8. `{X ABCD EH$ g_m§Va MVw^w©O h¡ Am¡a AC VWm BD BgHo$ {dH$U© h¢, Vmo AC + BD h¡ : (a) 2DA (b) 2 AB (c) 2BC (d) 2BD 9. `{X x = a cos + b sin , y = a sin b cos h¡, Vmo {ZåZ{b{IV _| go H$m¡Z-gm ghr h¡ ? (a) y2 2 2 dx y d x dx dy + y = 0 (b) y2 2 2 dx y d + x dx dy + y = 0 (c) y2 2 2 dx y d + x dx dy y = 0 (d) y2 2 2 dx y d x dx dy y = 0 10. `{X Amì`yh A = 1 1 1 1 Am¡a A 2 = kA h¡, Vmo k H$m _mZ hmoJm : (a) 1 (b) 2 (c) 2 (d) 1 11. AdH$b g_rH$aU 2 2 2 dx y d + 3 dx dy + x4 = 0 H$s H$mo{Q> Am¡a KmV _| A§Va h¡ : (a) 1 (b) 2 (c) 1 (d) 0 12. dx x cos x sin x 2 cos 2 2 . ~am~a h¡ : (a) tan x cot x + C (b) cot x tan x + C (c) cot x + tan x + C (d) tan x cot x C
  • 7. 65/C/3 JJJJ Page 7 P.T.O. 7. If a , b and ( a + b ) are all unit vectors and is the angle between a and b , then the value of is : (a) 3 2 (b) 6 5 (c) 3 (d) 6 8. If ABCD is a parallelogram and AC and BD are its diagonals, then AC + BD is : (a) 2DA (b) 2 AB (c) 2BC (d) 2BD 9. If x = a cos + b sin , y = a sin b cos , then which one of the following is true ? (a) y2 2 2 dx y d x dx dy + y = 0 (b) y2 2 2 dx y d + x dx dy + y = 0 (c) y2 2 2 dx y d + x dx dy y = 0 (d) y2 2 2 dx y d x dx dy y = 0 10. If matrix A = 1 1 1 1 and A2 = kA, then the value of k is : (a) 1 (b) 2 (c) 2 (d) 1 11. The difference of the order and the degree of the differential equation 2 2 2 dx y d + 3 dx dy + x4 = 0 is : (a) 1 (b) 2 (c) 1 (d) 0 12. dx x cos x sin x 2 cos 2 2 . is equal to (a) tan x cot x + C (b) cot x tan x + C (c) cot x + tan x + C (d) tan x cot x C
  • 8. 65/C/3 JJJJ Page 8 13. `{X A, H$mo{Q> 3 H$m EH$ dJ© Amì`yh h¡ Am¡a |A| = 6 h¡, Vmo |adj A| H$m _mZ h¡ : (a) 6 (b) 36 (c) 27 (d) 216 14. Amì`yh g_rH$aU z 2 y z x z y x = 1 2 3 , _| z H$m _mZ h¡ : (a) 1 (b) 2 (c) 1 (d) 2 15. `{X$y = log 2 x 4 tan h¡, Vmo dx dy h¡ : (a) sec x (b) cosec x (c) tan x (d) sec x tan x 16. AY©-Vb 2x + y 4 0 _| pñWV q~Xþ h¡ : (a) (0, 8) (b) (1, 1) (c) (5, 5) (d) (2, 2) 17. dx x 3 sin 6 / 0 H$m _mZ h¡ : (a) 2 3 (b) 3 1 (c) 2 3 (d) 3 1 18. g{Xe ^ i H$m g{Xe ^ i + ^ j + 2 ^ k na àjon h¡ : (a) 6 1 (b) 6 (c) 6 2 (d) 6 3
  • 9. 65/C/3 JJJJ Page 9 P.T.O. 13. If A is a square matrix of order 3 and |A| = 6, then the value of |adj A| is : (a) 6 (b) 36 (c) 27 (d) 216 14. In the matrix equation z 2 y z x z y x = 1 2 3 , the value of z is : (a) 1 (b) 2 (c) 1 (d) 2 15. If y = log 2 x 4 tan , then dx dy is : (a) sec x (b) cosec x (c) tan x (d) sec x tan x 16. The point which lies in the half-plane 2x + y 4 0 is : (a) (0, 8) (b) (1, 1) (c) (5, 5) (d) (2, 2) 17. The value of dx x 3 sin 6 / 0 is : (a) 2 3 (b) 3 1 (c) 2 3 (d) 3 1 18. The projection of vector ^ i on the vector ^ i + ^ j + 2 ^ k is : (a) 6 1 (b) 6 (c) 6 2 (d) 6 3
  • 10. 65/C/3 JJJJ Page 10 19 20 1 (A) (R) (a), (b), (c) (d) (a) A{^H$WZ (A) Am¡a VH©$ (R) XmoZm| ghr h¢ Am¡a VH©$ (R), A{^H$WZ (A) H$s ghr ì¶m»¶m H$aVm h¡ & (b) A{^H$WZ (A) Am¡a VH©$ (R) XmoZm| ghr h¢ Am¡a VH©$ (R), A{^H$WZ (A) H$s ghr ì¶m»¶m H$aVm h¡ & (c) A{^H$WZ (A) ghr h¡, naÝVw VH©$ (R) µJbV h¡ & (d) A{^H$WZ (A) µJbV h¡, naÝVw VH©$ (R) ghr h¡ & 19. (A) : ímrfmªo A(0, 0, 0), B(3, 4, 5), C(8, 8, 8) Am¡a D(5, 4, 3) go ~Zm MVw^w©O EH$ g_MVw^w©O h¡ & (R) : ABCD EH$ g_MVw^©wO h¡, `{X AB = BC = CD = DA, AC BD h¡ & 20. (A) : cot 1 ( 3 ) H$m _w»` _mZ 6 h¡ & (R) : cot 1 x H$m àm§V { 1, 1} h¡ & IÊS> I (VSA) 2 21. EH$ Eogm g{Xe kmV H$s{OE, {OgH$m n[a_mU 6 h¡ VWm dh àË`oH$ g{Xe a + b Am¡a a b Ho$ bå~dV² h¡, Ohm±$ a = ^ i + ^ j + ^ k Am¡a b = ^ i + 2 ^ j + 3 ^ k h¢ & 22. (H$) `{X a , b Am¡a c VrZ g{Xe Bg àH$ma h¢ {H$ | a | = 7, | b | = 24, | c | = 25 Am¡a a + b + c = 0 h¡, Vmo a . b + b . c + c . a H$m _mZ kmV H$s{OE & AWdm (I) `{X EH$ aoIm x-Aj, y-Aj Am¡a z-Aj Ho$ gmW H«$_e: , Am¡a H$moU ~ZmVr h¡, Vmo {gÕ H$s{OE {H$ sin2 + sin2 + sin2 = 2 h¡ &
  • 11. 65/C/3 JJJJ Page 11 P.T.O. Questions number 19 and 20 are Assertion and Reason based questions carrying 1 mark each. Two statements are given, one labelled Assertion (A) and the other labelled Reason (R). Select the correct answer from the codes (a), (b), (c) and (d) as given below. (a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A). (b) Both Assertion (A) and Reason (R) are true and Reason (R) is not the correct explanation of the Assertion (A). (c) Assertion (A) is true, but Reason (R) is false. (d) Assertion (A) is false, but Reason (R) is true. 19. Assertion (A) : Quadrilateral formed by vertices A(0, 0, 0), B(3, 4, 5), C(8, 8, 8) and D(5, 4, 3) is a rhombus. Reason (R) : ABCD is a rhombus if AB = BC = CD = DA, AC BD. 20. Assertion (A) : The principal value of cot 1 ( 3 ) is 6 . Reason (R) : Domain of cot 1 x is { 1, 1}. SECTION B This section comprises very short answer (VSA) type questions of 2 marks each. 21. Find a vector of magnitude 6, which is perpendicular to each of the vectors a + b and a b , where a = ^ i + ^ j + ^ k and b = ^ i + 2 ^ j + 3 ^ k . 22. (a) If a , b and c are three vectors such that | a | = 7, | b | = 24, | c | = 25 and a + b + c = 0 , then find the value of a . b + b . c + c . a . OR (b) If a line makes angles , and with x-axis, y-axis and z-axis respectively, then prove that sin2 + sin2 + sin2 = 2.
  • 12. 65/C/3 JJJJ Page 12 23. $bZ f(x) = 1 x , b 2 ax 5 1 x , 11 1 x , b ax 3 `{X `{X `{X x = 1 na g§VV h¡ & a Am¡a b Ho$ _mZ kmV H$s{OE & 24. dh A§Vamb kmV H$s{OE {Og_| $bZ f(x) = x3 + 3 x 1 , x 0 õmg_mZ h¡ & 25. (H$) gab H$s{OE : tan 1 x sin 1 x cos AWdm (I) {gÕ H$s{OE {H$ f(x) = [x] Ûmam àXÎm _hÎm_ nyUmªH$ $bZ f : Z Vmo EH¡$H$s h¡ Am¡a Z hr AmÀN>mXH$ h¡ & IÊS> J (SA) 3 26. (H$) Xmo W¡bm| _| go W¡bo A _| 2 gµo$X Am¡a 3 bmb J|X| h¢ Am¡a W¡bo B _| 4 gµo$X Am¡a 5 bmb J|X| h¢ & `mÑÀN>`m EH$ J§oX H$mo EH$ W¡bo _| go {ZH$mbm J`m Am¡a nm`m J`m {H$ `h bmb h¡ & àm{`H$Vm kmV H$s{OE {H$ Bgo W¡bo B _| go {ZH$mbm J`m Wm & AWdm (I) 50 ì`{º$`m| Ho$ g_yh _| go 20 gX¡d gM ~mobVo h¢ & Bg g_yh _| go `mÑÀN>`m 2 ì`{º$`m| H$mo MwZm J`m ({~Zm à{VñWmnZm Ho$) & MwZo JE CZ ì`{º$`m| H$s g§»`m H$m àm{`H$Vm ~§Q>Z kmV H$s{OE Omo gX¡d gM ~mobVo h¢ & 27. kmV H$s{OE : 2 cos sin 3 3 cos d
  • 13. 65/C/3 JJJJ Page 13 P.T.O. 23. The function f(x) = 1 x if , b 2 ax 5 1 x if , 11 1 x if , b ax 3 is continuous at x = 1. Find the values of a and b. 24. Find the interval in which the function f(x) = x3 + 3 x 1 , x 0 is decreasing. 25. (a) Simplify : tan 1 x sin 1 x cos OR (b) Prove that the greatest integer function f : , given by f(x) = [x], is neither one-one nor onto. SECTION C This section comprises short answer (SA) type questions of 3 marks each. 26. (a) Out of two bags, bag A contains 2 white and 3 red balls and bag B contains 4 white and 5 red balls. One ball is drawn at random from one of the bags and is found to be red. Find the probability that it was drawn from bag B. OR (b) Out of a group of 50 people, 20 always speak the truth. Two persons are selected at random from the group (without replacement). Find the probability distribution of number of selected persons who always speak the truth. 27. Find : 2 cos sin 3 3 cos d
  • 14. 65/C/3 JJJJ Page 14 28. (H$) _mZ kmV H$s{OE : x cos x sin x cos x sin x 4 4 2 / 0 dx AWdm (I) _mZ kmV H$s{OE : 3 1 (|x 1| +|x 2|) dx 29. kmV H$s{OE : dx ) 1 x ( ) 1 x ( x 2 30. {ZåZ{b{IV a¡{IH$ àmoJ«m_Z g_ñ`m H$mo AmboIr` {d{Y go hb H$s{OE : {ZåZ{b{IV ì`damoYm| Ho$ A§VJ©V, z = 6x + 7y H$m Ý`yZV_rH$aU H$s{OE : 2x + y 8 x + 2y 10 x, y 0 31. (H$) AdH$b g_rH$aU dx dy = 2 2 y x xy H$m {d{eîQ> hb kmV H$s{OE, {X`m J`m h¡ {H$ O~ x = 0 h¡, Vmo y = 1 h¡ & AWdm (I) AdH$b g_rH$aU (1 + x2) dx dy + 2xy = 2 x 1 1 H$m {d{eîQ> hb kmV H$s{OE, {X`m J`m h¡ {H$ O~ x = 1 h¡, Vmo y = 0 h¡ &
  • 15. 65/C/3 JJJJ Page 15 P.T.O. 28. (a) Evaluate : x cos x sin x cos x sin x 4 4 2 / 0 dx OR (b) Evaluate : 3 1 (|x 1| +|x 2|) dx 29. Find : dx ) 1 x ( ) 1 x ( x 2 30. Solve the following Linear Programming Problem graphically: Minimise z = 6x + 7y subject to the constraints 2x + y 8 x + 2y 10 x, y 0 31. (a) Find the particular solution of the differential equation dx dy = 2 2 y x xy , given that y = 1 when x = 0. OR (b) Find the particular solution of the differential equation (1 + x2) dx dy + 2xy = 2 x 1 1 , given that y = 0 when x = 1.
  • 16. 65/C/3 JJJJ Page 16 IÊS> K (LA) 5 32. g_mH$bZ H$m Cn`moJ H$aVo hþE, EH$ Eogo {Ì^wO go {Kao joÌ H$m joÌ$b kmV H$s{OE {OgHo$ erf© ( 1, 2), (1, 5) Am¡a (3, 4) h¢ & 33. `{X A = 1 1 3 2 0 1 1 1 1 h¡, Vmo A 1 kmV H$s{OE, AV: {ZåZ{b{IV a¡{IH$ g_rH$aU {ZH$m` H$mo hb H$s{OE : x + y + z = 6 x + 2z = 7 3x + y + z = 12 34. (H$) _| S = {(a, b) : a b3, a , b } Ûmam n[a^m{fV g§~§Y S Z Vmo ñdVwë` h¡, Z g_{_V h¡ Am¡a Z hr g§H«$m_H$ h¡ & AWdm (I) A = {1, 2, 3, 4, 5, 6, 7} _| g§~§Y R Bg àH$ma n[a^m{fV h¡ R = {(a, b) : a Am¡a b XmoZm| `m Vmo {df_ h¢ `m g_ h¢} Xem©BE {H$ R EH$ Vwë`Vm g§~§Y h¡ & AV:, Vwë`Vm dJ© [1] Ho$ Ad`d kmV H$s{OE & 35. (H$) Xem©BE {H$ aoImE± 3 1 x = 5 3 y = 7 5 z Am¡a 1 2 x = 3 4 y = 5 6 z à{VÀN>oXr aoImE± h¢ & BZH$m à{VÀN>oXZ {~ÝXþ ^r kmV H$s{OE & AWdm (I) aoIm `w½_m| 2 1 x = 3 1 y = z Am¡a 5 1 x = 1 2 y ; z = 2 Ho$ ~rM H$s Ý`yZV_ Xÿar kmV H$s{OE &
  • 17. 65/C/3 JJJJ Page 17 P.T.O. SECTION D This section comprises long answer type questions (LA) of 5 marks each. 32. Using integration, find the area of the region bounded by the triangle whose vertices are ( 1, 2), (1, 5) and (3, 4). 33. If A = 1 1 3 2 0 1 1 1 1 , find A 1 and hence solve the following system of linear equations : x + y + z = 6 x + 2z = 7 3x + y + z = 12 34. (a) Show that the relation S in set of real numbers defined by S = {(a, b) : a b3, a , b } is neither reflexive, nor symmetric, nor transitive. OR (b) Let R be the relation defined in the set A = {1, 2, 3, 4, 5, 6, 7} by R = {(a, b) : both a and b are either odd or even}. Show that R is an equivalence relation. Hence, find the elements of equivalence class [1]. 35. (a) Show that the lines 3 1 x = 5 3 y = 7 5 z and 1 2 x = 3 4 y = 5 6 z intersect. Also find their point of intersection. OR (b) Find the shortest distance between the pair of lines 2 1 x = 3 1 y = z and 5 1 x = 1 2 y ; z = 2.
  • 18. 65/C/3 JJJJ Page 18 IÊS> L> 3 4 àH$aU AÜ``Z 1 36. EH$ hmCqgJ gmogmBQ>r AnZo {Zdm{g`m| Ho$ {bE V¡amH$s hoVw EH$ nyb (Vmbm~) ~ZmZm MmhVr h¡ & BgHo$ {bE CÝh| EH$ dJm©H$ma ^y{_ IarXZr h¡ Am¡a Bg JhamB© VH$ ImoXZm h¡ {H$ Bg nyb H$s j_Vm 250 KZ _rQ>a hmo OmE & ^y{_ H$s H$s_V < 500 à{V dJ© _rQ>a h¡ & ImoXZo H$s H$s_V _| JhamB© H$s A{YH$Vm Ho$ AZwgma d¥{Õ hmoVr OmVr h¡ VWm nyao nyb H$s bmJV < 4000 (JhamB©)2 h¡ & _mZ br{OE {H$ dJm©H$ma ßbm°Q> H$s ^wOm x _rQ>a Am¡a JhamB© h _rQ>a h¡ & Cn`w©º$ gyMZm Ho$ AmYma na, {ZåZ àíZm| Ho$ CÎma Xr{OE : (i) bmJV $bZ C(h) H$mo h Ho$ nXm| _| {b{IE & 1 (ii) H«$m§{VH$ q~Xþ kmV H$s{OE & 1
  • 19. 65/C/3 JJJJ Page 19 P.T.O. SECTION E This section comprises 3 case study based questions of 4 marks each. Case Study 1 36. A housing society wants to commission a swimming pool for its residents. For this, they have to purchase a square piece of land and dig this to such a depth that its capacity is 250 cubic metres. Cost of land is < 500 per square metre. The cost of digging increases with the depth and cost for the whole pool is < 4000 (depth)2. Suppose the side of the square plot is x metres and depth is h metres. On the basis of the above information, answer the following questions : (i) Write cost C(h) as a function in terms of h. 1 (ii) Find critical point. 1
  • 20. 65/C/3 JJJJ Page 20 (iii) (H$) {ÛVr` AdH$bO narjU Ûmam h H$m dh _mZ kmV H$s{OE, {OgHo$ {bE nyb ? 2 AWdm (iii) (I) àW_ AdH$bO narjU go nyb H$s Eogr JhamB© kmV H$s{OE {H$ nyb ~ZmZo H$s bmJV Ý`yZV_ hmo & Ý`yZV_ bmJV Ho$ {bE x Am¡a h Ho$ ~rM H$m g§~§Y ^r kmV H$s{OE & 2 àH$aU AÜ``Z 2 37. EH$ H¥${f g§ñWmZ _|, d¡km{ZH$ ~rOm| H$s {H$ñ_m§o H$mo AbJ-AbJ dmVmdaUm| _| CJmZo H$m à`moJ H$aVo h¢ {Oggo {H$ ñdñW nm¡Yo CJ| Am¡a A{YH$ CnO àmá hmo & EH$ d¡km{ZH$ Zo AdbmoH$Z {H$`m {H$ EH$ {deof ~rO A§Hw$[aV hmoZo Ho$ ~mX ~hþV VoµOr go CgZo H$hm {H$ Bg d¥{Õ H$mo $bZ f(x) = 3 1 x3 4x2 + 15x + 2, 0 x 10 go n[a^m{fV {H$`m Om gH$Vm h¡, Ohm± x {XZm| H$s dh g§»`m h¡ {OZ_| nm¡Ym gy`© Ho$ àH$me go COmJa Wm & Cn`w©º$ gyMZm Ho$ AmYma na, {ZåZ àíZm| Ho$ CÎma Xr{OE : (i) Bg $bZ f(x) Ho$ H«$m§{VH$ q~Xþ H$m¡Z-go h¢ ? 2 (ii) {ÛVr` AdH$bO narjU H$m à`moJ H$aHo$, $bZ H$m Ý`yZV_ _mZ kmV H$s{OE & 2
  • 21. 65/C/3 JJJJ Page 21 P.T.O. (iii) (a) Use second derivative test to find the value of h for which cost of constructing the pool is minimum. What is the minimum cost of construction of the pool ? 2 OR (iii) (b) Use first derivative test to find the depth of the pool so that cost of construction is minimum. Also, find relation between x and h for minimum cost. 2 Case Study 2 37. In an agricultural institute, scientists do experiments with varieties of seeds to grow them in different environments to produce healthy plants and get more yield. A scientist observed that a particular seed grew very fast after germination. He had recorded growth of plant since germination and he said that its growth can be defined by the function f(x) = 3 1 x3 4x2 + 15x + 2, 0 x 10 where x is the number of days the plant is exposed to sunlight. On the basis of the above information, answer the following questions : (i) What are the critical points of the function f(x) ? 2 (ii) Using second derivative test, find the minimum value of the function. 2
  • 22. 65/C/3 JJJJ Page 22 àH$aU AÜ``Z 3 38. EH$ g_yh {H«$`mH$bmn H$s H$jm _| 10 {dÚmWu h¢ {OZH$s Am`w 16, 17, 15, 14, 19, 17, 16, 19, 16 Am¡a 15 df© h¢ & EH$ {dÚmWu H$mo `mÑÀN>`m Bg àH$ma MwZm J`m {H$ àË`oH$ {dÚmWu Ho$ MwZo OmZo H$s g§^mdZm g_mZ h¡ Am¡a MwZo JE {dÚmWu H$s Am`w H$mo {bIm J`m & Cn`w©º$ gyMZm Ho$ AmYma na, {ZåZ àíZm| Ho$ CÎma Xr{OE : (i) àm{`H$Vm kmV H$s{OE {H$ MwZo JE {dÚmWu H$s Am`w EH$ ^mÁ` g§»`m h¡ & 1 (ii) _mZm X MwZo hþE {dÚmWu H$s Am`w h¡, Vmo X ? 1 (iii) (H$) `mÑÀN>`m Ma X H$m àm{`H$Vm ~§Q>Z kmV H$s{OE VWm _mÜ` Am`w kmV H$s{OE & 2 AWdm (iii) (I) EH$ `mÑÀN>`m MwZo JE {dÚmWu H$s Am`w 15 df© go A{YH$ nmB© JB© & àm{`H$Vm kmV H$s{OE {H$ CgH$s Am`w EH$ A^mÁ` g§»`m h¡ & 2
  • 23. 65/C/3 JJJJ Page 23 P.T.O. Case Study 3 38. In a group activity class, there are 10 students whose ages are 16, 17, 15, 14, 19, 17, 16, 19, 16 and 15 years. One student is selected at random such that each has equal chance of being chosen and age of the student is recorded. On the basis of the above information, answer the following questions : (i) Find the probability that the age of the selected student is a composite number. 1 (ii) Let X be the age of the selected student. What can be the value of X ? 1 (iii) (a) Find the probability distribution of random variable X and hence find the mean age. 2 OR (iii) (b) A student was selected at random and his age was found to be greater than 15 years. Find the probability that his age is a prime number. 2