SlideShare a Scribd company logo
Maarten van Smeden, PhD
Julius Center for Health Sciences and Primary Care
8th Annual Danish Bioinformatics conference
Kopenhagen, 22 August 2024
Clinical prediction modeling
in the era of AI:
a blessing and a curse
Disclosures
• Nothing to disclose
In this lecture, I will talk about….
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
AI
BLESSINGS
AND
CURSES
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Clinical prediction modeling in the era of AI: a blessing and a curse
Img source: https://www.topbots.com/generative-vs-predictive-ai/
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
De Hond et al, Lancet Digital Health, 2024
Prediction
Source: https://www.intellspot.com/unsupervised-vs-supervised-learning/#google_vignette
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
van Smeden et al., JCE, 2021, doi: 10.1016/j.jclinepi.2021.01.009
Adversarial example
https://bit.ly/2N4mQFo; https://bit.ly/2W7X9rF
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
https://tinyurl.com/3knkuzs3
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Image source: https://shorturl.at/styGJ
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
APGAR score
Apgar et al. JAMA, 1958
Virginia Apgar (1909- 1974)
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Still commonly used, but…
Sources: doi: 10.1097/ANC.0000000000000859, 10.1136/bmj.38117.665197.F7
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
“65% of U.S. physicians used MDCalc on a weekly basis”
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Landscape of clinical prediction models
• 42 models for kidney failure in chronic kidney disease (Ramspek, 2019)
• 40 models for incident heart failure (Sahle, 2017)
• 37 models for treatment response in pulmonary TB (Peetluk, 2021)
• 35 models for in vitro fertilisation (Ratna, 2020)
• 34 models for stroke in type-2 diabetes (Chowdhury, 2019)
• 34 models for graft failure in kidney transplantation (Kabore, 2017)
• 31 models for length of stay in ICU (Verburg, 2016)
• 30 models for low back pain (Haskins, 2015)
• 27 models for pediatric early warning systems (Trubey, 2019)
• 27 models for malaria prognosis (Njim, 2019)
• 26 models for postoperative outcomes colorectal cancer (Souwer, 2020)
• 26 models for childhood asthma (Kothalawa, 2020)
• 25 models for lung cancer risk (Gray, 2016)
• 25 models for re-admission after admitted for heart failure (Mahajan, 2018)
• 23 models for recovery after ischemic stroke (Jampathong, 2018)
• 23 models for delirium in older adults (Lindroth, 2018)
• 21 models for atrial fibrillation detection in community (Himmelreich, 2020)
• 19 models for survival after resectable pancreatic cancer (Stijker, 2019)
• 18 models for recurrence hep. carc. after liver transplant (Al-Ameri, 2020)
• 18 models for future hypertension in children (Hamoen, 2018)
• 18 models for risk of falls after stroke (Walsh, 2016)
• 18 models for mortality in acute pancreatitis (Di, 2016)
• 17 models for bacterial meningitis (van Zeggeren, 2019)
• 17 models for cardiovascular disease in hypertensive population (Cai, 2020)
• 14 models for ICU delirium risk (Chen, 2020)
• 14 models for diabetic retinopathy progression (Haider, 2019)
• 1382 models for cardiovascular disease (Wessler, 2021)
• 731 models related to COVID-19 (Wynants, 2020)
• 408 models for COPD prognosis (Bellou, 2019)
• 363 models for cardiovascular disease general population (Damen, 2016)
• 327 models for toxicity prediction after radiotherapy (Takada, 2022)
• 263 prognosis models in obstetrics (Kleinrouweler, 2016)
• 258 models mortality after general trauma (Munter, 2017)
• 160 female-specific models for cardiovascular disease (Baart, 2019)
• 142 models for mortality prediction in preterm infants (van Beek, 2021)
• 119 models for critical care prognosis in LMIC (Haniffa, 2018)
• 101 models for primary gastric cancer prognosis (Feng, 2019)
• 99 models for neck pain (Wingbermühle, 2018)
• 81 models for sudden cardiac arrest (Carrick, 2020)
• 74 models for contrast-induced acute kidney injury (Allen, 2017)
• 73 models for 28/30 day hospital readmission (Zhou, 2016)
• 68 models for preeclampsia (De Kat, 2019)
• 68 models for living donor kidney/iver transplant counselling (Haller, 2022)
• 67 models for traumatic brain injury prognosis (Dijkland, 2019)
• 64 models for suicide / suicide attempt (Belsher, 2019)
• 61 models for dementia (Hou, 2019)
• 58 models for breast cancer prognosis (Phung, 2019)
• 52 models for pre‐eclampsia (Townsend, 2019)
• 52 models for colorectal cancer risk (Usher-Smith, 2016)
• 48 models for incident hypertension (Sun, 2017)
• 46 models for melanoma (Kaiser, 2020)
• 46 models for prognosis after carotid revascularisation (Volkers, 2017)
• 43 models for mortality in critically ill (Keuning, 2019)
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Landscape of clinical prediction models
• 42 models for kidney failure in chronic kidney disease (Ramspek, 2019)
• 40 models for incident heart failure (Sahle, 2017)
• 37 models for treatment response in pulmonary TB (Peetluk, 2021)
• 35 models for in vitro fertilisation (Ratna, 2020)
• 34 models for stroke in type-2 diabetes (Chowdhury, 2019)
• 34 models for graft failure in kidney transplantation (Kabore, 2017)
• 31 models for length of stay in ICU (Verburg, 2016)
• 30 models for low back pain (Haskins, 2015)
• 27 models for pediatric early warning systems (Trubey, 2019)
• 27 models for malaria prognosis (Njim, 2019)
• 26 models for postoperative outcomes colorectal cancer (Souwer, 2020)
• 26 models for childhood asthma (Kothalawa, 2020)
• 25 models for lung cancer risk (Gray, 2016)
• 25 models for re-admission after admitted for heart failure (Mahajan, 2018)
• 23 models for recovery after ischemic stroke (Jampathong, 2018)
• 23 models for delirium in older adults (Lindroth, 2018)
• 21 models for atrial fibrillation detection in community (Himmelreich, 2020)
• 19 models for survival after resectable pancreatic cancer (Stijker, 2019)
• 18 models for recurrence hep. carc. after liver transplant (Al-Ameri, 2020)
• 18 models for future hypertension in children (Hamoen, 2018)
• 18 models for risk of falls after stroke (Walsh, 2016)
• 18 models for mortality in acute pancreatitis (Di, 2016)
• 17 models for bacterial meningitis (van Zeggeren, 2019)
• 17 models for cardiovascular disease in hypertensive population (Cai, 2020)
• 14 models for ICU delirium risk (Chen, 2020)
• 14 models for diabetic retinopathy progression (Haider, 2019)
• 1382 models for cardiovascular disease (Wessler, 2021)
• 731 models related to COVID-19 (Wynants, 2020)
• 408 models for COPD prognosis (Bellou, 2019)
• 363 models for cardiovascular disease general population (Damen, 2016)
• 327 models for toxicity prediction after radiotherapy (Takada, 2022)
• 263 prognosis models in obstetrics (Kleinrouweler, 2016)
• 258 models mortality after general trauma (Munter, 2017)
• 160 female-specific models for cardiovascular disease (Baart, 2019)
• 142 models for mortality prediction in preterm infants (van Beek, 2021)
• 119 models for critical care prognosis in LMIC (Haniffa, 2018)
• 101 models for primary gastric cancer prognosis (Feng, 2019)
• 99 models for neck pain (Wingbermühle, 2018)
• 81 models for sudden cardiac arrest (Carrick, 2020)
• 74 models for contrast-induced acute kidney injury (Allen, 2017)
• 73 models for 28/30 day hospital readmission (Zhou, 2016)
• 68 models for preeclampsia (De Kat, 2019)
• 68 models for living donor kidney/iver transplant counselling (Haller, 2022)
• 67 models for traumatic brain injury prognosis (Dijkland, 2019)
• 64 models for suicide / suicide attempt (Belsher, 2019)
• 61 models for dementia (Hou, 2019)
• 58 models for breast cancer prognosis (Phung, 2019)
• 52 models for pre‐eclampsia (Townsend, 2019)
• 52 models for colorectal cancer risk (Usher-Smith, 2016)
• 48 models for incident hypertension (Sun, 2017)
• 46 models for melanoma (Kaiser, 2020)
• 46 models for prognosis after carotid revascularisation (Volkers, 2017)
• 43 models for mortality in critically ill (Keuning, 2019)
Over 260 systematic reviews of clinical prediction models
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Clinical prediction models
• > 150,000 clinical prediction models exist
• From simple scoring rules (e.g. APGAR) to increasingly complex
AI-based prediction models
Source: Arshi at al 2024, OSF, doi: 10.31219/osf.io/4txc6 .
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
A new clinical prediction model
is developed
every 1.5 hours
Source: Arshi at al 2024, OSF, doi: 10.31219/osf.io/4txc6 .
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
PREDICTION MODELS USED IN PRACTICE
PREDICTION MODELS THAT WILL NEVER BE USED IN PRACTICE
RESEARCH WASTE?
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Example: living review
COVID-19 prediction models
• 731 prediction models between
March 2020 and February 2021
• Many models poorly reported
• Only 4% low risk of bias
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
External validation
COVID-19 prediction
models
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Not just COVID
What is AI going to do to the
field of clinical prediction
models?
What is AI doing for us now?
Self driving cars, etc
Created using Dall-E
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
IBM Watson winning Jeopardy! (2011)
https://bbc.in/2TMvV8I
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
IBM Watson for oncology
bit.ly/2LxiWGj ; bit.ly/3Esu68T
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Tech company business model
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Tech company business model
https://bit.ly/2HSp8X5; https://bit.ly/2Z0Pfop; https://bit.ly/2KIcpHG; https://bit.ly/33IJhr9
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Proportion of studies indexed in Medline with the Medical Subject
Heading (MeSH) term “Artificial Intelligence”
Faes et al. doi: 10.3389/fdgth.2022.833912
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Other success stories
https://go.nature.com/2VG2hS7; https://bbc.in/2Z1drXQ; https://bit.ly/2TAfRIP
Clinical prediction modeling in the era of AI: a blessing and a curse
https://twitter.com/AndrewLBeam/status/1620855064033382401?s=20&t=VO9_LdFFCj_wcwIQLvKcIQ
Source: Ilse Kant (UMC Utrecht)
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
https://bit.ly/2v2aokk
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Ayers, JAMA Int Med, 2023, doi: 10.1001/jamainternmed.2023.1838
*Answers by healthcare professionals on Redit vs ChatGPT
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Source: https://twitter.com/TansuYegen/status/1635388676539813889?s=20
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Source: https://www.science.org/content/article/alarmed-tech-leaders-call-ai-research-pause
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Clinical prediction modeling in the era of AI: a blessing and a curse
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Reviewer #2
Three Myths
about
Machine
learning
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Myth 1: “ML methods come from computer science”
Leo Breiman Jerome H
Friedman
Trevor Hastie Robert Tibshirani Daniela Witten
CART, random forest Gradient boosting Elements of statistical
learning
Lasso Introduction to statistical
learning
Edu Physics/Math Physics Statistics Statistics Statistics
Job title Professor of Statistics Professor of Statistics Professor of Statistics Professor of Statistics Professor of Statistics
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Myth 2:“ML methods are for prediction, statistics is
for explaining”
1See further: Kreiff and Diaz Ordaz; https://bit.ly/2m1eYdK
ML and causal inference, small selection1
• Superlearner (e.g. van der Laan)
• High dimensional propensity scores (e.g. Schneeweiss)
• Causal forests (e.g. Athey)
• The book of why (Pearl)
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Two cultures
Breiman, Stat Sci, 2001, DOI: 10.1214/ss/1009213726
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Faes et al. doi: 10.3389/fdgth.2022.833912
Language
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Robert Tibshirani: https://stanford.io/2zqEGfr
Machine learning: large grant = $1,000,000
Statistics: large grant = $50,000
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
ML refers to a culture, not to methods
Distinguishing between statistics and machine learning
• Substantial overlap methods used by both cultures
• Substantial overlap analysis goals
• Attempts to separate the two frequently result in disagreement
Pragmatic approach:
I’ll use “ML” to refer to models roughly outside of the traditional regression
types of analysis: decision trees (and descendants), SVMs, neural networks
(including Deep learning), boosting etc.
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
doi: 10.1001/jamapediatrics.2023.0034
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Myth 3: Machine learning is (always) better at
prediction
Christodoulou et al. Journal of Clinical Epidemiology, 2019, doi: 10.1016/j.jclinepi.2019.02.004
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Myth 3: Machine learning is (always) better at
prediction
Christodoulou et al. Journal of Clinical Epidemiology, 2019, doi: 10.1016/j.jclinepi.2019.02.004
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Sources of prediction error
Y = 𝑓 𝑥 + 𝜀
For a model 𝑘 the expected test prediction error is:
σ2
+ bias2 መ
𝑓𝑘 𝑥 + var መ
𝑓𝑘 𝑥
See equation 2.46 in Hastie et al., the elements of statistical learning, https://stanford.io/2voWjra
Irreducible error Mean squared prediction error
(with E 𝜀 = 0, var 𝜀 = 𝜎2, values in 𝑥 are not random)
What we don’t model How we model
≈
≈
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Sources of prediction error
Y = 𝑓 𝑥 + 𝜀
For a model 𝑘 the expected test prediction error is:
σ2
+ bias2 መ
𝑓𝑘 𝑥 + var መ
𝑓𝑘 𝑥
See equation 2.46 in Hastie et al., the elements of statistical learning, https://stanford.io/2voWjra
Irreducible error Mean squared prediction error
(with E 𝜀 = 0, var 𝜀 = 𝜎2, values in 𝑥 are not random)
What we don’t model How we model
≈
≈
In words, two main components for error in predictions are:
• Mean squared predictor error
• Under control of the modeler
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Sources of prediction error
Y = 𝑓 𝑥 + 𝜀
For a model 𝑘 the expected test prediction error is:
σ2
+ bias2 መ
𝑓𝑘 𝑥 + var መ
𝑓𝑘 𝑥
See equation 2.46 in Hastie et al., the elements of statistical learning, https://stanford.io/2voWjra
Irreducible error Mean squared prediction error
(with E 𝜀 = 0, var 𝜀 = 𝜎2, values in 𝑥 are not random)
What we don’t model How we model
≈
≈
In words, two main components for error in predictions are:
• Mean squared predictor error
• Under control of the modeler
overfitting underfitting ”just right”
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Sources of prediction error
Y = 𝑓 𝑥 + 𝜀
For a model 𝑘 the expected test prediction error is:
σ2
+ bias2 መ
𝑓𝑘 𝑥 + var መ
𝑓𝑘 𝑥
See equation 2.46 in Hastie et al., the elements of statistical learning, https://stanford.io/2voWjra
Irreducible error Mean squared prediction error
(with E 𝜀 = 0, var 𝜀 = 𝜎2, values in 𝑥 are not random)
What we don’t model How we model
≈
≈
In words, two main components for error in predictions are:
• Mean squared predictor error
• Under control of the modeler
• Irreducible error
• Not under direct control of the modeler
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
What can we do to reduce “irreducible” error?
Changing the information
• Using text (NLP/text mining)
• For research: e.g. predicting life expectancy
https://bit.ly/2k8Ao8e
• Analyzing social media posts
• e.g. pharmacovigilance, adverse events monitoring via Twitter posts
https://bit.ly/2m0KKrg
• Speech signal processing
• e.g. Parkinson‟s disease,
https://bit.ly/2v3ZdHR
• Medical imaging
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Examples where
AI has done well
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Example: retinal disease
Gulshan et al, JAMA, 2016, 10.1001/jama.2016.17216; Picture retinopathy: https://bit.ly/2kB3X2w
Diabetic retinopathy
Deep learning (= Neural network)
• 128,000 images
• Transfer learning (preinitialization)
• Sensitivity and specificity > .90
• Estimated from training data
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Approval of AI devices by FDA rapidly growing
Source: https://tinyurl.com/khn4dvyb (accessed 21/08/2024)
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Examples where
AI has done poorly
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Predicting mortality – the conclusion
PlosOne, 2018, DOI: 10.1371/journal.pone.0202344
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Predicting mortality – the results
PlosOne, 2018, DOI: 10.1371/journal.pone.0202344
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Predicting mortality – the media
PlosOne, 2018, DOI: 10.1371/journal.pone.0202344; https://bit.ly/2Q6H41R; https://bit.ly/2m3RLrn
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
HYPE!
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Recidivism Algorithm
Pro-publica (2016) https://bit.ly/1XMKh5R
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Skin cancer and rulers
Esteva et al., Nature, 2016, DOI: 10.1038/nature21056; https://bit.ly/2lE0vV0
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
https://www.tctmd.com/news/machine-learning-helps-predict-hospital-mortality-post-tavr-skepticism-abounds
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
AI assistance leads to more accurate diagnosis of liver cancer!
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
AI assistance leads to more accurate diagnosis of liver cancer! If AI is correct
AI assistance leads to less accurate diagnosis of liver cancer! If AI is incorrect
How can the field of clinical prediction
models using AI maximise benefits
and minimize risks and waste?
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Image source: http://www.meditationcircle.org.uk/notes/acceptance/
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
The ML/AI model is only one small element in
getting the model in clinical practice
Source: https://tinyurl.com/jr23pdsk; courtesy Dr Ilse Kant (UMCU)
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Leaky pipeline of clinical prediction models
Van Royen et al, ERJ, doi: 10.1183/13993003.00250-2022, also credits to Laure Wynants
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Flexible algorithms are data hungry
From slide deck Ben van Calster: https://bit.ly/38Aqmjs
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Flexible algorithms are energy hungry
The costs of training (cloud computing) the Transformer
once (!) are estimated at 1 to 3 million Dollars
https://bit.ly/33Dj38X
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Expect heterogeneity in model performance
Wessler, Circulation CQO ,2021, doi:10.1161/CIRCOUTCOMES.121.007858
€
kr
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Dutch guideline prediction models based of AI
https://www.leidraad-ai.nl/
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Dutch guideline prediction models based of AI
https://www.leidraad-ai.nl/
Collection and
management of the
data
Phase 1
Development of the
AIP
Phase 2
Validation of the
AIPA
Phase 3
Development of the
required software
Phase 4
Impact assessment
of the AIPA in
combination with
the software
Phase 5
Implementation
and use of the AIPA
with software in
daily practice
Phase 6
Saskia Haitjema
Andre Dekker
Paul Algra
Amy Eikelenboom
Christian van
Ginkel
Martine de Vries
Daniel Oberski
Desy Kakiay
Kicky van
Leeuwen
Joran Lokkerbol
Evangelos
Kanoulas
Gabrielle
Davelaar
Wouter Veldhuis
Bart-Jan Verhoeff
Vincent Stirler
Daan van den
Donk
Huib Burger
Giovanni Cina
Martijn van der
Meulen
Maurits Kaptein
Floor van
Leeuwen
Egge van der Poel
Marcel Hilgersom
Sade Faneyte
Jonas Teuwen
Teus Kappen
Ewout Steyerberg
Leo Hovestadt
René Drost
Bart Geerts
Anne de Hond
René Verhaart
Nynke Breimer
Karen Wiegant
Laure Wynants
Lysette
Meuleman
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
AI ecosystem in the University Medical Center Utrecht
You are here
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
R&D concentrated in 5 AI labs
https://www.umcutrecht.nl/en/campaign/ai-labs
Team science
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
• Hype
• AI rebranding and
reinventions
• Traditional issues such
as low N, lack of
validation, poor
reporting, data quality,
generalizability
• More research waste
• Energy consumption
• Other expenses beyond
model training
AI BLESSINGS AND CURSES
• Real innovation
• Methods/architectures
allowing (unstructured)
use of new types of
data at scale
• Computing power
• Software
• Clinical trials showing
benefit of AI assistance
• Willingness to invest in
prediction using AI
Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Maarten van Smeden
Julius Center for Health Sciences and Primary Care
University Medical Center Utrecht
Director of UMC Utrecht AI methods lab
Team lead of health data science group
Head of Julius Center’s methods program
E-mail: M.vanSmeden@umcutrecht.nl
Kopenhagen, 22 Aug 2024 @MaartenvSmeden

More Related Content

PDF
Shrinkage in medical prediction: the poor man’s solution for an inadequate sa...
PDF
Guideline for high-quality diagnostic and prognostic applications of AI in he...
PPTX
Choosing Regression Models
PDF
Algorithm based medicine
PDF
Η αξιοποίηση των κόμικς στη διδασκαλία - comics in classroom
PDF
Associate professor lecture
PDF
Prognosis-based medicine: merits and pitfalls of forecasting patient health
PDF
Research waste in clinical prediction models and machine learning?
Shrinkage in medical prediction: the poor man’s solution for an inadequate sa...
Guideline for high-quality diagnostic and prognostic applications of AI in he...
Choosing Regression Models
Algorithm based medicine
Η αξιοποίηση των κόμικς στη διδασκαλία - comics in classroom
Associate professor lecture
Prognosis-based medicine: merits and pitfalls of forecasting patient health
Research waste in clinical prediction models and machine learning?

Similar to Clinical prediction modeling in the era of AI: a blessing and a curse (20)

PDF
Development and evaluation of prediction models: pitfalls and solutions
PDF
COVID-19 related prediction models for diagnosis and prognosis - a living sys...
PDF
Virtual Expert -Disease Prediction Using Machine Learning
PDF
“Detection of Diseases using Machine Learning”
PDF
Prediction research in a pandemic: 3 lessons from a living systematic review ...
PPTX
Predictive_Modellinglk_AI_Healthcare.pptx
PDF
PICTURE: Predicting Intensive Care Transfers & other UnfoReseen Events
PPTX
FINALyeareeeeeeeeeeeeeeeeeeeeeeeeppt.ppt
PPT
Geraint_London_Slides25Jan 2011
PDF
Towards a disease prediction system: biobert-based medical profile representa...
PDF
MH Prediction Modeling and Validation -clean
PDF
Bias in covid 19 models
PDF
Prediction for Pulmonary Disease Based on Diagnostic Reciepes and Classification
PDF
Application of Deep Learning for Early Detection of Covid 19 using CT scan Im...
PDF
Mortality prediction of COVID-19 patients using supervised machine learning
PPTX
Disease prediction system using python.pptx
PDF
Classifying and Predictive Analytics for Disease Detection: Empowering Health...
PDF
20411-38909-2-PB.pdf
PDF
IRJET- A Prediction Engine for Influenza Pandemic using Healthcare Analysis
PDF
Predictions And Analytics In Healthcare: Advancements In Machine Learning
Development and evaluation of prediction models: pitfalls and solutions
COVID-19 related prediction models for diagnosis and prognosis - a living sys...
Virtual Expert -Disease Prediction Using Machine Learning
“Detection of Diseases using Machine Learning”
Prediction research in a pandemic: 3 lessons from a living systematic review ...
Predictive_Modellinglk_AI_Healthcare.pptx
PICTURE: Predicting Intensive Care Transfers & other UnfoReseen Events
FINALyeareeeeeeeeeeeeeeeeeeeeeeeeppt.ppt
Geraint_London_Slides25Jan 2011
Towards a disease prediction system: biobert-based medical profile representa...
MH Prediction Modeling and Validation -clean
Bias in covid 19 models
Prediction for Pulmonary Disease Based on Diagnostic Reciepes and Classification
Application of Deep Learning for Early Detection of Covid 19 using CT scan Im...
Mortality prediction of COVID-19 patients using supervised machine learning
Disease prediction system using python.pptx
Classifying and Predictive Analytics for Disease Detection: Empowering Health...
20411-38909-2-PB.pdf
IRJET- A Prediction Engine for Influenza Pandemic using Healthcare Analysis
Predictions And Analytics In Healthcare: Advancements In Machine Learning
Ad

More from Maarten van Smeden (20)

PDF
Rage Against the Machine Learning - Young Researchers Event
PDF
Uncertainty in AI
PDF
UMC Utrecht AI Methods Lab
PDF
Rage against the machine learning 2023
PDF
A gentle introduction to AI for medicine
PDF
Improving epidemiological research: avoiding the statistical paradoxes and fa...
PDF
Predictimands
PDF
Algorithm based medicine: old statistics wine in new machine learning bottles?
PDF
Clinical prediction models for covid-19: alarming results from a living syste...
PDF
Five questions about artificial intelligence
PDF
Prediction models for diagnosis and prognosis related to COVID-19
PDF
Clinical prediction models: development, validation and beyond
PDF
Correcting for missing data, measurement error and confounding
PDF
Why the EPV≥10 sample size rule is rubbish and what to use instead
PDF
Living systematic reviews: now and in the future
PDF
Voorspelmodellen en COVID-19
PDF
The statistics of the coronavirus
PDF
ML and AI: a blessing and curse for statisticians and medical doctors
PDF
Measurement error in medical research
PDF
The basics of prediction modeling
Rage Against the Machine Learning - Young Researchers Event
Uncertainty in AI
UMC Utrecht AI Methods Lab
Rage against the machine learning 2023
A gentle introduction to AI for medicine
Improving epidemiological research: avoiding the statistical paradoxes and fa...
Predictimands
Algorithm based medicine: old statistics wine in new machine learning bottles?
Clinical prediction models for covid-19: alarming results from a living syste...
Five questions about artificial intelligence
Prediction models for diagnosis and prognosis related to COVID-19
Clinical prediction models: development, validation and beyond
Correcting for missing data, measurement error and confounding
Why the EPV≥10 sample size rule is rubbish and what to use instead
Living systematic reviews: now and in the future
Voorspelmodellen en COVID-19
The statistics of the coronavirus
ML and AI: a blessing and curse for statisticians and medical doctors
Measurement error in medical research
The basics of prediction modeling
Ad

Recently uploaded (20)

PPT
1. INTRODUCTION TO EPIDEMIOLOGY.pptx for community medicine
PDF
CHAPTER 3 Cell Structures and Their Functions Lecture Outline.pdf
PDF
Wound infection.pdfWound infection.pdf123
PDF
Assessment of environmental effects of quarrying in Kitengela subcountyof Kaj...
PDF
Cosmic Outliers: Low-spin Halos Explain the Abundance, Compactness, and Redsh...
PDF
CHAPTER 2 The Chemical Basis of Life Lecture Outline.pdf
PPTX
SCIENCE 4 Q2W5 PPT.pptx Lesson About Plnts and animals and their habitat
PPTX
endocrine - management of adrenal incidentaloma.pptx
PPTX
INTRODUCTION TO PAEDIATRICS AND PAEDIATRIC HISTORY TAKING-1.pptx
PPTX
GREEN FIELDS SCHOOL PPT ON HOLIDAY HOMEWORK
PPTX
Probability.pptx pearl lecture first year
PPTX
limit test definition and all limit tests
PDF
Worlds Next Door: A Candidate Giant Planet Imaged in the Habitable Zone of ↵ ...
PPT
veterinary parasitology ````````````.ppt
PDF
BET Eukaryotic signal Transduction BET Eukaryotic signal Transduction.pdf
PPTX
Microbes in human welfare class 12 .pptx
PDF
Unit 5 Preparations, Reactions, Properties and Isomersim of Organic Compounds...
PPTX
Hypertension_Training_materials_English_2024[1] (1).pptx
PDF
Looking into the jet cone of the neutrino-associated very high-energy blazar ...
PPT
LEC Synthetic Biology and its application.ppt
1. INTRODUCTION TO EPIDEMIOLOGY.pptx for community medicine
CHAPTER 3 Cell Structures and Their Functions Lecture Outline.pdf
Wound infection.pdfWound infection.pdf123
Assessment of environmental effects of quarrying in Kitengela subcountyof Kaj...
Cosmic Outliers: Low-spin Halos Explain the Abundance, Compactness, and Redsh...
CHAPTER 2 The Chemical Basis of Life Lecture Outline.pdf
SCIENCE 4 Q2W5 PPT.pptx Lesson About Plnts and animals and their habitat
endocrine - management of adrenal incidentaloma.pptx
INTRODUCTION TO PAEDIATRICS AND PAEDIATRIC HISTORY TAKING-1.pptx
GREEN FIELDS SCHOOL PPT ON HOLIDAY HOMEWORK
Probability.pptx pearl lecture first year
limit test definition and all limit tests
Worlds Next Door: A Candidate Giant Planet Imaged in the Habitable Zone of ↵ ...
veterinary parasitology ````````````.ppt
BET Eukaryotic signal Transduction BET Eukaryotic signal Transduction.pdf
Microbes in human welfare class 12 .pptx
Unit 5 Preparations, Reactions, Properties and Isomersim of Organic Compounds...
Hypertension_Training_materials_English_2024[1] (1).pptx
Looking into the jet cone of the neutrino-associated very high-energy blazar ...
LEC Synthetic Biology and its application.ppt

Clinical prediction modeling in the era of AI: a blessing and a curse

  • 1. Maarten van Smeden, PhD Julius Center for Health Sciences and Primary Care 8th Annual Danish Bioinformatics conference Kopenhagen, 22 August 2024 Clinical prediction modeling in the era of AI: a blessing and a curse
  • 3. In this lecture, I will talk about….
  • 4. Kopenhagen, 22 Aug 2024 @MaartenvSmeden AI BLESSINGS AND CURSES
  • 5. Kopenhagen, 22 Aug 2024 @MaartenvSmeden
  • 8. Kopenhagen, 22 Aug 2024 @MaartenvSmeden De Hond et al, Lancet Digital Health, 2024
  • 10. Kopenhagen, 22 Aug 2024 @MaartenvSmeden van Smeden et al., JCE, 2021, doi: 10.1016/j.jclinepi.2021.01.009
  • 12. Kopenhagen, 22 Aug 2024 @MaartenvSmeden https://tinyurl.com/3knkuzs3
  • 13. Kopenhagen, 22 Aug 2024 @MaartenvSmeden Image source: https://shorturl.at/styGJ
  • 14. Kopenhagen, 22 Aug 2024 @MaartenvSmeden APGAR score Apgar et al. JAMA, 1958
  • 16. Kopenhagen, 22 Aug 2024 @MaartenvSmeden
  • 17. Kopenhagen, 22 Aug 2024 @MaartenvSmeden
  • 18. Kopenhagen, 22 Aug 2024 @MaartenvSmeden Still commonly used, but… Sources: doi: 10.1097/ANC.0000000000000859, 10.1136/bmj.38117.665197.F7
  • 19. Kopenhagen, 22 Aug 2024 @MaartenvSmeden
  • 20. Kopenhagen, 22 Aug 2024 @MaartenvSmeden
  • 21. Kopenhagen, 22 Aug 2024 @MaartenvSmeden
  • 22. Kopenhagen, 22 Aug 2024 @MaartenvSmeden
  • 23. Kopenhagen, 22 Aug 2024 @MaartenvSmeden “65% of U.S. physicians used MDCalc on a weekly basis”
  • 24. Kopenhagen, 22 Aug 2024 @MaartenvSmeden Landscape of clinical prediction models • 42 models for kidney failure in chronic kidney disease (Ramspek, 2019) • 40 models for incident heart failure (Sahle, 2017) • 37 models for treatment response in pulmonary TB (Peetluk, 2021) • 35 models for in vitro fertilisation (Ratna, 2020) • 34 models for stroke in type-2 diabetes (Chowdhury, 2019) • 34 models for graft failure in kidney transplantation (Kabore, 2017) • 31 models for length of stay in ICU (Verburg, 2016) • 30 models for low back pain (Haskins, 2015) • 27 models for pediatric early warning systems (Trubey, 2019) • 27 models for malaria prognosis (Njim, 2019) • 26 models for postoperative outcomes colorectal cancer (Souwer, 2020) • 26 models for childhood asthma (Kothalawa, 2020) • 25 models for lung cancer risk (Gray, 2016) • 25 models for re-admission after admitted for heart failure (Mahajan, 2018) • 23 models for recovery after ischemic stroke (Jampathong, 2018) • 23 models for delirium in older adults (Lindroth, 2018) • 21 models for atrial fibrillation detection in community (Himmelreich, 2020) • 19 models for survival after resectable pancreatic cancer (Stijker, 2019) • 18 models for recurrence hep. carc. after liver transplant (Al-Ameri, 2020) • 18 models for future hypertension in children (Hamoen, 2018) • 18 models for risk of falls after stroke (Walsh, 2016) • 18 models for mortality in acute pancreatitis (Di, 2016) • 17 models for bacterial meningitis (van Zeggeren, 2019) • 17 models for cardiovascular disease in hypertensive population (Cai, 2020) • 14 models for ICU delirium risk (Chen, 2020) • 14 models for diabetic retinopathy progression (Haider, 2019) • 1382 models for cardiovascular disease (Wessler, 2021) • 731 models related to COVID-19 (Wynants, 2020) • 408 models for COPD prognosis (Bellou, 2019) • 363 models for cardiovascular disease general population (Damen, 2016) • 327 models for toxicity prediction after radiotherapy (Takada, 2022) • 263 prognosis models in obstetrics (Kleinrouweler, 2016) • 258 models mortality after general trauma (Munter, 2017) • 160 female-specific models for cardiovascular disease (Baart, 2019) • 142 models for mortality prediction in preterm infants (van Beek, 2021) • 119 models for critical care prognosis in LMIC (Haniffa, 2018) • 101 models for primary gastric cancer prognosis (Feng, 2019) • 99 models for neck pain (Wingbermühle, 2018) • 81 models for sudden cardiac arrest (Carrick, 2020) • 74 models for contrast-induced acute kidney injury (Allen, 2017) • 73 models for 28/30 day hospital readmission (Zhou, 2016) • 68 models for preeclampsia (De Kat, 2019) • 68 models for living donor kidney/iver transplant counselling (Haller, 2022) • 67 models for traumatic brain injury prognosis (Dijkland, 2019) • 64 models for suicide / suicide attempt (Belsher, 2019) • 61 models for dementia (Hou, 2019) • 58 models for breast cancer prognosis (Phung, 2019) • 52 models for pre‐eclampsia (Townsend, 2019) • 52 models for colorectal cancer risk (Usher-Smith, 2016) • 48 models for incident hypertension (Sun, 2017) • 46 models for melanoma (Kaiser, 2020) • 46 models for prognosis after carotid revascularisation (Volkers, 2017) • 43 models for mortality in critically ill (Keuning, 2019)
  • 25. Kopenhagen, 22 Aug 2024 @MaartenvSmeden Landscape of clinical prediction models • 42 models for kidney failure in chronic kidney disease (Ramspek, 2019) • 40 models for incident heart failure (Sahle, 2017) • 37 models for treatment response in pulmonary TB (Peetluk, 2021) • 35 models for in vitro fertilisation (Ratna, 2020) • 34 models for stroke in type-2 diabetes (Chowdhury, 2019) • 34 models for graft failure in kidney transplantation (Kabore, 2017) • 31 models for length of stay in ICU (Verburg, 2016) • 30 models for low back pain (Haskins, 2015) • 27 models for pediatric early warning systems (Trubey, 2019) • 27 models for malaria prognosis (Njim, 2019) • 26 models for postoperative outcomes colorectal cancer (Souwer, 2020) • 26 models for childhood asthma (Kothalawa, 2020) • 25 models for lung cancer risk (Gray, 2016) • 25 models for re-admission after admitted for heart failure (Mahajan, 2018) • 23 models for recovery after ischemic stroke (Jampathong, 2018) • 23 models for delirium in older adults (Lindroth, 2018) • 21 models for atrial fibrillation detection in community (Himmelreich, 2020) • 19 models for survival after resectable pancreatic cancer (Stijker, 2019) • 18 models for recurrence hep. carc. after liver transplant (Al-Ameri, 2020) • 18 models for future hypertension in children (Hamoen, 2018) • 18 models for risk of falls after stroke (Walsh, 2016) • 18 models for mortality in acute pancreatitis (Di, 2016) • 17 models for bacterial meningitis (van Zeggeren, 2019) • 17 models for cardiovascular disease in hypertensive population (Cai, 2020) • 14 models for ICU delirium risk (Chen, 2020) • 14 models for diabetic retinopathy progression (Haider, 2019) • 1382 models for cardiovascular disease (Wessler, 2021) • 731 models related to COVID-19 (Wynants, 2020) • 408 models for COPD prognosis (Bellou, 2019) • 363 models for cardiovascular disease general population (Damen, 2016) • 327 models for toxicity prediction after radiotherapy (Takada, 2022) • 263 prognosis models in obstetrics (Kleinrouweler, 2016) • 258 models mortality after general trauma (Munter, 2017) • 160 female-specific models for cardiovascular disease (Baart, 2019) • 142 models for mortality prediction in preterm infants (van Beek, 2021) • 119 models for critical care prognosis in LMIC (Haniffa, 2018) • 101 models for primary gastric cancer prognosis (Feng, 2019) • 99 models for neck pain (Wingbermühle, 2018) • 81 models for sudden cardiac arrest (Carrick, 2020) • 74 models for contrast-induced acute kidney injury (Allen, 2017) • 73 models for 28/30 day hospital readmission (Zhou, 2016) • 68 models for preeclampsia (De Kat, 2019) • 68 models for living donor kidney/iver transplant counselling (Haller, 2022) • 67 models for traumatic brain injury prognosis (Dijkland, 2019) • 64 models for suicide / suicide attempt (Belsher, 2019) • 61 models for dementia (Hou, 2019) • 58 models for breast cancer prognosis (Phung, 2019) • 52 models for pre‐eclampsia (Townsend, 2019) • 52 models for colorectal cancer risk (Usher-Smith, 2016) • 48 models for incident hypertension (Sun, 2017) • 46 models for melanoma (Kaiser, 2020) • 46 models for prognosis after carotid revascularisation (Volkers, 2017) • 43 models for mortality in critically ill (Keuning, 2019) Over 260 systematic reviews of clinical prediction models
  • 26. Kopenhagen, 22 Aug 2024 @MaartenvSmeden Clinical prediction models • > 150,000 clinical prediction models exist • From simple scoring rules (e.g. APGAR) to increasingly complex AI-based prediction models Source: Arshi at al 2024, OSF, doi: 10.31219/osf.io/4txc6 .
  • 27. Kopenhagen, 22 Aug 2024 @MaartenvSmeden
  • 28. A new clinical prediction model is developed every 1.5 hours Source: Arshi at al 2024, OSF, doi: 10.31219/osf.io/4txc6 .
  • 29. Kopenhagen, 22 Aug 2024 @MaartenvSmeden PREDICTION MODELS USED IN PRACTICE PREDICTION MODELS THAT WILL NEVER BE USED IN PRACTICE RESEARCH WASTE?
  • 30. Kopenhagen, 22 Aug 2024 @MaartenvSmeden Example: living review COVID-19 prediction models • 731 prediction models between March 2020 and February 2021 • Many models poorly reported • Only 4% low risk of bias
  • 31. Kopenhagen, 22 Aug 2024 @MaartenvSmeden External validation COVID-19 prediction models
  • 32. Kopenhagen, 22 Aug 2024 @MaartenvSmeden Not just COVID
  • 33. What is AI going to do to the field of clinical prediction models?
  • 34. What is AI doing for us now?
  • 35. Self driving cars, etc Created using Dall-E
  • 36. Kopenhagen, 22 Aug 2024 @MaartenvSmeden IBM Watson winning Jeopardy! (2011) https://bbc.in/2TMvV8I
  • 37. Kopenhagen, 22 Aug 2024 @MaartenvSmeden IBM Watson for oncology bit.ly/2LxiWGj ; bit.ly/3Esu68T
  • 38. Kopenhagen, 22 Aug 2024 @MaartenvSmeden Tech company business model
  • 39. Kopenhagen, 22 Aug 2024 @MaartenvSmeden Tech company business model https://bit.ly/2HSp8X5; https://bit.ly/2Z0Pfop; https://bit.ly/2KIcpHG; https://bit.ly/33IJhr9
  • 40. Kopenhagen, 22 Aug 2024 @MaartenvSmeden Proportion of studies indexed in Medline with the Medical Subject Heading (MeSH) term “Artificial Intelligence” Faes et al. doi: 10.3389/fdgth.2022.833912
  • 41. Kopenhagen, 22 Aug 2024 @MaartenvSmeden Other success stories https://go.nature.com/2VG2hS7; https://bbc.in/2Z1drXQ; https://bit.ly/2TAfRIP
  • 44. Source: Ilse Kant (UMC Utrecht)
  • 45. Kopenhagen, 22 Aug 2024 @MaartenvSmeden
  • 46. Kopenhagen, 22 Aug 2024 @MaartenvSmeden https://bit.ly/2v2aokk
  • 47. Kopenhagen, 22 Aug 2024 @MaartenvSmeden Ayers, JAMA Int Med, 2023, doi: 10.1001/jamainternmed.2023.1838 *Answers by healthcare professionals on Redit vs ChatGPT
  • 48. Kopenhagen, 22 Aug 2024 @MaartenvSmeden Source: https://twitter.com/TansuYegen/status/1635388676539813889?s=20
  • 49. Kopenhagen, 22 Aug 2024 @MaartenvSmeden Source: https://www.science.org/content/article/alarmed-tech-leaders-call-ai-research-pause
  • 50. Kopenhagen, 22 Aug 2024 @MaartenvSmeden
  • 51. Kopenhagen, 22 Aug 2024 @MaartenvSmeden
  • 53. Kopenhagen, 22 Aug 2024 @MaartenvSmeden Reviewer #2
  • 55. Kopenhagen, 22 Aug 2024 @MaartenvSmeden Myth 1: “ML methods come from computer science” Leo Breiman Jerome H Friedman Trevor Hastie Robert Tibshirani Daniela Witten CART, random forest Gradient boosting Elements of statistical learning Lasso Introduction to statistical learning Edu Physics/Math Physics Statistics Statistics Statistics Job title Professor of Statistics Professor of Statistics Professor of Statistics Professor of Statistics Professor of Statistics
  • 56. Kopenhagen, 22 Aug 2024 @MaartenvSmeden Myth 2:“ML methods are for prediction, statistics is for explaining” 1See further: Kreiff and Diaz Ordaz; https://bit.ly/2m1eYdK ML and causal inference, small selection1 • Superlearner (e.g. van der Laan) • High dimensional propensity scores (e.g. Schneeweiss) • Causal forests (e.g. Athey) • The book of why (Pearl)
  • 57. Kopenhagen, 22 Aug 2024 @MaartenvSmeden Two cultures Breiman, Stat Sci, 2001, DOI: 10.1214/ss/1009213726
  • 58. Kopenhagen, 22 Aug 2024 @MaartenvSmeden Faes et al. doi: 10.3389/fdgth.2022.833912 Language
  • 59. Kopenhagen, 22 Aug 2024 @MaartenvSmeden Robert Tibshirani: https://stanford.io/2zqEGfr Machine learning: large grant = $1,000,000 Statistics: large grant = $50,000
  • 60. Kopenhagen, 22 Aug 2024 @MaartenvSmeden ML refers to a culture, not to methods Distinguishing between statistics and machine learning • Substantial overlap methods used by both cultures • Substantial overlap analysis goals • Attempts to separate the two frequently result in disagreement Pragmatic approach: I’ll use “ML” to refer to models roughly outside of the traditional regression types of analysis: decision trees (and descendants), SVMs, neural networks (including Deep learning), boosting etc.
  • 61. Kopenhagen, 22 Aug 2024 @MaartenvSmeden doi: 10.1001/jamapediatrics.2023.0034
  • 62. Kopenhagen, 22 Aug 2024 @MaartenvSmeden Myth 3: Machine learning is (always) better at prediction Christodoulou et al. Journal of Clinical Epidemiology, 2019, doi: 10.1016/j.jclinepi.2019.02.004
  • 63. Kopenhagen, 22 Aug 2024 @MaartenvSmeden Myth 3: Machine learning is (always) better at prediction Christodoulou et al. Journal of Clinical Epidemiology, 2019, doi: 10.1016/j.jclinepi.2019.02.004
  • 64. Kopenhagen, 22 Aug 2024 @MaartenvSmeden Sources of prediction error Y = 𝑓 𝑥 + 𝜀 For a model 𝑘 the expected test prediction error is: σ2 + bias2 መ 𝑓𝑘 𝑥 + var መ 𝑓𝑘 𝑥 See equation 2.46 in Hastie et al., the elements of statistical learning, https://stanford.io/2voWjra Irreducible error Mean squared prediction error (with E 𝜀 = 0, var 𝜀 = 𝜎2, values in 𝑥 are not random) What we don’t model How we model ≈ ≈
  • 65. Kopenhagen, 22 Aug 2024 @MaartenvSmeden Sources of prediction error Y = 𝑓 𝑥 + 𝜀 For a model 𝑘 the expected test prediction error is: σ2 + bias2 መ 𝑓𝑘 𝑥 + var መ 𝑓𝑘 𝑥 See equation 2.46 in Hastie et al., the elements of statistical learning, https://stanford.io/2voWjra Irreducible error Mean squared prediction error (with E 𝜀 = 0, var 𝜀 = 𝜎2, values in 𝑥 are not random) What we don’t model How we model ≈ ≈ In words, two main components for error in predictions are: • Mean squared predictor error • Under control of the modeler
  • 66. Kopenhagen, 22 Aug 2024 @MaartenvSmeden Sources of prediction error Y = 𝑓 𝑥 + 𝜀 For a model 𝑘 the expected test prediction error is: σ2 + bias2 መ 𝑓𝑘 𝑥 + var መ 𝑓𝑘 𝑥 See equation 2.46 in Hastie et al., the elements of statistical learning, https://stanford.io/2voWjra Irreducible error Mean squared prediction error (with E 𝜀 = 0, var 𝜀 = 𝜎2, values in 𝑥 are not random) What we don’t model How we model ≈ ≈ In words, two main components for error in predictions are: • Mean squared predictor error • Under control of the modeler overfitting underfitting ”just right”
  • 67. Kopenhagen, 22 Aug 2024 @MaartenvSmeden Sources of prediction error Y = 𝑓 𝑥 + 𝜀 For a model 𝑘 the expected test prediction error is: σ2 + bias2 መ 𝑓𝑘 𝑥 + var መ 𝑓𝑘 𝑥 See equation 2.46 in Hastie et al., the elements of statistical learning, https://stanford.io/2voWjra Irreducible error Mean squared prediction error (with E 𝜀 = 0, var 𝜀 = 𝜎2, values in 𝑥 are not random) What we don’t model How we model ≈ ≈ In words, two main components for error in predictions are: • Mean squared predictor error • Under control of the modeler • Irreducible error • Not under direct control of the modeler
  • 68. Kopenhagen, 22 Aug 2024 @MaartenvSmeden What can we do to reduce “irreducible” error? Changing the information • Using text (NLP/text mining) • For research: e.g. predicting life expectancy https://bit.ly/2k8Ao8e • Analyzing social media posts • e.g. pharmacovigilance, adverse events monitoring via Twitter posts https://bit.ly/2m0KKrg • Speech signal processing • e.g. Parkinson‟s disease, https://bit.ly/2v3ZdHR • Medical imaging
  • 69. Kopenhagen, 22 Aug 2024 @MaartenvSmeden
  • 70. Kopenhagen, 22 Aug 2024 @MaartenvSmeden Examples where AI has done well
  • 71. Kopenhagen, 22 Aug 2024 @MaartenvSmeden Example: retinal disease Gulshan et al, JAMA, 2016, 10.1001/jama.2016.17216; Picture retinopathy: https://bit.ly/2kB3X2w Diabetic retinopathy Deep learning (= Neural network) • 128,000 images • Transfer learning (preinitialization) • Sensitivity and specificity > .90 • Estimated from training data
  • 72. Kopenhagen, 22 Aug 2024 @MaartenvSmeden
  • 73. Kopenhagen, 22 Aug 2024 @MaartenvSmeden
  • 74. Kopenhagen, 22 Aug 2024 @MaartenvSmeden
  • 75. Kopenhagen, 22 Aug 2024 @MaartenvSmeden Approval of AI devices by FDA rapidly growing Source: https://tinyurl.com/khn4dvyb (accessed 21/08/2024)
  • 76. Kopenhagen, 22 Aug 2024 @MaartenvSmeden
  • 77. Kopenhagen, 22 Aug 2024 @MaartenvSmeden Examples where AI has done poorly
  • 78. Kopenhagen, 22 Aug 2024 @MaartenvSmeden Predicting mortality – the conclusion PlosOne, 2018, DOI: 10.1371/journal.pone.0202344
  • 79. Kopenhagen, 22 Aug 2024 @MaartenvSmeden Predicting mortality – the results PlosOne, 2018, DOI: 10.1371/journal.pone.0202344
  • 80. Kopenhagen, 22 Aug 2024 @MaartenvSmeden Predicting mortality – the media PlosOne, 2018, DOI: 10.1371/journal.pone.0202344; https://bit.ly/2Q6H41R; https://bit.ly/2m3RLrn
  • 81. Kopenhagen, 22 Aug 2024 @MaartenvSmeden HYPE!
  • 82. Kopenhagen, 22 Aug 2024 @MaartenvSmeden Recidivism Algorithm Pro-publica (2016) https://bit.ly/1XMKh5R
  • 83. Kopenhagen, 22 Aug 2024 @MaartenvSmeden Skin cancer and rulers Esteva et al., Nature, 2016, DOI: 10.1038/nature21056; https://bit.ly/2lE0vV0
  • 84. Kopenhagen, 22 Aug 2024 @MaartenvSmeden
  • 85. Kopenhagen, 22 Aug 2024 @MaartenvSmeden https://www.tctmd.com/news/machine-learning-helps-predict-hospital-mortality-post-tavr-skepticism-abounds
  • 86. Kopenhagen, 22 Aug 2024 @MaartenvSmeden
  • 87. Kopenhagen, 22 Aug 2024 @MaartenvSmeden AI assistance leads to more accurate diagnosis of liver cancer!
  • 88. Kopenhagen, 22 Aug 2024 @MaartenvSmeden AI assistance leads to more accurate diagnosis of liver cancer! If AI is correct AI assistance leads to less accurate diagnosis of liver cancer! If AI is incorrect
  • 89. How can the field of clinical prediction models using AI maximise benefits and minimize risks and waste?
  • 90. Kopenhagen, 22 Aug 2024 @MaartenvSmeden Image source: http://www.meditationcircle.org.uk/notes/acceptance/
  • 91. Kopenhagen, 22 Aug 2024 @MaartenvSmeden The ML/AI model is only one small element in getting the model in clinical practice Source: https://tinyurl.com/jr23pdsk; courtesy Dr Ilse Kant (UMCU)
  • 92. Kopenhagen, 22 Aug 2024 @MaartenvSmeden Leaky pipeline of clinical prediction models Van Royen et al, ERJ, doi: 10.1183/13993003.00250-2022, also credits to Laure Wynants
  • 93. Kopenhagen, 22 Aug 2024 @MaartenvSmeden Flexible algorithms are data hungry From slide deck Ben van Calster: https://bit.ly/38Aqmjs
  • 94. Kopenhagen, 22 Aug 2024 @MaartenvSmeden
  • 95. Kopenhagen, 22 Aug 2024 @MaartenvSmeden Flexible algorithms are energy hungry The costs of training (cloud computing) the Transformer once (!) are estimated at 1 to 3 million Dollars https://bit.ly/33Dj38X
  • 96. Kopenhagen, 22 Aug 2024 @MaartenvSmeden
  • 97. Kopenhagen, 22 Aug 2024 @MaartenvSmeden Expect heterogeneity in model performance Wessler, Circulation CQO ,2021, doi:10.1161/CIRCOUTCOMES.121.007858
  • 98.
  • 99. kr
  • 100. Kopenhagen, 22 Aug 2024 @MaartenvSmeden Dutch guideline prediction models based of AI https://www.leidraad-ai.nl/
  • 101. Kopenhagen, 22 Aug 2024 @MaartenvSmeden Dutch guideline prediction models based of AI https://www.leidraad-ai.nl/ Collection and management of the data Phase 1 Development of the AIP Phase 2 Validation of the AIPA Phase 3 Development of the required software Phase 4 Impact assessment of the AIPA in combination with the software Phase 5 Implementation and use of the AIPA with software in daily practice Phase 6 Saskia Haitjema Andre Dekker Paul Algra Amy Eikelenboom Christian van Ginkel Martine de Vries Daniel Oberski Desy Kakiay Kicky van Leeuwen Joran Lokkerbol Evangelos Kanoulas Gabrielle Davelaar Wouter Veldhuis Bart-Jan Verhoeff Vincent Stirler Daan van den Donk Huib Burger Giovanni Cina Martijn van der Meulen Maurits Kaptein Floor van Leeuwen Egge van der Poel Marcel Hilgersom Sade Faneyte Jonas Teuwen Teus Kappen Ewout Steyerberg Leo Hovestadt René Drost Bart Geerts Anne de Hond René Verhaart Nynke Breimer Karen Wiegant Laure Wynants Lysette Meuleman
  • 102. Kopenhagen, 22 Aug 2024 @MaartenvSmeden AI ecosystem in the University Medical Center Utrecht You are here
  • 103. Kopenhagen, 22 Aug 2024 @MaartenvSmeden R&D concentrated in 5 AI labs https://www.umcutrecht.nl/en/campaign/ai-labs
  • 105. Kopenhagen, 22 Aug 2024 @MaartenvSmeden • Hype • AI rebranding and reinventions • Traditional issues such as low N, lack of validation, poor reporting, data quality, generalizability • More research waste • Energy consumption • Other expenses beyond model training AI BLESSINGS AND CURSES • Real innovation • Methods/architectures allowing (unstructured) use of new types of data at scale • Computing power • Software • Clinical trials showing benefit of AI assistance • Willingness to invest in prediction using AI
  • 106. Kopenhagen, 22 Aug 2024 @MaartenvSmeden Maarten van Smeden Julius Center for Health Sciences and Primary Care University Medical Center Utrecht Director of UMC Utrecht AI methods lab Team lead of health data science group Head of Julius Center’s methods program E-mail: M.vanSmeden@umcutrecht.nl
  • 107. Kopenhagen, 22 Aug 2024 @MaartenvSmeden