SlideShare a Scribd company logo
SERC	
  M&S:	
  Examples
(Screening,	
  Enrollment,	
  Randomization,	
  Completion	
  
Modeling	
  &	
  Simulation)
Dennis	
  Sweitzer,	
  Ph.D.
April	
  2016
Application	
  Scopes
A	
  priori	
  Assumptions	
  ⟶ Simulate⟶ Expected	
  Outcomes,	
  Thresholds
(	
  e.g.,	
  planned	
  timeline,	
  resources,	
  and	
  expected	
  variability)
Ongoing	
  study⟶ Model⟶ Simulate⟶ Projections
(	
  e.g.,	
  projected	
  timeline,	
  resources,	
  and	
  expected	
  variability	
  given	
  real	
  information)
Projections	
   v. A	
  priori	
  Assumptions	
   ⟶Validation	
  (Consistency)
(	
  e.g.,	
  are	
  projections	
  from	
  incoming	
  data	
  consistent	
  with	
  assumptions)
Projections	
  	
  v. Observations	
   ⟶Validation	
  (Reality)
(	
  e.g.,	
  do	
  projections	
  from	
  incoming	
  data	
  match	
  planning	
  expectations)	
  
Model	
  +	
  Scenarios ⟶ Simulate	
  ⟶ Alterative	
  Projections
✔
✔
✔
✔
✔
Using	
  patient	
  milestone	
  dates	
  (blinded)
(SERC	
  ≣ Screening,	
  Enrollment,	
  Randomization,	
  Discontinuation)
And/or	
  Assumptions	
  used	
  in	
  planning
Simple	
  Modeling	
  &	
  Simulation	
  can	
  be	
  used:
Modeling:	
  Survival	
  analysis	
  of	
  time	
  between	
  events
Simulation:	
  Competing	
  Events	
  model	
  using	
  survival	
  results
Examples	
  ⟹
Example:	
  Multi-­‐Segment	
  Studies
Study Flowchart
Randomized Treatment
Phase
28 to 104 weeks
Screening
&
Enrollment
Open-Label Treatment
Phase
12 to 36 weeks Active
Placebo
Inclusion/Exclusion
Criteria
Inclusion/Exclusion
Criteria
Screen
Failure
Drop
Outs
Drop
Outs
• Long	
  term	
  randomized	
  withdrawal	
  maintenance	
  studies	
  (AstraZeneca)
• Open	
  Label	
  Stabilization	
  (3-­‐9mo)	
  +	
  Follow	
  to	
  Relapse	
  (1-­‐2yr)
• Standard	
  design,	
  but	
  not	
  in	
  Schizophrenia,	
  bipolar,	
  &	
  other	
  mood
– ⟶ Uncertain	
  dropout,	
  relapse,	
  	
  &	
  response	
  rates
• Risks	
  of	
  enrolling
– Too	
  few	
  (subjects	
  dropout	
  before	
  relapse)⟶ Failed	
  Study
– Too	
  many	
  (subjects	
  in	
  Open	
  Label	
  at	
  last	
  relapse)⟶ Costs,	
  Ethics
Competing	
  Events	
  Model
1. Best	
  guess	
  for	
  initial	
  planning
2. As	
  study	
  was	
  running,	
  every	
  month:
• Update	
  Statistical	
  Model	
  using	
  patient	
  status	
  data
• Simulate	
  remainder	
  of	
  study	
  from	
  model
3. Summarize	
  Simulations	
  to:
• Predict	
  milestones	
  (timelines,	
  resources)
• Test	
  scenarios	
  (of	
  changes	
  in	
  plans)
• Validate	
  study	
  assumptions	
  &	
  detect	
  deviations	
  
Enroll OL Pts
OL
Dropouts
Relapse
Rand’d
Patients
Rand’d
Dropouts
M&S	
  ProjectionTrial B, Dates of 200th Event Predicted on 29 Oct
by Enrollment Cutoff
12-Feb-06
23-May-06
31-Aug-06
9-Dec-06
19-Mar-07
27-Jun-07
5-Oct-07
13-Jan-08
22-Apr-08
31-Jul-08
10-Sep-0524-Sep-058-O
ct-0522-O
ct-055-Nov-0519-N
ov-053-Dec-05
17-D
ec-0531-D
ec-0514-Jan-0628-Jan-0611-Feb-0625-Feb-0611-M
ar-0625-M
ar-068-Apr-0622-Apr-066-M
ay-06
20-M
ay-06
Enrollment Cutoffs
Region Based Simulation Actual
Projected	
  End	
  of	
  Study,	
  IF…	
  
…	
  Enrollment	
  ends	
  on	
  this	
  date
Reduced	
  costs:	
  stop	
  enrollment	
  on	
  3	
  Dec	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Reduced	
  Risks:	
  stop	
  by	
  11	
  March
Maintenance	
  Studies	
  in	
  2005
Trial A, Predicted Dates of 200th Event
22-Feb-06
8-Mar-06
22-Mar-06
5-Apr-06
19-Apr-06
3-May-06
17-May-06
31-May-06
14-Jun-06
28-Jun-06
12-Jul-06
26-Jul-06
9-Aug-06
23-Aug-06
6-Sep-06
20-Sep-06
4-Oct-06
9-O
ct-05
23-O
ct-05
6-N
ov-05
20-N
ov-05
4-D
ec-05
18-D
ec-05
1-Jan-06
15-Jan-06
29-Jan-06
12-Feb-06
26-Feb-06
12-M
ar-06
26-M
ar-06
9-Apr-06
23-Apr-06
Date of Prediction (Oct 1 Enrollment Cutoff)
PredictedDateof200thEvent
Region Based Model (Median) Trial Based Actual
Stop	
  enrolling Stop	
  Randomizing
Wait as	
  Patients	
  
Relapse	
  or	
  
Drop	
  out
Another	
  Case	
  Study
Management	
  feedback:
“…  the  simulations  are  very  valuable  and  the  only  
way  we  have  to  plan  our  timelines.  As  it  has  
turned  out,  your  simulations  seems  to  be  pretty  
accurate  ...”
...    We would have been guessing and  spinning  
our wheels without them.”
Date # Randomized Relapses	
  /	
  Dropouts Prediction:
101st Relapse
3 Aug’06 73 3	
  /	
  2 1	
  Dec …	
  15	
  June
6	
  Sep’06 182 16 /	
  7 12	
  Nov	
  …	
  21	
  Feb
2	
  Oct’06	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Stopped	
  Enrolling	
  Patients	
  	
  	
  	
  (NB:	
  3-­‐4	
  month	
  open	
  label)	
  
Dec‘06	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Stopped	
  Randomizing	
  Patients	
  (All	
  eligible	
  or	
  discontinued)
1	
  Jan’07	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  101st Relapse	
  Event
Examples
Validation: Protocols A&B assumed: (50% randomized, 30% Relapse) rate
Models estimated: Trial A: (33%, 37%) Trial B: (55%, 41%)
Early	
  Issue	
  Identification	
  	
  	
  	
  	
  	
  	
  ⟶ Quick	
  Corrections
Scenario:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   ¿Add Sites to compensate for low enrollment?
• Run	
  simulation	
  with	
  additional	
  sites
• Compare	
  between	
  simulations
Scenario:	
   EMEA	
  requested	
  secondary	
  endpoint	
  of	
  Late	
  Relapses	
  (>4wk	
  off	
  Tx),	
  Trial	
  
A	
  had	
  stopped	
  enrolling.	
  Should	
  Trial	
  A	
  be	
  reopened?	
  Should	
  Trial	
  B	
  be	
  extended?
• Build	
  new	
  endpoint	
  into	
  simulations
• Report
More	
  
A	
  presentation	
  I	
  gave	
  at	
  JSM	
  2006	
  on	
  the	
  method,	
  with	
  a	
  proceedings	
  paper.	
  
https://sites.google.com/site/dennissweitzer/home/modeling-­‐multiphase-­‐clinical-­‐trials-­‐time-­‐to-­‐completion-­‐
study-­‐management
Simple	
  simulation	
  methods	
  using	
  Excel.	
  I’ve	
  long	
  used	
  Excel	
  simulations	
  to	
  aid	
  in	
  
planning	
  clinical	
  trials	
  (for	
  quick	
  &	
  transparent	
  models),	
  although	
  methods	
  for	
  doing	
  
so	
  are	
  not	
  well	
  publicized.	
  Here’s	
  a	
  presentation	
  of	
  how-­‐to:
https://sites.google.com/site/dennissweitzer/home/quick-­‐simple-­‐simulation-­‐using-­‐ms-­‐excel

More Related Content

PDF
Clinical Study Modeling & Simulation
PDF
Sweitzer,Simulating Multi Phase Studies
PPT
The Elusive Promise of Neuroprotection - What have we learned, Where do we go...
PDF
Data Con LA 2019 - Best Practices for Prototyping Machine Learning Models for...
PPTX
Optimizing start up activities to decrease your study timeline - Part 1
PPTX
SCOPE Site Selection Presentationsss.pptx
PDF
Using Tokenization and Random Forest Models to Predict Pandemic Trial Outcomes
PDF
Prof. Dr. Hamdi Akan, 6th Clinical Research Conference
Clinical Study Modeling & Simulation
Sweitzer,Simulating Multi Phase Studies
The Elusive Promise of Neuroprotection - What have we learned, Where do we go...
Data Con LA 2019 - Best Practices for Prototyping Machine Learning Models for...
Optimizing start up activities to decrease your study timeline - Part 1
SCOPE Site Selection Presentationsss.pptx
Using Tokenization and Random Forest Models to Predict Pandemic Trial Outcomes
Prof. Dr. Hamdi Akan, 6th Clinical Research Conference

Similar to DSweitzer,SERC,StudySimulations,2016jul (20)

PDF
Eugm 2011 pocock - dm cs-and-adaptive-trials
PPTX
2020 trends in biostatistics what you should know about study design - slid...
PDF
Data Analytics for Real-World Business Problems
PDF
Patients Recruitment Forecast in Clinical Trials
PPTX
Innovative Strategies For Successful Trial Design - Webinar Slides
PDF
Prognosis-based medicine: merits and pitfalls of forecasting patient health
PDF
Projecting ‘time to event’ outcomes in technology assessment: an alternative ...
PDF
Joseph Levy MedicReS World Congress 2013 - 1
PPTX
Decision Support System to Evaluate Patient Readmission Risk
PDF
MedicReS Winter School 2017 Vienna - Advanced Clinical Practice in Oncology -...
PDF
hcm4-a-kolker
PDF
Observational Studies in a Learning Health System
PPTX
ISCB 2023 Sources of uncertainty b.pptx
PDF
Clinical prediction modeling in the era of AI: a blessing and a curse
PPTX
Data mining for diabetes readmission final
PPTX
APPRAISING EVIDENCE ABOUT PROGNOSTIC (RISK) FACTORS.pptx
PDF
Tips-Tricks-Clinical-Trial-Endpoints.pdf
PDF
Associate professor lecture
PDF
Development and evaluation of prediction models: pitfalls and solutions
PDF
Clinical prediction models
Eugm 2011 pocock - dm cs-and-adaptive-trials
2020 trends in biostatistics what you should know about study design - slid...
Data Analytics for Real-World Business Problems
Patients Recruitment Forecast in Clinical Trials
Innovative Strategies For Successful Trial Design - Webinar Slides
Prognosis-based medicine: merits and pitfalls of forecasting patient health
Projecting ‘time to event’ outcomes in technology assessment: an alternative ...
Joseph Levy MedicReS World Congress 2013 - 1
Decision Support System to Evaluate Patient Readmission Risk
MedicReS Winter School 2017 Vienna - Advanced Clinical Practice in Oncology -...
hcm4-a-kolker
Observational Studies in a Learning Health System
ISCB 2023 Sources of uncertainty b.pptx
Clinical prediction modeling in the era of AI: a blessing and a curse
Data mining for diabetes readmission final
APPRAISING EVIDENCE ABOUT PROGNOSTIC (RISK) FACTORS.pptx
Tips-Tricks-Clinical-Trial-Endpoints.pdf
Associate professor lecture
Development and evaluation of prediction models: pitfalls and solutions
Clinical prediction models
Ad

More from Dennis Sweitzer (10)

PPSX
TolstoyTarget,AnimatedExpl,v5
PDF
2013jsm,Proceedings,DSweitzer,26sep
PDF
JSM2013,Proceedings,paper307699_79238,DSweitzer
PDF
Jsm2013,598,sweitzer,randomization metrics,v2,aug08
PDF
Sct2013 boston,randomizationmetricsposter,d6.2
PDF
Randomization: Too Important to Gamble with.
PDF
Election Polling & Forecasting 2004
PDF
Splatter Plots2,Sweitzer,2011dec13
PDF
Sim Slides,Tricks,Trends,2012jan15
DOC
Jsm Proceedings Sweitzer Trial Term Model V7
TolstoyTarget,AnimatedExpl,v5
2013jsm,Proceedings,DSweitzer,26sep
JSM2013,Proceedings,paper307699_79238,DSweitzer
Jsm2013,598,sweitzer,randomization metrics,v2,aug08
Sct2013 boston,randomizationmetricsposter,d6.2
Randomization: Too Important to Gamble with.
Election Polling & Forecasting 2004
Splatter Plots2,Sweitzer,2011dec13
Sim Slides,Tricks,Trends,2012jan15
Jsm Proceedings Sweitzer Trial Term Model V7
Ad

DSweitzer,SERC,StudySimulations,2016jul

  • 1. SERC  M&S:  Examples (Screening,  Enrollment,  Randomization,  Completion   Modeling  &  Simulation) Dennis  Sweitzer,  Ph.D. April  2016
  • 2. Application  Scopes A  priori  Assumptions  ⟶ Simulate⟶ Expected  Outcomes,  Thresholds (  e.g.,  planned  timeline,  resources,  and  expected  variability) Ongoing  study⟶ Model⟶ Simulate⟶ Projections (  e.g.,  projected  timeline,  resources,  and  expected  variability  given  real  information) Projections   v. A  priori  Assumptions   ⟶Validation  (Consistency) (  e.g.,  are  projections  from  incoming  data  consistent  with  assumptions) Projections    v. Observations   ⟶Validation  (Reality) (  e.g.,  do  projections  from  incoming  data  match  planning  expectations)   Model  +  Scenarios ⟶ Simulate  ⟶ Alterative  Projections ✔ ✔ ✔ ✔ ✔ Using  patient  milestone  dates  (blinded) (SERC  ≣ Screening,  Enrollment,  Randomization,  Discontinuation) And/or  Assumptions  used  in  planning Simple  Modeling  &  Simulation  can  be  used: Modeling:  Survival  analysis  of  time  between  events Simulation:  Competing  Events  model  using  survival  results Examples  ⟹
  • 3. Example:  Multi-­‐Segment  Studies Study Flowchart Randomized Treatment Phase 28 to 104 weeks Screening & Enrollment Open-Label Treatment Phase 12 to 36 weeks Active Placebo Inclusion/Exclusion Criteria Inclusion/Exclusion Criteria Screen Failure Drop Outs Drop Outs • Long  term  randomized  withdrawal  maintenance  studies  (AstraZeneca) • Open  Label  Stabilization  (3-­‐9mo)  +  Follow  to  Relapse  (1-­‐2yr) • Standard  design,  but  not  in  Schizophrenia,  bipolar,  &  other  mood – ⟶ Uncertain  dropout,  relapse,    &  response  rates • Risks  of  enrolling – Too  few  (subjects  dropout  before  relapse)⟶ Failed  Study – Too  many  (subjects  in  Open  Label  at  last  relapse)⟶ Costs,  Ethics
  • 4. Competing  Events  Model 1. Best  guess  for  initial  planning 2. As  study  was  running,  every  month: • Update  Statistical  Model  using  patient  status  data • Simulate  remainder  of  study  from  model 3. Summarize  Simulations  to: • Predict  milestones  (timelines,  resources) • Test  scenarios  (of  changes  in  plans) • Validate  study  assumptions  &  detect  deviations   Enroll OL Pts OL Dropouts Relapse Rand’d Patients Rand’d Dropouts
  • 5. M&S  ProjectionTrial B, Dates of 200th Event Predicted on 29 Oct by Enrollment Cutoff 12-Feb-06 23-May-06 31-Aug-06 9-Dec-06 19-Mar-07 27-Jun-07 5-Oct-07 13-Jan-08 22-Apr-08 31-Jul-08 10-Sep-0524-Sep-058-O ct-0522-O ct-055-Nov-0519-N ov-053-Dec-05 17-D ec-0531-D ec-0514-Jan-0628-Jan-0611-Feb-0625-Feb-0611-M ar-0625-M ar-068-Apr-0622-Apr-066-M ay-06 20-M ay-06 Enrollment Cutoffs Region Based Simulation Actual Projected  End  of  Study,  IF…   …  Enrollment  ends  on  this  date Reduced  costs:  stop  enrollment  on  3  Dec                    Reduced  Risks:  stop  by  11  March
  • 6. Maintenance  Studies  in  2005 Trial A, Predicted Dates of 200th Event 22-Feb-06 8-Mar-06 22-Mar-06 5-Apr-06 19-Apr-06 3-May-06 17-May-06 31-May-06 14-Jun-06 28-Jun-06 12-Jul-06 26-Jul-06 9-Aug-06 23-Aug-06 6-Sep-06 20-Sep-06 4-Oct-06 9-O ct-05 23-O ct-05 6-N ov-05 20-N ov-05 4-D ec-05 18-D ec-05 1-Jan-06 15-Jan-06 29-Jan-06 12-Feb-06 26-Feb-06 12-M ar-06 26-M ar-06 9-Apr-06 23-Apr-06 Date of Prediction (Oct 1 Enrollment Cutoff) PredictedDateof200thEvent Region Based Model (Median) Trial Based Actual Stop  enrolling Stop  Randomizing Wait as  Patients   Relapse  or   Drop  out
  • 7. Another  Case  Study Management  feedback: “…  the  simulations  are  very  valuable  and  the  only   way  we  have  to  plan  our  timelines.  As  it  has   turned  out,  your  simulations  seems  to  be  pretty   accurate  ...” ...    We would have been guessing and  spinning   our wheels without them.” Date # Randomized Relapses  /  Dropouts Prediction: 101st Relapse 3 Aug’06 73 3  /  2 1  Dec …  15  June 6  Sep’06 182 16 /  7 12  Nov  …  21  Feb 2  Oct’06                                            Stopped  Enrolling  Patients        (NB:  3-­‐4  month  open  label)   Dec‘06                                                  Stopped  Randomizing  Patients  (All  eligible  or  discontinued) 1  Jan’07                                                                            101st Relapse  Event
  • 8. Examples Validation: Protocols A&B assumed: (50% randomized, 30% Relapse) rate Models estimated: Trial A: (33%, 37%) Trial B: (55%, 41%) Early  Issue  Identification              ⟶ Quick  Corrections Scenario:                                       ¿Add Sites to compensate for low enrollment? • Run  simulation  with  additional  sites • Compare  between  simulations Scenario:   EMEA  requested  secondary  endpoint  of  Late  Relapses  (>4wk  off  Tx),  Trial   A  had  stopped  enrolling.  Should  Trial  A  be  reopened?  Should  Trial  B  be  extended? • Build  new  endpoint  into  simulations • Report
  • 9. More   A  presentation  I  gave  at  JSM  2006  on  the  method,  with  a  proceedings  paper.   https://sites.google.com/site/dennissweitzer/home/modeling-­‐multiphase-­‐clinical-­‐trials-­‐time-­‐to-­‐completion-­‐ study-­‐management Simple  simulation  methods  using  Excel.  I’ve  long  used  Excel  simulations  to  aid  in   planning  clinical  trials  (for  quick  &  transparent  models),  although  methods  for  doing   so  are  not  well  publicized.  Here’s  a  presentation  of  how-­‐to: https://sites.google.com/site/dennissweitzer/home/quick-­‐simple-­‐simulation-­‐using-­‐ms-­‐excel