SlideShare a Scribd company logo
SERC	
  M&S:	
  Examples
(Screening,	
  Enrollment,	
  Randomization,	
  Completion	
  
Modeling	
  &	
  Simulation)
Dennis	
  Sweitzer,	
  Ph.D.
April	
  2016
Application	
  Scopes
A	
  priori	
  Assumptions	
  ⟶ Simulate⟶ Expected	
  Outcomes,	
  Thresholds
(	
  e.g.,	
  planned	
  timeline,	
  resources,	
  and	
  expected	
  variability)
Ongoing	
  study⟶ Model⟶ Simulate⟶ Projections
(	
  e.g.,	
  projected	
  timeline,	
  resources,	
  and	
  expected	
  variability	
  given	
  real	
  information)
Projections	
   v. A	
  priori	
  Assumptions	
   ⟶Validation	
  (Consistency)
(	
  e.g.,	
  are	
  projections	
  from	
  incoming	
  data	
  consistent	
  with	
  assumptions)
Projections	
  	
  v. Observations	
   ⟶Validation	
  (Reality)
(	
  e.g.,	
  do	
  projections	
  from	
  incoming	
  data	
  match	
  planning	
  expectations)	
  
Model	
  +	
  Scenarios ⟶ Simulate	
  ⟶ Alterative	
  Projections
✔
✔
✔
✔
✔
Using	
  patient	
  milestone	
  dates	
  (blinded)
(SERC	
  ≣ Screening,	
  Enrollment,	
  Randomization,	
  Discontinuation)
And/or	
  Assumptions	
  used	
  in	
  planning
Simple	
  Modeling	
  &	
  Simulation	
  can	
  be	
  used:
Modeling:	
  Survival	
  analysis	
  of	
  time	
  between	
  events
Simulation:	
  Competing	
  Events	
  model	
  using	
  survival	
  results
Examples	
  ⟹
Example:	
  Multi-­‐Segment	
  Studies
Study Flowchart
Randomized Treatment
Phase
28 to 104 weeks
Screening
&
Enrollment
Open-Label Treatment
Phase
12 to 36 weeks Active
Placebo
Inclusion/Exclusion
Criteria
Inclusion/Exclusion
Criteria
Screen
Failure
Drop
Outs
Drop
Outs
• Long	
  term	
  randomized	
  withdrawal	
  maintenance	
  studies	
  (AstraZeneca)
• Open	
  Label	
  Stabilization	
  (3-­‐9mo)	
  +	
  Follow	
  to	
  Relapse	
  (1-­‐2yr)
• Standard	
  design,	
  but	
  not	
  in	
  Schizophrenia,	
  bipolar,	
  &	
  other	
  mood
– ⟶ Uncertain	
  dropout,	
  relapse,	
  	
  &	
  response	
  rates
• Risks	
  of	
  enrolling
– Too	
  few	
  (subjects	
  dropout	
  before	
  relapse)⟶ Failed	
  Study
– Too	
  many	
  (subjects	
  in	
  Open	
  Label	
  at	
  last	
  relapse)⟶ Costs,	
  Ethics
Competing	
  Events	
  Model
1. Best	
  guess	
  for	
  initial	
  planning
2. As	
  study	
  was	
  running,	
  every	
  month:
• Update	
  Statistical	
  Model	
  using	
  patient	
  status	
  data
• Simulate	
  remainder	
  of	
  study	
  from	
  model
3. Summarize	
  Simulations	
  to:
• Predict	
  milestones	
  (timelines,	
  resources)
• Test	
  scenarios	
  (of	
  changes	
  in	
  plans)
• Validate	
  study	
  assumptions	
  &	
  detect	
  deviations	
  
Enroll OL Pts
OL
Dropouts
Relapse
Rand’d
Patients
Rand’d
Dropouts
M&S	
  ProjectionTrial B, Dates of 200th Event Predicted on 29 Oct
by Enrollment Cutoff
12-Feb-06
23-May-06
31-Aug-06
9-Dec-06
19-Mar-07
27-Jun-07
5-Oct-07
13-Jan-08
22-Apr-08
31-Jul-08
10-Sep-0524-Sep-058-O
ct-0522-O
ct-055-Nov-0519-N
ov-053-Dec-05
17-D
ec-0531-D
ec-0514-Jan-0628-Jan-0611-Feb-0625-Feb-0611-M
ar-0625-M
ar-068-Apr-0622-Apr-066-M
ay-06
20-M
ay-06
Enrollment Cutoffs
Region Based Simulation Actual
Projected	
  End	
  of	
  Study,	
  IF…	
  
…	
  Enrollment	
  ends	
  on	
  this	
  date
Reduced	
  costs:	
  stop	
  enrollment	
  on	
  3	
  Dec	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Reduced	
  Risks:	
  stop	
  by	
  11	
  March
Maintenance	
  Studies	
  in	
  2005
Trial A, Predicted Dates of 200th Event
22-Feb-06
8-Mar-06
22-Mar-06
5-Apr-06
19-Apr-06
3-May-06
17-May-06
31-May-06
14-Jun-06
28-Jun-06
12-Jul-06
26-Jul-06
9-Aug-06
23-Aug-06
6-Sep-06
20-Sep-06
4-Oct-06
9-O
ct-05
23-O
ct-05
6-N
ov-05
20-N
ov-05
4-D
ec-05
18-D
ec-05
1-Jan-06
15-Jan-06
29-Jan-06
12-Feb-06
26-Feb-06
12-M
ar-06
26-M
ar-06
9-Apr-06
23-Apr-06
Date of Prediction (Oct 1 Enrollment Cutoff)
PredictedDateof200thEvent
Region Based Model (Median) Trial Based Actual
Stop	
  enrolling Stop	
  Randomizing
Wait as	
  Patients	
  
Relapse	
  or	
  
Drop	
  out
Another	
  Case	
  Study
Management	
  feedback:
“…  the  simulations  are  very  valuable  and  the  only  
way  we  have  to  plan  our  timelines.  As  it  has  
turned  out,  your  simulations  seems  to  be  pretty  
accurate  ...”
...    We would have been guessing and  spinning  
our wheels without them.”
Date # Randomized Relapses	
  /	
  Dropouts Prediction:
101st Relapse
3 Aug’06 73 3	
  /	
  2 1	
  Dec …	
  15	
  June
6	
  Sep’06 182 16 /	
  7 12	
  Nov	
  …	
  21	
  Feb
2	
  Oct’06	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Stopped	
  Enrolling	
  Patients	
  	
  	
  	
  (NB:	
  3-­‐4	
  month	
  open	
  label)	
  
Dec‘06	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Stopped	
  Randomizing	
  Patients	
  (All	
  eligible	
  or	
  discontinued)
1	
  Jan’07	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  101st Relapse	
  Event
Examples
Validation: Protocols A&B assumed: (50% randomized, 30% Relapse) rate
Models estimated: Trial A: (33%, 37%) Trial B: (55%, 41%)
Early	
  Issue	
  Identification	
  	
  	
  	
  	
  	
  	
  ⟶ Quick	
  Corrections
Scenario:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   ¿Add Sites to compensate for low enrollment?
• Run	
  simulation	
  with	
  additional	
  sites
• Compare	
  between	
  simulations
Scenario:	
   EMEA	
  requested	
  secondary	
  endpoint	
  of	
  Late	
  Relapses	
  (>4wk	
  off	
  Tx),	
  Trial	
  
A	
  had	
  stopped	
  enrolling.	
  Should	
  Trial	
  A	
  be	
  reopened?	
  Should	
  Trial	
  B	
  be	
  extended?
• Build	
  new	
  endpoint	
  into	
  simulations
• Report
More	
  
A	
  presentation	
  I	
  gave	
  at	
  JSM	
  2006	
  on	
  the	
  method,	
  with	
  a	
  proceedings	
  paper.	
  
https://sites.google.com/site/dennissweitzer/home/modeling-­‐multiphase-­‐clinical-­‐trials-­‐time-­‐to-­‐completion-­‐
study-­‐management
Simple	
  simulation	
  methods	
  using	
  Excel.	
  I’ve	
  long	
  used	
  Excel	
  simulations	
  to	
  aid	
  in	
  
planning	
  clinical	
  trials	
  (for	
  quick	
  &	
  transparent	
  models),	
  although	
  methods	
  for	
  doing	
  
so	
  are	
  not	
  well	
  publicized.	
  Here’s	
  a	
  presentation	
  of	
  how-­‐to:
https://sites.google.com/site/dennissweitzer/home/quick-­‐simple-­‐simulation-­‐using-­‐ms-­‐excel

More Related Content

PPT
ABB Paperless Event Concept 1.0
PDF
Senior Graphic Designer Resume - Mohamed Marwen Jlassi
PDF
Simulation (AMSI Public Lecture)
PPT
Simulation & Modeling - Smilulation Queuing System
PDF
Module 4 - Logical Operations
PDF
Module 5 - Utilities
PPTX
PDF
Hysys simulation
ABB Paperless Event Concept 1.0
Senior Graphic Designer Resume - Mohamed Marwen Jlassi
Simulation (AMSI Public Lecture)
Simulation & Modeling - Smilulation Queuing System
Module 4 - Logical Operations
Module 5 - Utilities
Hysys simulation

Viewers also liked (16)

PPT
Simulation and Modeling
PPTX
Modelling and simulation
PPTX
Dynamic and Static Modeling
PPTX
Queueing Theory and its BusinessS Applications
DOCX
Queuing theory
PPT
Simulation Techniques
PPT
Introduction to Simulation
PPT
Chp. 2 simulation examples
PPTX
CELLULAR COMMUNICATION SYSTEM
PDF
Eclipse 100 - Petroleum reservoir simulation course
PDF
System simulation & modeling notes[sjbit]
XLSX
PráCtica7
PPTX
Economia De L Empresa Tema 2
XLSX
Práctica7
ODT
Guia de recursos 11 12 orientadores
 
PPT
Tema memòria pwp
 
Simulation and Modeling
Modelling and simulation
Dynamic and Static Modeling
Queueing Theory and its BusinessS Applications
Queuing theory
Simulation Techniques
Introduction to Simulation
Chp. 2 simulation examples
CELLULAR COMMUNICATION SYSTEM
Eclipse 100 - Petroleum reservoir simulation course
System simulation & modeling notes[sjbit]
PráCtica7
Economia De L Empresa Tema 2
Práctica7
Guia de recursos 11 12 orientadores
 
Tema memòria pwp
 
Ad

Similar to Clinical Study Modeling & Simulation (20)

PPTX
Clogged Arteries: Discrete Event Simulation Reduces Holds for Telemetry Beds
PDF
Chapter 5 - Managing Test Activities V4.0
PPTX
Module 3
PDF
2012-05-30 EUGM | GAYDOS | Design & Analysis Approaches to Evaluate Cardiovas...
PDF
Eugm 2012 gaydos - design and analysis approaches to evaluate cardiovascula...
PDF
D1 design and analysis approaches to evaluate cardiovascular risk - 2012 eugm
PPTX
iSTQB Chap 5 Managing the Test Activities
PPT
Qualitative and Quantitative Research Plans By Malik Muhammad Mehran
PPTX
Design of Experiments
DOCX
Qm0021 statistical process control
PPT
Change Point Analysis
PPT
Monte Carlo Schedule Risk Analysis
PPTX
Presentation of Project and Critique.pptx
PDF
Andrii Belas: A/B testing overview: use-cases, theory and tools
PPTX
Statistical Learning and Model Selection (1).pptx
PDF
Colloque IMT - 15/10/2019 - Healthcare 4.0 – « Pilotage intelligent du servic...
PPTX
Uncertainty Quantification in Complex Physical Systems. (An Inroduction)
PPTX
UCD WST February 20 2020
PDF
Lecture1.pdf
PDF
Overview of statistical tests: Data handling and data quality (Part II)
Clogged Arteries: Discrete Event Simulation Reduces Holds for Telemetry Beds
Chapter 5 - Managing Test Activities V4.0
Module 3
2012-05-30 EUGM | GAYDOS | Design & Analysis Approaches to Evaluate Cardiovas...
Eugm 2012 gaydos - design and analysis approaches to evaluate cardiovascula...
D1 design and analysis approaches to evaluate cardiovascular risk - 2012 eugm
iSTQB Chap 5 Managing the Test Activities
Qualitative and Quantitative Research Plans By Malik Muhammad Mehran
Design of Experiments
Qm0021 statistical process control
Change Point Analysis
Monte Carlo Schedule Risk Analysis
Presentation of Project and Critique.pptx
Andrii Belas: A/B testing overview: use-cases, theory and tools
Statistical Learning and Model Selection (1).pptx
Colloque IMT - 15/10/2019 - Healthcare 4.0 – « Pilotage intelligent du servic...
Uncertainty Quantification in Complex Physical Systems. (An Inroduction)
UCD WST February 20 2020
Lecture1.pdf
Overview of statistical tests: Data handling and data quality (Part II)
Ad

More from Dennis Sweitzer (12)

PPSX
TolstoyTarget,AnimatedExpl,v5
PDF
DSweitzer,SERC,StudySimulations,2016jul
PDF
2013jsm,Proceedings,DSweitzer,26sep
PDF
JSM2013,Proceedings,paper307699_79238,DSweitzer
PDF
Jsm2013,598,sweitzer,randomization metrics,v2,aug08
PDF
Sct2013 boston,randomizationmetricsposter,d6.2
PDF
Randomization: Too Important to Gamble with.
PDF
Election Polling & Forecasting 2004
PDF
Splatter Plots2,Sweitzer,2011dec13
PDF
Sim Slides,Tricks,Trends,2012jan15
PDF
Sweitzer,Simulating Multi Phase Studies
DOC
Jsm Proceedings Sweitzer Trial Term Model V7
TolstoyTarget,AnimatedExpl,v5
DSweitzer,SERC,StudySimulations,2016jul
2013jsm,Proceedings,DSweitzer,26sep
JSM2013,Proceedings,paper307699_79238,DSweitzer
Jsm2013,598,sweitzer,randomization metrics,v2,aug08
Sct2013 boston,randomizationmetricsposter,d6.2
Randomization: Too Important to Gamble with.
Election Polling & Forecasting 2004
Splatter Plots2,Sweitzer,2011dec13
Sim Slides,Tricks,Trends,2012jan15
Sweitzer,Simulating Multi Phase Studies
Jsm Proceedings Sweitzer Trial Term Model V7

Recently uploaded (20)

PPTX
Note on Abortion.pptx for the student note
PPTX
Transforming Regulatory Affairs with ChatGPT-5.pptx
PDF
NEET PG 2025 | 200 High-Yield Recall Topics Across All Subjects
PPT
Obstructive sleep apnea in orthodontics treatment
DOC
Adobe Premiere Pro CC Crack With Serial Key Full Free Download 2025
PPTX
JUVENILE NASOPHARYNGEAL ANGIOFIBROMA.pptx
PPTX
CME 2 Acute Chest Pain preentation for education
PPTX
POLYCYSTIC OVARIAN SYNDROME.pptx by Dr( med) Charles Amoateng
PPT
OPIOID ANALGESICS AND THEIR IMPLICATIONS
PPTX
Stimulation Protocols for IUI | Dr. Laxmi Shrikhande
PPTX
anal canal anatomy with illustrations...
PPTX
neonatal infection(7392992y282939y5.pptx
PDF
Therapeutic Potential of Citrus Flavonoids in Metabolic Inflammation and Ins...
PPT
Management of Acute Kidney Injury at LAUTECH
PPTX
surgery guide for USMLE step 2-part 1.pptx
PPTX
post stroke aphasia rehabilitation physician
PPT
Breast Cancer management for medicsl student.ppt
PPTX
NEET PG 2025 Pharmacology Recall | Real Exam Questions from 3rd August with D...
PPTX
15.MENINGITIS AND ENCEPHALITIS-elias.pptx
PPTX
ACID BASE management, base deficit correction
Note on Abortion.pptx for the student note
Transforming Regulatory Affairs with ChatGPT-5.pptx
NEET PG 2025 | 200 High-Yield Recall Topics Across All Subjects
Obstructive sleep apnea in orthodontics treatment
Adobe Premiere Pro CC Crack With Serial Key Full Free Download 2025
JUVENILE NASOPHARYNGEAL ANGIOFIBROMA.pptx
CME 2 Acute Chest Pain preentation for education
POLYCYSTIC OVARIAN SYNDROME.pptx by Dr( med) Charles Amoateng
OPIOID ANALGESICS AND THEIR IMPLICATIONS
Stimulation Protocols for IUI | Dr. Laxmi Shrikhande
anal canal anatomy with illustrations...
neonatal infection(7392992y282939y5.pptx
Therapeutic Potential of Citrus Flavonoids in Metabolic Inflammation and Ins...
Management of Acute Kidney Injury at LAUTECH
surgery guide for USMLE step 2-part 1.pptx
post stroke aphasia rehabilitation physician
Breast Cancer management for medicsl student.ppt
NEET PG 2025 Pharmacology Recall | Real Exam Questions from 3rd August with D...
15.MENINGITIS AND ENCEPHALITIS-elias.pptx
ACID BASE management, base deficit correction

Clinical Study Modeling & Simulation

  • 1. SERC  M&S:  Examples (Screening,  Enrollment,  Randomization,  Completion   Modeling  &  Simulation) Dennis  Sweitzer,  Ph.D. April  2016
  • 2. Application  Scopes A  priori  Assumptions  ⟶ Simulate⟶ Expected  Outcomes,  Thresholds (  e.g.,  planned  timeline,  resources,  and  expected  variability) Ongoing  study⟶ Model⟶ Simulate⟶ Projections (  e.g.,  projected  timeline,  resources,  and  expected  variability  given  real  information) Projections   v. A  priori  Assumptions   ⟶Validation  (Consistency) (  e.g.,  are  projections  from  incoming  data  consistent  with  assumptions) Projections    v. Observations   ⟶Validation  (Reality) (  e.g.,  do  projections  from  incoming  data  match  planning  expectations)   Model  +  Scenarios ⟶ Simulate  ⟶ Alterative  Projections ✔ ✔ ✔ ✔ ✔ Using  patient  milestone  dates  (blinded) (SERC  ≣ Screening,  Enrollment,  Randomization,  Discontinuation) And/or  Assumptions  used  in  planning Simple  Modeling  &  Simulation  can  be  used: Modeling:  Survival  analysis  of  time  between  events Simulation:  Competing  Events  model  using  survival  results Examples  ⟹
  • 3. Example:  Multi-­‐Segment  Studies Study Flowchart Randomized Treatment Phase 28 to 104 weeks Screening & Enrollment Open-Label Treatment Phase 12 to 36 weeks Active Placebo Inclusion/Exclusion Criteria Inclusion/Exclusion Criteria Screen Failure Drop Outs Drop Outs • Long  term  randomized  withdrawal  maintenance  studies  (AstraZeneca) • Open  Label  Stabilization  (3-­‐9mo)  +  Follow  to  Relapse  (1-­‐2yr) • Standard  design,  but  not  in  Schizophrenia,  bipolar,  &  other  mood – ⟶ Uncertain  dropout,  relapse,    &  response  rates • Risks  of  enrolling – Too  few  (subjects  dropout  before  relapse)⟶ Failed  Study – Too  many  (subjects  in  Open  Label  at  last  relapse)⟶ Costs,  Ethics
  • 4. Competing  Events  Model 1. Best  guess  for  initial  planning 2. As  study  was  running,  every  month: • Update  Statistical  Model  using  patient  status  data • Simulate  remainder  of  study  from  model 3. Summarize  Simulations  to: • Predict  milestones  (timelines,  resources) • Test  scenarios  (of  changes  in  plans) • Validate  study  assumptions  &  detect  deviations   Enroll OL Pts OL Dropouts Relapse Rand’d Patients Rand’d Dropouts
  • 5. M&S  ProjectionTrial B, Dates of 200th Event Predicted on 29 Oct by Enrollment Cutoff 12-Feb-06 23-May-06 31-Aug-06 9-Dec-06 19-Mar-07 27-Jun-07 5-Oct-07 13-Jan-08 22-Apr-08 31-Jul-08 10-Sep-0524-Sep-058-O ct-0522-O ct-055-Nov-0519-N ov-053-Dec-05 17-D ec-0531-D ec-0514-Jan-0628-Jan-0611-Feb-0625-Feb-0611-M ar-0625-M ar-068-Apr-0622-Apr-066-M ay-06 20-M ay-06 Enrollment Cutoffs Region Based Simulation Actual Projected  End  of  Study,  IF…   …  Enrollment  ends  on  this  date Reduced  costs:  stop  enrollment  on  3  Dec                    Reduced  Risks:  stop  by  11  March
  • 6. Maintenance  Studies  in  2005 Trial A, Predicted Dates of 200th Event 22-Feb-06 8-Mar-06 22-Mar-06 5-Apr-06 19-Apr-06 3-May-06 17-May-06 31-May-06 14-Jun-06 28-Jun-06 12-Jul-06 26-Jul-06 9-Aug-06 23-Aug-06 6-Sep-06 20-Sep-06 4-Oct-06 9-O ct-05 23-O ct-05 6-N ov-05 20-N ov-05 4-D ec-05 18-D ec-05 1-Jan-06 15-Jan-06 29-Jan-06 12-Feb-06 26-Feb-06 12-M ar-06 26-M ar-06 9-Apr-06 23-Apr-06 Date of Prediction (Oct 1 Enrollment Cutoff) PredictedDateof200thEvent Region Based Model (Median) Trial Based Actual Stop  enrolling Stop  Randomizing Wait as  Patients   Relapse  or   Drop  out
  • 7. Another  Case  Study Management  feedback: “…  the  simulations  are  very  valuable  and  the  only   way  we  have  to  plan  our  timelines.  As  it  has   turned  out,  your  simulations  seems  to  be  pretty   accurate  ...” ...    We would have been guessing and  spinning   our wheels without them.” Date # Randomized Relapses  /  Dropouts Prediction: 101st Relapse 3 Aug’06 73 3  /  2 1  Dec …  15  June 6  Sep’06 182 16 /  7 12  Nov  …  21  Feb 2  Oct’06                                            Stopped  Enrolling  Patients        (NB:  3-­‐4  month  open  label)   Dec‘06                                                  Stopped  Randomizing  Patients  (All  eligible  or  discontinued) 1  Jan’07                                                                            101st Relapse  Event
  • 8. Examples Validation: Protocols A&B assumed: (50% randomized, 30% Relapse) rate Models estimated: Trial A: (33%, 37%) Trial B: (55%, 41%) Early  Issue  Identification              ⟶ Quick  Corrections Scenario:                                       ¿Add Sites to compensate for low enrollment? • Run  simulation  with  additional  sites • Compare  between  simulations Scenario:   EMEA  requested  secondary  endpoint  of  Late  Relapses  (>4wk  off  Tx),  Trial   A  had  stopped  enrolling.  Should  Trial  A  be  reopened?  Should  Trial  B  be  extended? • Build  new  endpoint  into  simulations • Report
  • 9. More   A  presentation  I  gave  at  JSM  2006  on  the  method,  with  a  proceedings  paper.   https://sites.google.com/site/dennissweitzer/home/modeling-­‐multiphase-­‐clinical-­‐trials-­‐time-­‐to-­‐completion-­‐ study-­‐management Simple  simulation  methods  using  Excel.  I’ve  long  used  Excel  simulations  to  aid  in   planning  clinical  trials  (for  quick  &  transparent  models),  although  methods  for  doing   so  are  not  well  publicized.  Here’s  a  presentation  of  how-­‐to: https://sites.google.com/site/dennissweitzer/home/quick-­‐simple-­‐simulation-­‐using-­‐ms-­‐excel