SlideShare a Scribd company logo
INF5350 – CMOS image sensor design
Lecture 5 – Noise and modelling S/N
15-September-2020
Agenda
• Check project status
• Takeaways from previous lecture&exercises
• Noise and S/N in CMOS image sensors
14.09.2020 IN5350 2
Project schedule
Task/milestone Start Finish
Chose topic/scope 1-Sep 8-Sep
Create project plan (tasks, milestones, schedule) 8-Sep 15-Sep
MS1 – project plan approved by Johannes 15-Sep 22-Sep
Study literature on the topic (include summary in report) 22-Sep 29-Sep
Design implementation&simulation 29-Sep 13-Oct
Write up prelim report (inc references, design, results) 13-Oct 20-Oct
MS2 – submit preliminary report to Johannes 20-Oct 20-Oct
Design/simulation (fine tuning) 20-Oct 27-Oct
Write up final report (incl references, design, results) 27-Oct 3-Nov
MS3 – Presentation and discussion 3-Nov 3-Nov
MS4 – submit final report to Johannes 10-Nov 10-Nov
Exam 18-Nov
✅
14.09.2020 IN5350 3
✅
NOISE SOURCES IN IMAGE
SENSORS
Two noise categories
14.09.2020 5
1. Temporal noise 2. Fixed pattern noise
Temporal noise: random disturbance which changes every time a
capture is taken
Fixed pattern noise: fixed pattern superimposed on the image. Same
pattern in each frame, but pattern varies randomly from sensor to
sensor (which is why it is termed noise)
Temporal noise example
14/09/2020 IN5350 6
Temporal noise changes randomly
with time (ie for every capture)
Example pixel row profile:
Column position
Pixel
value
Photon shot noise
• Temporal noise that changes randomly from pixel to pixel
and capture to capture (even if light level is constant)
• Follows Poisson’s probability distribution:
• p(x) = probability of x incidents (e.g. x photons detected in
a pixel during Tint),
• e = natural logarithm base (~2.72),
• µ = mean value, i.e. statistical average of x, ie ∑𝑥𝑥 𝑥𝑥 � 𝑝𝑝(𝑥𝑥)
𝑝𝑝 𝑥𝑥 =
𝜇𝜇𝑥𝑥𝑒𝑒−𝜇𝜇
𝑥𝑥!
14.09.2020 IN5350 7
µ = mean value
Convenient Properties of Poisson process
Signal/Noise of ideal photon detector (𝝁𝝁/𝝈𝝈):
𝑺𝑺𝑺𝑺𝑺𝑺 =
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥)
𝑉𝑉𝑉𝑉𝑉𝑉(𝑥𝑥)
=
𝜇𝜇
𝜇𝜇
= 𝝁𝝁
𝑽𝑽𝑽𝑽𝑽𝑽 𝒙𝒙 = 𝜎𝜎𝑥𝑥
2
= �
𝑥𝑥=0
∞
𝑥𝑥 − 𝜇𝜇 2𝑝𝑝(𝑥𝑥) = 𝝁𝝁
Ex: if a pixel detects an average of 100photons, then S/N=10 (20dB)
14.09.2020 IN5350 8
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥) = �
𝑥𝑥=0
∞
𝑥𝑥 � 𝑝𝑝(𝑥𝑥) = 𝝁𝝁
0
0,05
0,1
0,15
0,2
0,25
0,3
0,35
0,4
0,45
0 2 4 6 8 10 12 14 16 18 20
Poisson distribution plots at various mean
values (µ)
µ=1
µ=2
µ=10
Number of incidences (e.g. photons or
electrons)
Probability
of
occurrance
(no
unit)
14.09.2020 IN5350 9
Photon shot noise examples
Ref: Wikipedia
µ=0e- µ=1e- µ=2e-
µ=4e- µ=10e- µ=30e-
µ=100e- µ=1000e- µ=10000e-
14.09.2020 IN5350 10
Fixed pattern noise (FPN)
• FPN (also called nonuniformity) is the time
invariant spatial variation in pixel output values
under uniform illumination (incl total darkness) due
to device and parameter variations (mismatches)
across the sensor
• Fixed for one sensor, but the nonuniformity pattern
changes randomly from sensor to sensor. Hence,
the ‘noise’ term.
• E.g. vertical or horizontal stripes, white pixels,
black pixels, shading, …
IN5350
14.09.2020 11
FPN compensation
• FPN in pixels can be compensated digitally
• For instance, dark FPN (ie FPN under zero illumination) can be
removed by subtracting a dark image from regular captures
– But FPN compensation too costly in commercial products. Instead, sensor must
be designed for FPN to be invisible to human eye => 10x below temporal noise
Original picture Dark image After compensation
A B A - B
IN5350
14.09.2020 12
Dark current = both temporal noise and
fixed noise (FPN)
• Thermally generated electrons (or holes) in the pixel. Adds to the
photo-generated signal charge and thus creates a pedestal offset.
• Problem is that dark current is a random process (Poissonian, just
like photons). Hence, it appears as noise in the picture or video at
high temperatures and/or long integration times.
• Mean value accross the array (Ndark) is a constant value and not
defined as noise, since not random. In fact, it can be measured and
subtracted from the pixel values (Black.
• Standard deviation (σdark) is temporal noise
IN5350
14.09.2020 13
Thermal noise
• Thermal agitations of electrons within a resistance
(fundamental in all circuits)
Random variation for every
capture
Example row profile in darkness:
IN5350
14.09.2020 14
SIGNAL/NOISE MODEL
Introduction
• Signal/noise ratio (S/N or SNR) is an essential
quality performance parameter of any sensor
• SNR quantifies how precise, accurate, reliable,
trustworthy, .. the sensor output value is
• Modelling SNR is important when making design
desicions such as pixel size, circuit topology, ADC
resolution, etc.
• This section covers SNR modelling, incl correlated
double sampling, and the impact of FPN
14.09.2020 IN5350 16
Outline
• Define signal and noise for CMOS image sensors
• Create model of S (from photons to bits)
• Create model of N (shot noise, RN, ADC..)
• Create model of CDS sampling process
• Discuss how FPN influences SNR
14.09.2020 IN5350 17
Signal-to-noise ratio (SNR)
14.09.2020 18
Input signal (a.u.)
Output
signal
(a.u.)
Sensor
Input signal Output signal&noise
σ=rms noise=std.dev.
µ 𝑆𝑆𝑆𝑆𝑆𝑆 ≝
𝜇𝜇
𝜎𝜎
S/N in dB: 20log(
𝜇𝜇
𝜎𝜎
)
µ=mean sig
IN5350
Model of signal chain (multiple blocks)
14.09.2020 IN5350 19
G1,
σ1
G2,
σ2
G3,
σ3
Sin/ σin Sout/σout
𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜/𝜎𝜎𝑜𝑜𝑜𝑜𝑜𝑜 =
𝑆𝑆𝑖𝑖𝑖𝑖𝐺𝐺1𝐺𝐺2𝐺𝐺3
𝜎𝜎𝑖𝑖𝑖𝑖
2
𝐺𝐺1
2
𝐺𝐺2
2
𝐺𝐺3
2
+ 𝜎𝜎1
2
𝐺𝐺2
2
𝐺𝐺3
2
+ 𝜎𝜎2
2
𝐺𝐺3
2
+ 𝜎𝜎3
2
S: signal
Gi: gain of module i
σi: rms noise added by ith module (uncorrelated with the others)
NB! Noise sources added together. However, only in power (V2) domain,
not in voltage domain due to the noise voltage (and/or noise current)
being random with zero mean value.
Pixel+ADC model
14.09.2020 IN5350 20
CGfd,
σkTC
Gsf,
σsf
Gadc,
σadc
Sin/ σin Sout/σout
𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜/𝜎𝜎𝑜𝑜𝑜𝑜𝑜𝑜 =
𝑆𝑆𝑒𝑒−𝐶𝐶𝐺𝐺𝑓𝑓𝑓𝑓𝐺𝐺𝑠𝑠𝑠𝑠𝐺𝐺𝑎𝑎𝑎𝑎𝑎𝑎
𝑆𝑆𝑒𝑒−𝐶𝐶𝐶𝐶𝑓𝑓𝑓𝑓
2
𝐺𝐺𝑠𝑠𝑠𝑠
2
𝐺𝐺𝑎𝑎𝑎𝑎𝑎𝑎
2
+ 𝜎𝜎𝑘𝑘𝑘𝑘𝑘𝑘
2
𝐺𝐺𝑠𝑠𝑠𝑠
2
𝐺𝐺𝑎𝑎𝑎𝑎𝑎𝑎
2
+ 𝜎𝜎𝑠𝑠𝑠𝑠
2
𝐺𝐺𝑎𝑎𝑎𝑎𝑎𝑎
2
+ 𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎
2
Floating
diffusion
Source
follower
A/D
converter
Se-: number of photo-electrons generated by photodiode
Sout: ADC output signal (DN or LSBs)
σkTC, σsf: rms noise voltage from FD and SF, respectively (V rms)
σadc: rms noise from ADC after gain (LSB rms)
Gadc: ADC conversion gain, (2^Nbits-1)/Vref_adc (LSB/V)
CGfd: floating diffusion conversion gain (V/e-)
Eliminated with
CDS
Readnoise, RN
Photon shot noise
Calculating rms noise value (σ) from noise
spectrum, N(f)
• Integrate N(f) across all frequencies to get σ
• N(f): noise spectrum (V2/Hz)
• σ: rms noise voltage (V)
14.09.2020 IN5350 21
df
f
Nout
out ∫
∞
=
0
)
(
σ
Frequency domain representation
14.09.2020 IN5350 22
H(f)
N(f)
Sin(f)
Nin(f)
Sin(f): input signal spectrum (V2/Hz)
H(f): transfer function of any linear time-invariant system, e.g. pixel,
amplifier, filter, ADC, CDS, ..
N(f): noise spectrum of additive noise source inside H(f), e.g. Johnson
noise or 1/f-noise from resistors or transistors (V2/Hz)
Sout(f)
Nout(f)
2
)
(
)
(
)
( f
H
f
S
f
S in
out ⋅
=
)
(
)
(
)
(
)
(
2
f
N
f
H
f
N
f
N in
out +
⋅
=
Signal chain in frequency domain
14.09.2020 IN5350 23
H1(f)
N1(f)
Sin(f)
Nin(f)
H(f): transfer function of any linear time-invariant system, e.g. pixel,
amplifier, filter, ADC, CDS, ..
N1(f), N2(f), N3(f): noise spectrum of noise sources (V2/Hz)
H2(f)
N2(f)
H3(f)
N3(f)
Sout(f)
Nout(f)
2
3
2
1 )
(
)
(
)
(
)
(
)
( f
H
f
H
f
H
f
S
f
S in
out ⋅
=
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
( 3
2
3
2
2
3
2
1
2
3
2
1 f
N
f
H
f
N
f
H
f
H
f
N
f
H
f
H
f
H
f
N
f
N in
out +
⋅
+
⋅
+
⋅
=
CIS signal chain from photons to bits
CIP
CCM
14.09.2020 IN5350 24
𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
Pixel light flux for a given scene illumination
obj
D
f
F =
Esc=scene irradiation (W/m/m2)
ρsc=scene reflectivity (no unit)
F=lense F-nummer (=f/Dobj)
Dobj= lens aperture (m)
f = lens focal length (m)
Ad=detector area (m2)
λ=light wavelength (m)
Ed=detector irradiation (W/m/m2)
14.09.2020 IN5350 25
2
4
)
(
)
(
)
(
F
E
E sc
sc
d
λ
ρ
λ
λ =
Calculation of pixel value after ADC
ref
adc
N
PGA
sf
pix
pix
sc
sc
ADCout
V
G
G
CG
d
T
A
QE
F
hc
E
S
bits
_
0
int
2
1
2
)
(
)
(
4
1
/
)
( −
⋅






= ∫
∞
λ
λ
λ
ρ
λ
λ
SADCout=output value (DN aka LSBs)
Esc(λ)=spectral irradiation (W/m/m2)
ρsc(λ)=scene reflectivity (no unit)
Tint=camera exposure time (s)
F=lense F-nummer (=f/Dobj)
h=Plancks constant (6.6x10-34 J s)
c=speed of light (3x108 m/s)
Apix=detector area (m2)
λ=light spectral wavelength (m)
14.09.2020 IN5350 26
CGpix=conversion gain (V/e-)
Gsf=source follower gain (no unit)
Nbits=ADC resolution (no unit)
Vadc_ref=ADC saturation level (V)
Temporal noise sources
• Photon shot noise =>µ=Se-, σ=sqrt(Nph)
– Nph: mean value of photons
• Dark current noise =>µ=Ndc, σ=sqrt(Ndc)
– Ndc: mean value of dark current electrons
• Read noise =>µ=0, σ=RN (V rms)
– RN: temporal noise in darkness from pixel+ADC
14.09.2020 IN5350 27
2
2
2
/
/ CG
G
N
S
S
SNR
sf
RN
dc
e
e
ADCout
σ
+
+
=
−
−
2
2
2
2
2
2
2
RN
G
G
CG
N
G
G
CG
S adc
sf
pix
dc
adc
sf
pix
e
ADCout +
+
= −
σ
adc
sf
pix
e
ADCout G
G
CG
S
S −
=
Read noise sources
• Temporal noise at zero illumination
• Read noise =>µ=0, σ=RN
– RN: rms noise floor in dark from pixel+ADC
– Pixel source follower noise sources
• White noise
• 1/f noise
– ADC noise
• White noise
• 1/f noise
• Quantization noise =>µ=0, σ=1LSB/sqrt(12)
14.09.2020 IN5350 28
Example of 4T pixel output signal with
noise
14/09/2020 IN5350 29
kT/C noise
Reset level (Vrst)
White noise and 1/f noise, Npix(f)
Signal level (Vsig)
Vpix(t)
t
RST
TX
White noise and 1/f noise in transistors
14.09.2020 IN5350 30
N(f)
N(f)=k
N(f)=1/f
N(f)=1/f2

More Related Content

PDF
CMOS Image Sensor Design_h20_6_snr_model.pdf
PDF
CMOS Image Sensor Design_h20_8_characterization2.pdf
PDF
CMOS Image Sensor Design_00h20_9_isp.pdf
PDF
OE Instrumentation_03_Interferometry_2.pdf
PDF
OE Instrumentation_02_Interferometry_1.pdf
PDF
CMOS Image Sensor Design_h20_3_photodiode_pixels_1sep2020.pdf
PDF
Homeworks
PPT
ece477_7.ppt
CMOS Image Sensor Design_h20_6_snr_model.pdf
CMOS Image Sensor Design_h20_8_characterization2.pdf
CMOS Image Sensor Design_00h20_9_isp.pdf
OE Instrumentation_03_Interferometry_2.pdf
OE Instrumentation_02_Interferometry_1.pdf
CMOS Image Sensor Design_h20_3_photodiode_pixels_1sep2020.pdf
Homeworks
ece477_7.ppt

Similar to CMOS Image Sensor Design_h20_5_noise_sources.pdf (20)

PPT
Introduction to OFDM.ppt
PPSX
Acoustic Mapping of Discharges in EDM
PPT
All Digital Phase Lock Loop 03 12 09
PDF
Compact Power Divider Integrated with Coupler and Microstrip Cavity Filter fo...
PDF
CMOS Image Sensor Design_h20_7_high_dynamic_range.pdf
DOCX
Summarized notes - 12th Science JEE - Interference and Diffraction
PDF
Image De-noising on Strip Steel Surface Defect Using Improved Compressive Sen...
PDF
Lect2 up390 (100329)
PDF
SigmaDeltaADC
PDF
Manual_Nivelco_EchoTREK_ST-SB-400_us_Nivetec.pdf
PDF
Bogen Technical IKS11
PPT
ADC Conveter Performance and Limitations.ppt
PDF
A MODIFIED DIRECTIONAL WEIGHTED CASCADED-MASK MEDIAN FILTER FOR REMOVAL OF RA...
PDF
Bogen Technical IKS9
PDF
Channel Models for Massive MIMO
PDF
Digital communcation for engineerings.pdf
DOCX
PARASITIC-AWARE FULL PHYSICAL CHIP DESIGN OF LNA RFIC AT 2.45GHZ USING IBM 13...
PDF
A MEDIAN BASED DIRECTIONAL CASCADED WITH MASK FILTER FOR REMOVAL OF RVIN
PDF
A MEDIAN BASED DIRECTIONAL CASCADED WITH MASK FILTER FOR REMOVAL OF RVIN
ODP
2007 EuRad Conference: Speech on Rough Layers (odp)
Introduction to OFDM.ppt
Acoustic Mapping of Discharges in EDM
All Digital Phase Lock Loop 03 12 09
Compact Power Divider Integrated with Coupler and Microstrip Cavity Filter fo...
CMOS Image Sensor Design_h20_7_high_dynamic_range.pdf
Summarized notes - 12th Science JEE - Interference and Diffraction
Image De-noising on Strip Steel Surface Defect Using Improved Compressive Sen...
Lect2 up390 (100329)
SigmaDeltaADC
Manual_Nivelco_EchoTREK_ST-SB-400_us_Nivetec.pdf
Bogen Technical IKS11
ADC Conveter Performance and Limitations.ppt
A MODIFIED DIRECTIONAL WEIGHTED CASCADED-MASK MEDIAN FILTER FOR REMOVAL OF RA...
Bogen Technical IKS9
Channel Models for Massive MIMO
Digital communcation for engineerings.pdf
PARASITIC-AWARE FULL PHYSICAL CHIP DESIGN OF LNA RFIC AT 2.45GHZ USING IBM 13...
A MEDIAN BASED DIRECTIONAL CASCADED WITH MASK FILTER FOR REMOVAL OF RVIN
A MEDIAN BASED DIRECTIONAL CASCADED WITH MASK FILTER FOR REMOVAL OF RVIN
2007 EuRad Conference: Speech on Rough Layers (odp)
Ad

More from AhmedHamouda68 (6)

PDF
CMOS Image Sensor Design_Course information slides.pdf
PDF
CMOS Image Sensor Design_h20_10_jpeg.pdf
PDF
CMOS Image Sensor Design_00h20_11_io.pdf
PPTX
binary analysis for botnet reverse engineering.pptx
PPT
Universal Armament Interface for the futuere.ppt
PPTX
EDEM2PSI welcome day-of economics.2021.pptx
CMOS Image Sensor Design_Course information slides.pdf
CMOS Image Sensor Design_h20_10_jpeg.pdf
CMOS Image Sensor Design_00h20_11_io.pdf
binary analysis for botnet reverse engineering.pptx
Universal Armament Interface for the futuere.ppt
EDEM2PSI welcome day-of economics.2021.pptx
Ad

Recently uploaded (20)

PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
PPTX
additive manufacturing of ss316l using mig welding
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PPTX
Current and future trends in Computer Vision.pptx
PDF
Operating System & Kernel Study Guide-1 - converted.pdf
PPTX
Safety Seminar civil to be ensured for safe working.
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PDF
Human-AI Collaboration: Balancing Agentic AI and Autonomy in Hybrid Systems
PPTX
UNIT 4 Total Quality Management .pptx
PDF
R24 SURVEYING LAB MANUAL for civil enggi
PDF
737-MAX_SRG.pdf student reference guides
PPTX
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
PPTX
Fundamentals of safety and accident prevention -final (1).pptx
PPTX
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
PDF
composite construction of structures.pdf
PPTX
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
PPTX
Geodesy 1.pptx...............................................
PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
Automation-in-Manufacturing-Chapter-Introduction.pdf
additive manufacturing of ss316l using mig welding
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
Current and future trends in Computer Vision.pptx
Operating System & Kernel Study Guide-1 - converted.pdf
Safety Seminar civil to be ensured for safe working.
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Human-AI Collaboration: Balancing Agentic AI and Autonomy in Hybrid Systems
UNIT 4 Total Quality Management .pptx
R24 SURVEYING LAB MANUAL for civil enggi
737-MAX_SRG.pdf student reference guides
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
Fundamentals of safety and accident prevention -final (1).pptx
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
composite construction of structures.pdf
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
Geodesy 1.pptx...............................................
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
Embodied AI: Ushering in the Next Era of Intelligent Systems
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx

CMOS Image Sensor Design_h20_5_noise_sources.pdf

  • 1. INF5350 – CMOS image sensor design Lecture 5 – Noise and modelling S/N 15-September-2020
  • 2. Agenda • Check project status • Takeaways from previous lecture&exercises • Noise and S/N in CMOS image sensors 14.09.2020 IN5350 2
  • 3. Project schedule Task/milestone Start Finish Chose topic/scope 1-Sep 8-Sep Create project plan (tasks, milestones, schedule) 8-Sep 15-Sep MS1 – project plan approved by Johannes 15-Sep 22-Sep Study literature on the topic (include summary in report) 22-Sep 29-Sep Design implementation&simulation 29-Sep 13-Oct Write up prelim report (inc references, design, results) 13-Oct 20-Oct MS2 – submit preliminary report to Johannes 20-Oct 20-Oct Design/simulation (fine tuning) 20-Oct 27-Oct Write up final report (incl references, design, results) 27-Oct 3-Nov MS3 – Presentation and discussion 3-Nov 3-Nov MS4 – submit final report to Johannes 10-Nov 10-Nov Exam 18-Nov ✅ 14.09.2020 IN5350 3 ✅
  • 4. NOISE SOURCES IN IMAGE SENSORS
  • 5. Two noise categories 14.09.2020 5 1. Temporal noise 2. Fixed pattern noise Temporal noise: random disturbance which changes every time a capture is taken Fixed pattern noise: fixed pattern superimposed on the image. Same pattern in each frame, but pattern varies randomly from sensor to sensor (which is why it is termed noise)
  • 6. Temporal noise example 14/09/2020 IN5350 6 Temporal noise changes randomly with time (ie for every capture) Example pixel row profile: Column position Pixel value
  • 7. Photon shot noise • Temporal noise that changes randomly from pixel to pixel and capture to capture (even if light level is constant) • Follows Poisson’s probability distribution: • p(x) = probability of x incidents (e.g. x photons detected in a pixel during Tint), • e = natural logarithm base (~2.72), • µ = mean value, i.e. statistical average of x, ie ∑𝑥𝑥 𝑥𝑥 � 𝑝𝑝(𝑥𝑥) 𝑝𝑝 𝑥𝑥 = 𝜇𝜇𝑥𝑥𝑒𝑒−𝜇𝜇 𝑥𝑥! 14.09.2020 IN5350 7 µ = mean value
  • 8. Convenient Properties of Poisson process Signal/Noise of ideal photon detector (𝝁𝝁/𝝈𝝈): 𝑺𝑺𝑺𝑺𝑺𝑺 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥) 𝑉𝑉𝑉𝑉𝑉𝑉(𝑥𝑥) = 𝜇𝜇 𝜇𝜇 = 𝝁𝝁 𝑽𝑽𝑽𝑽𝑽𝑽 𝒙𝒙 = 𝜎𝜎𝑥𝑥 2 = � 𝑥𝑥=0 ∞ 𝑥𝑥 − 𝜇𝜇 2𝑝𝑝(𝑥𝑥) = 𝝁𝝁 Ex: if a pixel detects an average of 100photons, then S/N=10 (20dB) 14.09.2020 IN5350 8 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥) = � 𝑥𝑥=0 ∞ 𝑥𝑥 � 𝑝𝑝(𝑥𝑥) = 𝝁𝝁
  • 9. 0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0 2 4 6 8 10 12 14 16 18 20 Poisson distribution plots at various mean values (µ) µ=1 µ=2 µ=10 Number of incidences (e.g. photons or electrons) Probability of occurrance (no unit) 14.09.2020 IN5350 9
  • 10. Photon shot noise examples Ref: Wikipedia µ=0e- µ=1e- µ=2e- µ=4e- µ=10e- µ=30e- µ=100e- µ=1000e- µ=10000e- 14.09.2020 IN5350 10
  • 11. Fixed pattern noise (FPN) • FPN (also called nonuniformity) is the time invariant spatial variation in pixel output values under uniform illumination (incl total darkness) due to device and parameter variations (mismatches) across the sensor • Fixed for one sensor, but the nonuniformity pattern changes randomly from sensor to sensor. Hence, the ‘noise’ term. • E.g. vertical or horizontal stripes, white pixels, black pixels, shading, … IN5350 14.09.2020 11
  • 12. FPN compensation • FPN in pixels can be compensated digitally • For instance, dark FPN (ie FPN under zero illumination) can be removed by subtracting a dark image from regular captures – But FPN compensation too costly in commercial products. Instead, sensor must be designed for FPN to be invisible to human eye => 10x below temporal noise Original picture Dark image After compensation A B A - B IN5350 14.09.2020 12
  • 13. Dark current = both temporal noise and fixed noise (FPN) • Thermally generated electrons (or holes) in the pixel. Adds to the photo-generated signal charge and thus creates a pedestal offset. • Problem is that dark current is a random process (Poissonian, just like photons). Hence, it appears as noise in the picture or video at high temperatures and/or long integration times. • Mean value accross the array (Ndark) is a constant value and not defined as noise, since not random. In fact, it can be measured and subtracted from the pixel values (Black. • Standard deviation (σdark) is temporal noise IN5350 14.09.2020 13
  • 14. Thermal noise • Thermal agitations of electrons within a resistance (fundamental in all circuits) Random variation for every capture Example row profile in darkness: IN5350 14.09.2020 14
  • 16. Introduction • Signal/noise ratio (S/N or SNR) is an essential quality performance parameter of any sensor • SNR quantifies how precise, accurate, reliable, trustworthy, .. the sensor output value is • Modelling SNR is important when making design desicions such as pixel size, circuit topology, ADC resolution, etc. • This section covers SNR modelling, incl correlated double sampling, and the impact of FPN 14.09.2020 IN5350 16
  • 17. Outline • Define signal and noise for CMOS image sensors • Create model of S (from photons to bits) • Create model of N (shot noise, RN, ADC..) • Create model of CDS sampling process • Discuss how FPN influences SNR 14.09.2020 IN5350 17
  • 18. Signal-to-noise ratio (SNR) 14.09.2020 18 Input signal (a.u.) Output signal (a.u.) Sensor Input signal Output signal&noise σ=rms noise=std.dev. µ 𝑆𝑆𝑆𝑆𝑆𝑆 ≝ 𝜇𝜇 𝜎𝜎 S/N in dB: 20log( 𝜇𝜇 𝜎𝜎 ) µ=mean sig IN5350
  • 19. Model of signal chain (multiple blocks) 14.09.2020 IN5350 19 G1, σ1 G2, σ2 G3, σ3 Sin/ σin Sout/σout 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜/𝜎𝜎𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑆𝑆𝑖𝑖𝑖𝑖𝐺𝐺1𝐺𝐺2𝐺𝐺3 𝜎𝜎𝑖𝑖𝑖𝑖 2 𝐺𝐺1 2 𝐺𝐺2 2 𝐺𝐺3 2 + 𝜎𝜎1 2 𝐺𝐺2 2 𝐺𝐺3 2 + 𝜎𝜎2 2 𝐺𝐺3 2 + 𝜎𝜎3 2 S: signal Gi: gain of module i σi: rms noise added by ith module (uncorrelated with the others) NB! Noise sources added together. However, only in power (V2) domain, not in voltage domain due to the noise voltage (and/or noise current) being random with zero mean value.
  • 20. Pixel+ADC model 14.09.2020 IN5350 20 CGfd, σkTC Gsf, σsf Gadc, σadc Sin/ σin Sout/σout 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜/𝜎𝜎𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑆𝑆𝑒𝑒−𝐶𝐶𝐺𝐺𝑓𝑓𝑓𝑓𝐺𝐺𝑠𝑠𝑠𝑠𝐺𝐺𝑎𝑎𝑎𝑎𝑎𝑎 𝑆𝑆𝑒𝑒−𝐶𝐶𝐶𝐶𝑓𝑓𝑓𝑓 2 𝐺𝐺𝑠𝑠𝑠𝑠 2 𝐺𝐺𝑎𝑎𝑎𝑎𝑎𝑎 2 + 𝜎𝜎𝑘𝑘𝑘𝑘𝑘𝑘 2 𝐺𝐺𝑠𝑠𝑠𝑠 2 𝐺𝐺𝑎𝑎𝑎𝑎𝑎𝑎 2 + 𝜎𝜎𝑠𝑠𝑠𝑠 2 𝐺𝐺𝑎𝑎𝑎𝑎𝑎𝑎 2 + 𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎 2 Floating diffusion Source follower A/D converter Se-: number of photo-electrons generated by photodiode Sout: ADC output signal (DN or LSBs) σkTC, σsf: rms noise voltage from FD and SF, respectively (V rms) σadc: rms noise from ADC after gain (LSB rms) Gadc: ADC conversion gain, (2^Nbits-1)/Vref_adc (LSB/V) CGfd: floating diffusion conversion gain (V/e-) Eliminated with CDS Readnoise, RN Photon shot noise
  • 21. Calculating rms noise value (σ) from noise spectrum, N(f) • Integrate N(f) across all frequencies to get σ • N(f): noise spectrum (V2/Hz) • σ: rms noise voltage (V) 14.09.2020 IN5350 21 df f Nout out ∫ ∞ = 0 ) ( σ
  • 22. Frequency domain representation 14.09.2020 IN5350 22 H(f) N(f) Sin(f) Nin(f) Sin(f): input signal spectrum (V2/Hz) H(f): transfer function of any linear time-invariant system, e.g. pixel, amplifier, filter, ADC, CDS, .. N(f): noise spectrum of additive noise source inside H(f), e.g. Johnson noise or 1/f-noise from resistors or transistors (V2/Hz) Sout(f) Nout(f) 2 ) ( ) ( ) ( f H f S f S in out ⋅ = ) ( ) ( ) ( ) ( 2 f N f H f N f N in out + ⋅ =
  • 23. Signal chain in frequency domain 14.09.2020 IN5350 23 H1(f) N1(f) Sin(f) Nin(f) H(f): transfer function of any linear time-invariant system, e.g. pixel, amplifier, filter, ADC, CDS, .. N1(f), N2(f), N3(f): noise spectrum of noise sources (V2/Hz) H2(f) N2(f) H3(f) N3(f) Sout(f) Nout(f) 2 3 2 1 ) ( ) ( ) ( ) ( ) ( f H f H f H f S f S in out ⋅ = ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 3 2 3 2 2 3 2 1 2 3 2 1 f N f H f N f H f H f N f H f H f H f N f N in out + ⋅ + ⋅ + ⋅ =
  • 24. CIS signal chain from photons to bits CIP CCM 14.09.2020 IN5350 24 𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
  • 25. Pixel light flux for a given scene illumination obj D f F = Esc=scene irradiation (W/m/m2) ρsc=scene reflectivity (no unit) F=lense F-nummer (=f/Dobj) Dobj= lens aperture (m) f = lens focal length (m) Ad=detector area (m2) λ=light wavelength (m) Ed=detector irradiation (W/m/m2) 14.09.2020 IN5350 25 2 4 ) ( ) ( ) ( F E E sc sc d λ ρ λ λ =
  • 26. Calculation of pixel value after ADC ref adc N PGA sf pix pix sc sc ADCout V G G CG d T A QE F hc E S bits _ 0 int 2 1 2 ) ( ) ( 4 1 / ) ( − ⋅       = ∫ ∞ λ λ λ ρ λ λ SADCout=output value (DN aka LSBs) Esc(λ)=spectral irradiation (W/m/m2) ρsc(λ)=scene reflectivity (no unit) Tint=camera exposure time (s) F=lense F-nummer (=f/Dobj) h=Plancks constant (6.6x10-34 J s) c=speed of light (3x108 m/s) Apix=detector area (m2) λ=light spectral wavelength (m) 14.09.2020 IN5350 26 CGpix=conversion gain (V/e-) Gsf=source follower gain (no unit) Nbits=ADC resolution (no unit) Vadc_ref=ADC saturation level (V)
  • 27. Temporal noise sources • Photon shot noise =>µ=Se-, σ=sqrt(Nph) – Nph: mean value of photons • Dark current noise =>µ=Ndc, σ=sqrt(Ndc) – Ndc: mean value of dark current electrons • Read noise =>µ=0, σ=RN (V rms) – RN: temporal noise in darkness from pixel+ADC 14.09.2020 IN5350 27 2 2 2 / / CG G N S S SNR sf RN dc e e ADCout σ + + = − − 2 2 2 2 2 2 2 RN G G CG N G G CG S adc sf pix dc adc sf pix e ADCout + + = − σ adc sf pix e ADCout G G CG S S − =
  • 28. Read noise sources • Temporal noise at zero illumination • Read noise =>µ=0, σ=RN – RN: rms noise floor in dark from pixel+ADC – Pixel source follower noise sources • White noise • 1/f noise – ADC noise • White noise • 1/f noise • Quantization noise =>µ=0, σ=1LSB/sqrt(12) 14.09.2020 IN5350 28
  • 29. Example of 4T pixel output signal with noise 14/09/2020 IN5350 29 kT/C noise Reset level (Vrst) White noise and 1/f noise, Npix(f) Signal level (Vsig) Vpix(t) t RST TX
  • 30. White noise and 1/f noise in transistors 14.09.2020 IN5350 30 N(f) N(f)=k N(f)=1/f N(f)=1/f2