SlideShare a Scribd company logo
Pig i Hive: Szybkie
wprowadzenie
Radosław Stankiewicz
Bartłomiej Tartanus
Codepot - Pig i Hive: szybkie wprowadzenie / Pig and Hive crash course
Agenda
Wstęp -> 2 słowa o Map Reduce -> Pig -> Hive
3
Wprowadzenie
4
V O LUME5
Variety
6
A|123|10$
B|555|20$
Y|333|15$
{
'typ'='A',
'id'=123,
'kwota'='10$'
}
Velocity
OLAP
Real
Time
Batch
Streaming
Interactive
analytics
7
Codepot - Pig i Hive: szybkie wprowadzenie / Pig and Hive crash course
Value
9
Klasyfikacja problemu
• Baza danych ulic Warszawy, Dane w formacie JSON,
optymalizacja odbioru śmieci jednego z usługodawców.
• Zdarzenia z bazy transakcyjnej i kart kredytowych w
celu lepszego wykrywania fraudów
• System wyszukujący dobre oferty samochodów z wielu
serwisów - web crawling, parsowanie danych, analiza
trendów cen samochodów
• Centralne repozytorium skanów umów, TB danych,
codziennie przybywa kilkaset nowych dokumentów
10
Geneza
• za dużo danych
• pady serwerów
• wolne relacyjne bazy danych
11
12
Architektura
13 źródło: Hortonworks
Ekosystem Hadoop
14 źródło: Hortonworks
15
HDFS - Namenode,
Datanode
16
● User Commands
o dfs
o fsck
● Administration Commands
o datanode
o dfsadmin
o namenode
dfs:
appendToFile cat chgrp chmod chown copyFromLocal copyToLocal count cp du
dus expunge get getfacl getfattr getmerge ls lsr mkdir moveFromLocal
moveToLocal mv put rm rmr setfacl setfattr setrep stat tail test text touchz
hdfs dfs -put localfile1 localfile2 /user/tmp/hadoopdir
hdfs dfs -getmerge /user/hadoop/output/ localfile
komendy
17
Architektura YARN
18
Map Reduce Framework
19
Map Reduce Framework
20
M
M
M
M
R
R
R
R
R
Mapper
#!/usr/bin/env python
import sys
for line in sys.stdin:
words = line.strip().split()
for word in words:
print '%st%s' % (word, 1)
line = “Ala ma kota”
Ala 1
ma 1
kota 1
21
Reducer
#!/usr/bin/env python
import sys
current_word = None
current_count = 0
word = None
for line in sys.stdin:
line = line.strip()
word, count = line.split('t', 1)
count = int(count)
if current_word == word:
current_count += count
else:
if current_word:
print '%s,%s' % (current_word, current_count)
current_count = count
current_word = word
if current_word == word:
print '%s,%s' % (current_word, current_count)
ala 1
ala 1
bela 1
dela 1
ala,2
bela,1
dela,1
22
Uruchomienie streaming
cat input.txt | ./mapper.py | sort | ./reducer.py
bin/yarn jar [..]/hadoop-*streaming*.jar 

-file mapper.py -mapper ./mapper.py -file
reducer.py -reducer ./reducer.py 

-input /tmp/wordcount/input -output /tmp/
wordcount/output
23
Map Reduce w Java
(input) <k1, v1> -> map -> <k2, v2> -> combine ->
<k2, v2> -> reduce -> <k3, v3> (output)
1) Mapper
2) Reducer
3) run
public class WordCount extends Configured
implements Tool {
public static class TokenizerMapper{...}
public static class IntSumReducer{...}
public int run(...){...}
}
24
Mapper<KEYIN,VALUEIN,KEY
OUT,VALUEOUT>
public static class TokenizerMapper

extends Mapper<LongWritable, Text, Text, IntWritable>{



private final static IntWritable one = new IntWritable(1);

private Text word = new Text();



public void map(LongWritable key, Text value, Context context

) throws IOException, InterruptedException {

StringTokenizer itr = new StringTokenizer(value.toString());

while (itr.hasMoreTokens()) {

word.set(itr.nextToken());

context.write(word, one);

}

}
public void setup(...) {...}
public void cleanup(...) {...}
public void run(...) {...}

}
value = “Ala ma kota”
Ala,1
ma,1
kota,1
Reducer<KEYIN,VALUEIN,KEY
OUT,VALUEOUT>
public static class IntSumReducer

extends Reducer<Text,IntWritable,Text,IntWritable> {

private IntWritable result = new IntWritable();



public void reduce(Text key, Iterable<IntWritable> values,

Context context

) throws IOException, InterruptedException {

int sum = 0;

for (IntWritable val : values) {

sum += val.get();

}

result.set(sum);

context.write(key, result);

}
public void setup(...) {...}
public void cleanup(...) {...}
public void run(...) {...}

}
kota,(1,1,1,1)
kota,4
Main
public int run(String[] args) throws Exception {

Configuration conf = new Configuration();

Job job = Job.getInstance(conf, "word count");

job.setJarByClass(WordCount.class);

job.setMapperClass(TokenizerMapper.class);

job.setCombinerClass(IntSumReducer.class);

job.setReducerClass(IntSumReducer.class);

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(IntWritable.class);

FileInputFormat.addInputPath(job, new Path(args[0]));

FileOutputFormat.setOutputPath(job, new Path(args[1]));

System.exit(job.waitForCompletion(true) ? 0 : 1);

}
public static void main(String[] args) throws Exception {
int res = ToolRunner.run(new Configuration(), new WordCount(),args);
System.exit(res);
}
yarn jar wc.jar WordCount /tmp/wordcount/input /tmp/wordcount/output
Wprowadzenie do
przetwarzania danych na
przykładzie Pig
28
Architektura Pig
29
Czy warto?
Top 5 stron odwiedzanych przez
użytkowników mających 18 lat
import java.io.IOException;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.KeyValueTextInputFormat;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.RecordReader;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapred.SequenceFileInputFormat;
import org.apache.hadoop.mapred.SequenceFileOutputFormat;
import org.apache.hadoop.mapred.TextInputFormat;
import org.apache.hadoop.mapred.jobcontrol.Job;
import org.apache.hadoop.mapred.jobcontrol.JobControl;
import org.apache.hadoop.mapred.lib.IdentityMapper;
public class MRExample {
public static class LoadPages extends MapReduceBase
implements Mapper<LongWritable, Text, Text, Text> {
public void map(LongWritable k, Text val,
OutputCollector<Text, Text> oc,
Reporter reporter) throws IOException {
// Pull the key out
String line = val.toString();
int firstComma = line.indexOf(',');
String key = line.substring(0, firstComma);
String value = line.substring(firstComma + 1);
Text outKey = new Text(key);
// Prepend an index to the value so we know which file
// it came from.
Text outVal = new Text("1" + value);
oc.collect(outKey, outVal);
}
}
public static class LoadAndFilterUsers extends MapReduceBase
implements Mapper<LongWritable, Text, Text, Text> {
public void map(LongWritable k, Text val,
OutputCollector<Text, Text> oc,
Reporter reporter) throws IOException {
// Pull the key out
String line = val.toString();
int firstComma = line.indexOf(',');
String value = line.substring(firstComma + 1);
int age = Integer.parseInt(value);
if (age < 18 || age > 25) return;
String key = line.substring(0, firstComma);
Text outKey = new Text(key);
// Prepend an index to the value so we know which file
// it came from.
Text outVal = new Text("2" + value);
oc.collect(outKey, outVal);
}
}
public static class Join extends MapReduceBase
implements Reducer<Text, Text, Text, Text> {
public void reduce(Text key,
Iterator<Text> iter,
OutputCollector<Text, Text> oc,
Reporter reporter) throws IOException {
// For each value, figure out which file it's from and
store it
// accordingly.
List<String> first = new ArrayList<String>();
List<String> second = new ArrayList<String>();
while (iter.hasNext()) {
Text t = iter.next();
String value = t.toString();
if (value.charAt(0) == '1')
first.add(value.substring(1));
else second.add(value.substring(1));
reporter.setStatus("OK");
}
// Do the cross product and collect the values
for (String s1 : first) {
for (String s2 : second) {
String outval = key + "," + s1 + "," + s2;
oc.collect(null, new Text(outval));
reporter.setStatus("OK");
}
}
}
public static class LoadJoined extends MapReduceBase
implements Mapper<Text, Text, Text, LongWritable> {
public void map(
Text k,
Text val,
OutputCollector<Text, LongWritable> oc,
Reporter reporter) throws IOException {
// Find the url
String line = val.toString();
int firstComma = line.indexOf(',');
int secondComma = line.indexOf(',', firstComma);
String key = line.substring(firstComma, secondComma);
// drop the rest of the record, I don't need it anymore,
// just pass a 1 for the combiner/reducer to sum instead.
Text outKey = new Text(key);
oc.collect(outKey, new LongWritable(1L));
}
}
public static class ReduceUrls extends MapReduceBase
implements Reducer<Text, LongWritable, WritableComparable,
Writable> {
public void reduce(
Text key,
Iterator<LongWritable> iter,
OutputCollector<WritableComparable, Writable> oc,
Reporter reporter) throws IOException {
// Add up all the values we see
long sum = 0;
while (iter.hasNext()) {
sum += iter.next().get();
reporter.setStatus("OK");
}
oc.collect(key, new LongWritable(sum));
}
}
public static class LoadClicks extends MapReduceBase
implements Mapper<WritableComparable, Writable, LongWritable,
Text> {
public void map(
WritableComparable key,
Writable val,
OutputCollector<LongWritable, Text> oc,
Reporter reporter) throws IOException {
oc.collect((LongWritable)val, (Text)key);
}
}
public static class LimitClicks extends MapReduceBase
implements Reducer<LongWritable, Text, LongWritable, Text> {
int count = 0;
public void reduce(
LongWritable key,
Iterator<Text> iter,
OutputCollector<LongWritable, Text> oc,
Reporter reporter) throws IOException {
// Only output the first 100 records
while (count < 100 && iter.hasNext()) {
oc.collect(key, iter.next());
count++;
}
}
}
public static void main(String[] args) throws IOException {
JobConf lp = new JobConf(MRExample.class);
lp.setJobName("Load Pages");
lp.setInputFormat(TextInputFormat.class);
lp.setOutputKeyClass(Text.class);
lp.setOutputValueClass(Text.class);
lp.setMapperClass(LoadPages.class);
FileInputFormat.addInputPath(lp, new
Path("/user/gates/pages"));
FileOutputFormat.setOutputPath(lp,
new Path("/user/gates/tmp/indexed_pages"));
lp.setNumReduceTasks(0);
Job loadPages = new Job(lp);
JobConf lfu = new JobConf(MRExample.class);
lfu.setJobName("Load and Filter Users");
lfu.setInputFormat(TextInputFormat.class);
lfu.setOutputKeyClass(Text.class);
lfu.setOutputValueClass(Text.class);
lfu.setMapperClass(LoadAndFilterUsers.class);
FileInputFormat.addInputPath(lfu, new
Path("/user/gates/users"));
FileOutputFormat.setOutputPath(lfu,
new Path("/user/gates/tmp/filtered_users"));
lfu.setNumReduceTasks(0);
Job loadUsers = new Job(lfu);
JobConf join = new JobConf(MRExample.class);
join.setJobName("Join Users and Pages");
join.setInputFormat(KeyValueTextInputFormat.class);
join.setOutputKeyClass(Text.class);
join.setOutputValueClass(Text.class);
join.setMapperClass(IdentityMapper.class);
join.setReducerClass(Join.class);
FileInputFormat.addInputPath(join, new
Path("/user/gates/tmp/indexed_pages"));
FileInputFormat.addInputPath(join, new
Path("/user/gates/tmp/filtered_users"));
FileOutputFormat.setOutputPath(join, new
Path("/user/gates/tmp/joined"));
join.setNumReduceTasks(50);
Job joinJob = new Job(join);
joinJob.addDependingJob(loadPages);
joinJob.addDependingJob(loadUsers);
JobConf group = new JobConf(MRExample.class);
group.setJobName("Group URLs");
group.setInputFormat(KeyValueTextInputFormat.class);
group.setOutputKeyClass(Text.class);
group.setOutputValueClass(LongWritable.class);
group.setOutputFormat(SequenceFileOutputFormat.class);
group.setMapperClass(LoadJoined.class);
group.setCombinerClass(ReduceUrls.class);
group.setReducerClass(ReduceUrls.class);
FileInputFormat.addInputPath(group, new
Path("/user/gates/tmp/joined"));
FileOutputFormat.setOutputPath(group, new
Path("/user/gates/tmp/grouped"));
group.setNumReduceTasks(50);
Job groupJob = new Job(group);
groupJob.addDependingJob(joinJob);
JobConf top100 = new JobConf(MRExample.class);
top100.setJobName("Top 100 sites");
top100.setInputFormat(SequenceFileInputFormat.class);
top100.setOutputKeyClass(LongWritable.class);
top100.setOutputValueClass(Text.class);
top100.setOutputFormat(SequenceFileOutputFormat.class);
top100.setMapperClass(LoadClicks.class);
top100.setCombinerClass(LimitClicks.class);
top100.setReducerClass(LimitClicks.class);
FileInputFormat.addInputPath(top100, new
Path("/user/gates/tmp/grouped"));
FileOutputFormat.setOutputPath(top100, new
Path("/user/gates/top100sitesforusers18to25"));
top100.setNumReduceTasks(1);
Job limit = new Job(top100);
limit.addDependingJob(groupJob);
JobControl jc = new JobControl("Find top 100 sites for users
18 to 25");
jc.addJob(loadPages);
jc.addJob(loadUsers);
jc.addJob(joinJob);
jc.addJob(groupJob);
jc.addJob(limit);
jc.run();
}
}
Users = load ‘users’ as (name, age);
Fltrd = filter Users by
age >= 18 and age <= 25;
Pages = load ‘pages’ as (user, url);
Jnd = join Fltrd by name, Pages by user;
Grpd = group Jnd by url;
Smmd = foreach Grpd generate group, COUNT(Jnd) as clicks;
Srtd = order Smmd by clicks desc;
Top5 = limit Srtd 5;
store Top5 into ‘top5sites’;
Architektura Pig
35
Tryb Pracy
Interaktywny lub Wsadowy
36
Tryb Pracy
Lokalny lub Rozproszony
37
Tryb Pracy
Map Reduce lub Tez
38
Typy danych
39
int long float double
chararray datetime boolean
bytearray biginteger bigdecimal
Złożone typy
40
tuple bag map
Podstawy Pig Latin -
wielkość liter
• A = LOAD 'data' USING PigStorage() AS (f1:int, f2:int, f3:int);

B = GROUP A BY f1;

C = FOREACH B GENERATE COUNT ($0);

DUMP C;
• Nazwy zmiennych A, B, and C (tzw. aliasy) są case sensitive.
• Wielkość liter jest też istotna dla:
• nazwy pól f1, f2, i f3
• nazwy zmiennych A, B, C
• nazwy funkcji PigStorage, COUNT
• Z wyjątkiem: LOAD, USING, AS, GROUP, BY, FOREACH, GENERATE, oraz DUMP
41
assert, and, any, all, arrange, as, asc, AVG, bag,
BinStorage, by, bytearray, BIGINTEGER, BIGDECIMAL,
cache, CASE, cat, cd, chararray, cogroup, CONCAT,
copyFromLocal, copyToLocal, COUNT, cp, cross,
datetime, %declare, %default, define, dense, desc,
describe, DIFF, distinct, double, du, dump, e, E,
eval, exec, explain, f, F, filter, flatten, float,
foreach, full, generate, group, help, if, illustrate,
import, inner, input, int, into, is, join, kill, l, L,
left, limit, load, long, ls, map, matches, MAX, MIN,
mkdir, mv, not, null, onschema, or, order, outer,
output, parallel, pig, PigDump, PigStorage, pwd, quit,
register, returns, right, rm, rmf, rollup, run,
sample, set, ship, SIZE, split, stderr, stdin, stdout,
store, stream, SUM, TextLoader, TOKENIZE, through,
tuple, union, using, void
42
Słowa kluczowe
Pierwsze kroki
data = LOAD 'input' AS (query:CHARARRAY);
A = LOAD 'data' USING PigStorage('t') AS (f1:int, f2:int, f3:int);
STORE A INTO '/tmp/result' USING PigStorage(';')
43
Pierwsze kroki
SAMPLE
DESCRIBE
DUMP
EXPLAIN
ILLUSTRATE
44
Kolejne kroki - operacje na
danych
A = LOAD 'student' USING PigStorage() AS (name:chararray, age:int, semestre:int,
scholarship:float);
B = FILTER A BY age > 20;
45
Kolejne kroki - operacje na
danych
A = LOAD 'student' USING PigStorage() AS (name:chararray, age:int, semestre:int,
scholarship:float);
B = FILTER A BY age > 20;
C = LIMIT B 5;
46
Kolejne kroki - operacje na
danych
A = LOAD 'student' USING PigStorage() AS (name:chararray, age:int, semestre:int,
scholarship:float);
B = FILTER A BY age > 20;
C = LIMIT B 5;
D = FOREACH C GENERATE name, scholarship*semestre as funds
47
Kolejne kroki - operacje na
danych
A = LOAD 'student' USING PigStorage() AS (name:chararray, age:int, semestre:int,
scholarship:float);
E = GROUP A by age
48
Kolejne kroki - operacje na
danych
A = LOAD 'student' USING PigStorage() AS (name:chararray, age:int, semestre:int,
scholarship:float);
E = GROUP A by age
F = FOREACH E GENERATE group as age, AVG(A.scholarship)
49
Wydajność
Tez, Projekcje, Filtrowanie, Join
50
Warsztat
adres serwera ssh: 52.5.251.228
51
https://www.notehub.org/veuk1
Wprowadzenie do analizy
danych na przykładzie
Hive
52
Architektura
53
Unikalne cechy Hive
Zapytania SQL na plikach płaskich, np. CSV
54
Unikalne cechy Hive
Znaczne przyspieszenie analizy - nie potrzeba pisać Map Reduce
Optymalizacja, wykonywanie części operacji w pamięci zamiast MR
55
Unikalne cechy Hive
Nieograniczone formy integracji - MongoDB, Elastic Search,
HBase
56
Unikalne cechy Hive
Integracja narzędzi BI oraz DWH z Hive poprzez JDBC
57
Hive CLI
Tryb Interaktywny
hive
Tryb Wsadowy:
hive -e ‘select foo from bar’
hive -f ‘/path/to/my/script.q’
hive -f ‘hdfs://namenode:port/path/to/my/
script.q’
więcej opcji: hive --help
58
Typy danych
INT, TINYINT, SMALLINT, BIGINT
BOOLEAN
DECIMAL
FLOAT, DOUBLE
STRING
BINARY
TIMESTAMP
ARRAY, MAP, STRUCT, UNION
DATE
CHAR
VARCHAR
59
Składnia zapytań
SELECT, INSERT, UPDATE
GROUP BY
UNION
LEFT, RIGHT, FULL INNER, FULL OUTER JOIN
OVER, RANK
(NOT) IN, HAVING
(NOT) EXISTS
60
Data Definition Language
• CREATE DATABASE/SCHEMA, TABLE, VIEW, FUNCTION, INDEX
• DROP DATABASE/SCHEMA, TABLE, VIEW, INDEX
• TRUNCATE TABLE
• ALTER DATABASE/SCHEMA, TABLE, VIEW
• MSCK REPAIR TABLE (or ALTER TABLE RECOVER PARTITIONS)
• SHOW DATABASES/SCHEMAS, TABLES, TBLPROPERTIES,
PARTITIONS, FUNCTIONS, INDEX[ES], COLUMNS, CREATE TABLE
• DESCRIBE DATABASE/SCHEMA, table_name, view_name
61
Tabele
CREATE TABLE page_view(viewTime INT, userid BIGINT,
page_url STRING, referrer_url STRING,
ip STRING COMMENT 'IP Address of the User')
COMMENT 'This is the page view table'
PARTITIONED BY(dt STRING, country STRING)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '001'
STORED AS TEXTFILE;
62
Pierwsze kroki w Hive
CREATE TABLE tablename1 (foo INT, bar STRING) PARTITIONED BY (ds STRING);
LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename1;
INSERT INTO TABLE tablename1 PARTITION (ds='2014') select_statement1 FROM
from_statement;
63
Inne formaty plików? SerDe
127.0.0.1 - frank [10/Oct/2000:13:55:36 -0700] "GET /apache_pb.gif HTTP/1.0" 200 2326 "http://www.example.com/
start.html" "Mozilla/4.08 [en] (Win98; I ;Nav)"
CREATE TABLE apachelog (
host STRING, identity STRING, user STRING, time STRING, request STRING, status STRING,
size STRING, referer STRING, agent STRING)
ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.RegexSerDe'
WITH SERDEPROPERTIES (
"input.regex" = "([^]*) ([^]*) ([^]*) (-|[^]*]) ([^ "]*|"[^"]*") (-|[0-9]*) (-|[0-9]*)(?:
([^ "]*|".*") ([^ "]*|".*"))?"
)
STORED AS TEXTFILE;
64
Inne formaty plików? SerDe
CREATE TABLE table (
foo STRING, bar STRING)
STORED AS TEXTFILE; ← lub SEQUENCEFILE, ORC, AVRO lub PARQUET
65
Zalety, wady, porównanie
Hive Pig
deklaratywny proceduralny
tabele tymczasowe pipeline
polegamy na optymalizatorze
bardziej ingerujemy w
implementacje
UDF, Transform UDF, streaming
sterowniki sql data pipeline splits
66
Stinger
http://hortonworks.com/labs/stinger/
67
Tips & Tricks
hive.vectorized.execution.enabled=true
ORC
hive.execution.engine=tez
John Lund Stone Getty Images
68
Warsztat
źródło:HikingArtist69
https://www.notehub.org/bjnwl
Warsztat 2
https://www.notehub.org/daxzs
Codepot - Pig i Hive: szybkie wprowadzenie / Pig and Hive crash course
Now what?
72
Chcesz wiedzieć więcej?
Szkolenia pozwalają na indywidualną pracę z każdym
uczestnikiem
• pracujemy w grupach 4-8 osobowych
• program może być dostosowany do oczekiwań
grupy
• rozwiązujemy i odpowiadamy na indywidualne
pytania uczestników
• mamy dużo więcej czasu :)
Szkolenie dedykowane dla
Ciebie
Jesteś architektem lub team leaderem?
• na przekrojowym szkoleniu 5-dniowym omawiamy i
ćwiczymy cały ekosystem Hadoopa
• na szkoleniu dedykowanym dla architektów dyskutujemy
o projektowaniu systemów BigData
Jesteś analitykiem?
• na dedykowanym szkoleniu przećwiczysz w szczegółach
Pig i Hive i rozwiążesz przykładowe problemy analityczne
Szkolenie dedykowane dla
Ciebie
Jesteś programistą?
• szkolenie 3-dniowe pozwala w szczegółach zapoznać się z
programowaniem zaawansowanych aspektów MapReduce
w Javie i programowaniem w podejściu strumieniowym
Interesuje Cię całość zagadnienia BigData?
• Przetwarzanie Big Data z użyciem Apache Spark
• Bazy danych NoSQL - Cassandra
• Bazy danych NoSQL - MongoDB
źródła
• HikingArtist.com - rysunki
• hortonworks.com - architektura HDP
• apache.org - grafiki Pig, Hive, Hadoop

More Related Content

PDF
Wprowadzenie do technologi Big Data i Apache Hadoop
PDF
Wprowadzenie do technologii Big Data / Intro to Big Data Ecosystem
PDF
Compose Async with RxJS
PDF
Cluj.py Meetup: Extending Python in C
PDF
Powered by Python - PyCon Germany 2016
PDF
RestMQ - HTTP/Redis based Message Queue
PDF
Cluj Big Data Meetup - Big Data in Practice
Wprowadzenie do technologi Big Data i Apache Hadoop
Wprowadzenie do technologii Big Data / Intro to Big Data Ecosystem
Compose Async with RxJS
Cluj.py Meetup: Extending Python in C
Powered by Python - PyCon Germany 2016
RestMQ - HTTP/Redis based Message Queue
Cluj Big Data Meetup - Big Data in Practice

What's hot (20)

PDF
Google App Engine Developer - Day3
PPTX
Using Cerberus and PySpark to validate semi-structured datasets
PDF
Writing native bindings to node.js in C++
PDF
JJUG CCC 2011 Spring
PPTX
All you need to know about the JavaScript event loop
ODP
Intravert Server side processing for Cassandra
PDF
PyCon KR 2019 sprint - RustPython by example
PPTX
Webinar: Building Your First App in Node.js
PDF
Herding types with Scala macros
PDF
Openstack taskflow 簡介
PDF
Typelevel summit
PPTX
CONFidence 2015: DTrace + OSX = Fun - Andrzej Dyjak
PPTX
Angular2 rxjs
PPTX
Apache Spark Structured Streaming + Apache Kafka = ♡
PDF
The Ring programming language version 1.7 book - Part 16 of 196
PDF
The Ring programming language version 1.6 book - Part 15 of 189
PPTX
Mysql5.1 character set testing
PPTX
Mysql handle socket
PPTX
C#을 이용한 task 병렬화와 비동기 패턴
PDF
Jakarta Commons - Don't re-invent the wheel
Google App Engine Developer - Day3
Using Cerberus and PySpark to validate semi-structured datasets
Writing native bindings to node.js in C++
JJUG CCC 2011 Spring
All you need to know about the JavaScript event loop
Intravert Server side processing for Cassandra
PyCon KR 2019 sprint - RustPython by example
Webinar: Building Your First App in Node.js
Herding types with Scala macros
Openstack taskflow 簡介
Typelevel summit
CONFidence 2015: DTrace + OSX = Fun - Andrzej Dyjak
Angular2 rxjs
Apache Spark Structured Streaming + Apache Kafka = ♡
The Ring programming language version 1.7 book - Part 16 of 196
The Ring programming language version 1.6 book - Part 15 of 189
Mysql5.1 character set testing
Mysql handle socket
C#을 이용한 task 병렬화와 비동기 패턴
Jakarta Commons - Don't re-invent the wheel
Ad

Viewers also liked (11)

PDF
Podstawy AngularJS
PDF
Budowa elementów GUI za pomocą biblioteki React - szybki start
PDF
Technologia Xamarin i wprowadzenie do Windows IoT core
PDF
Zrób dobrze swojej komórce - programowanie urządzeń mobilnych z wykorzystanie...
PDF
Bezpieczne dane w aplikacjach java
PDF
Wprowadzenie do technologii Puppet
PDF
Szybkie wprowadzenie do eksploracji danych z pakietem Weka
PDF
Jak zacząć przetwarzanie małych i dużych danych tekstowych?
PDF
Architektura aplikacji android
PDF
Wprowadzenie do Big Data i Apache Spark
PPTX
Vert.x v3 - high performance polyglot application toolkit
Podstawy AngularJS
Budowa elementów GUI za pomocą biblioteki React - szybki start
Technologia Xamarin i wprowadzenie do Windows IoT core
Zrób dobrze swojej komórce - programowanie urządzeń mobilnych z wykorzystanie...
Bezpieczne dane w aplikacjach java
Wprowadzenie do technologii Puppet
Szybkie wprowadzenie do eksploracji danych z pakietem Weka
Jak zacząć przetwarzanie małych i dużych danych tekstowych?
Architektura aplikacji android
Wprowadzenie do Big Data i Apache Spark
Vert.x v3 - high performance polyglot application toolkit
Ad

Similar to Codepot - Pig i Hive: szybkie wprowadzenie / Pig and Hive crash course (20)

PDF
Introduction to Scalding and Monoids
PDF
Store and Process Big Data with Hadoop and Cassandra
POTX
Stream analysis with kafka native way and considerations about monitoring as ...
PDF
Presto anatomy
PPTX
Kick your database_to_the_curb_reston_08_27_19
PDF
Hadoop Integration in Cassandra
PDF
GDG Devfest 2019 - Build go kit microservices at kubernetes with ease
PPT
Big-data-analysis-training-in-mumbai
PDF
CouchDB Mobile - From Couch to 5K in 1 Hour
PPTX
Hadoop ecosystem
PDF
[245] presto 내부구조 파헤치기
PDF
Big Data LDN 2017: Processing Fast Data With Apache Spark: the Tale of Two APIs
PDF
TDC2018SP | Trilha Go - Processando analise genetica em background com Go
PDF
Reactive Programming Patterns with RxSwift
ODP
NYC* 2013 - "Advanced Data Processing: Beyond Queries and Slices"
PDF
Hadoop ecosystem
PDF
Solr @ Etsy - Apache Lucene Eurocon
PDF
Cascading Through Hadoop for the Boulder JUG
PPTX
Scalable and Flexible Machine Learning With Scala @ LinkedIn
PPT
Camel one v3-6
Introduction to Scalding and Monoids
Store and Process Big Data with Hadoop and Cassandra
Stream analysis with kafka native way and considerations about monitoring as ...
Presto anatomy
Kick your database_to_the_curb_reston_08_27_19
Hadoop Integration in Cassandra
GDG Devfest 2019 - Build go kit microservices at kubernetes with ease
Big-data-analysis-training-in-mumbai
CouchDB Mobile - From Couch to 5K in 1 Hour
Hadoop ecosystem
[245] presto 내부구조 파헤치기
Big Data LDN 2017: Processing Fast Data With Apache Spark: the Tale of Two APIs
TDC2018SP | Trilha Go - Processando analise genetica em background com Go
Reactive Programming Patterns with RxSwift
NYC* 2013 - "Advanced Data Processing: Beyond Queries and Slices"
Hadoop ecosystem
Solr @ Etsy - Apache Lucene Eurocon
Cascading Through Hadoop for the Boulder JUG
Scalable and Flexible Machine Learning With Scala @ LinkedIn
Camel one v3-6

More from Sages (8)

PDF
Python szybki start
PDF
Budowanie rozwiązań serverless w chmurze Azure
PDF
Docker praktyczne podstawy
PDF
Angular 4 pragmatycznie
PDF
Jak działa blockchain?
PDF
Qgis szybki start
PDF
Architektura SOA - wstęp
PDF
Wprowadzenie do technologii Big Data
Python szybki start
Budowanie rozwiązań serverless w chmurze Azure
Docker praktyczne podstawy
Angular 4 pragmatycznie
Jak działa blockchain?
Qgis szybki start
Architektura SOA - wstęp
Wprowadzenie do technologii Big Data

Recently uploaded (20)

PDF
Reach Out and Touch Someone: Haptics and Empathic Computing
PDF
Machine learning based COVID-19 study performance prediction
PPT
Teaching material agriculture food technology
PDF
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
PDF
Spectral efficient network and resource selection model in 5G networks
PDF
Dropbox Q2 2025 Financial Results & Investor Presentation
PDF
Network Security Unit 5.pdf for BCA BBA.
PPTX
A Presentation on Artificial Intelligence
PDF
Building Integrated photovoltaic BIPV_UPV.pdf
PPTX
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
PDF
NewMind AI Monthly Chronicles - July 2025
PPTX
Big Data Technologies - Introduction.pptx
PDF
Empathic Computing: Creating Shared Understanding
PDF
Chapter 3 Spatial Domain Image Processing.pdf
PPTX
20250228 LYD VKU AI Blended-Learning.pptx
PDF
KodekX | Application Modernization Development
PDF
Review of recent advances in non-invasive hemoglobin estimation
PDF
Unlocking AI with Model Context Protocol (MCP)
PDF
Advanced methodologies resolving dimensionality complications for autism neur...
PPTX
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
Reach Out and Touch Someone: Haptics and Empathic Computing
Machine learning based COVID-19 study performance prediction
Teaching material agriculture food technology
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
Spectral efficient network and resource selection model in 5G networks
Dropbox Q2 2025 Financial Results & Investor Presentation
Network Security Unit 5.pdf for BCA BBA.
A Presentation on Artificial Intelligence
Building Integrated photovoltaic BIPV_UPV.pdf
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
NewMind AI Monthly Chronicles - July 2025
Big Data Technologies - Introduction.pptx
Empathic Computing: Creating Shared Understanding
Chapter 3 Spatial Domain Image Processing.pdf
20250228 LYD VKU AI Blended-Learning.pptx
KodekX | Application Modernization Development
Review of recent advances in non-invasive hemoglobin estimation
Unlocking AI with Model Context Protocol (MCP)
Advanced methodologies resolving dimensionality complications for autism neur...
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...

Codepot - Pig i Hive: szybkie wprowadzenie / Pig and Hive crash course

  • 1. Pig i Hive: Szybkie wprowadzenie Radosław Stankiewicz Bartłomiej Tartanus
  • 3. Agenda Wstęp -> 2 słowa o Map Reduce -> Pig -> Hive 3
  • 10. Klasyfikacja problemu • Baza danych ulic Warszawy, Dane w formacie JSON, optymalizacja odbioru śmieci jednego z usługodawców. • Zdarzenia z bazy transakcyjnej i kart kredytowych w celu lepszego wykrywania fraudów • System wyszukujący dobre oferty samochodów z wielu serwisów - web crawling, parsowanie danych, analiza trendów cen samochodów • Centralne repozytorium skanów umów, TB danych, codziennie przybywa kilkaset nowych dokumentów 10
  • 11. Geneza • za dużo danych • pady serwerów • wolne relacyjne bazy danych 11
  • 12. 12
  • 15. 15
  • 17. ● User Commands o dfs o fsck ● Administration Commands o datanode o dfsadmin o namenode dfs: appendToFile cat chgrp chmod chown copyFromLocal copyToLocal count cp du dus expunge get getfacl getfattr getmerge ls lsr mkdir moveFromLocal moveToLocal mv put rm rmr setfacl setfattr setrep stat tail test text touchz hdfs dfs -put localfile1 localfile2 /user/tmp/hadoopdir hdfs dfs -getmerge /user/hadoop/output/ localfile komendy 17
  • 21. Mapper #!/usr/bin/env python import sys for line in sys.stdin: words = line.strip().split() for word in words: print '%st%s' % (word, 1) line = “Ala ma kota” Ala 1 ma 1 kota 1 21
  • 22. Reducer #!/usr/bin/env python import sys current_word = None current_count = 0 word = None for line in sys.stdin: line = line.strip() word, count = line.split('t', 1) count = int(count) if current_word == word: current_count += count else: if current_word: print '%s,%s' % (current_word, current_count) current_count = count current_word = word if current_word == word: print '%s,%s' % (current_word, current_count) ala 1 ala 1 bela 1 dela 1 ala,2 bela,1 dela,1 22
  • 23. Uruchomienie streaming cat input.txt | ./mapper.py | sort | ./reducer.py bin/yarn jar [..]/hadoop-*streaming*.jar 
 -file mapper.py -mapper ./mapper.py -file reducer.py -reducer ./reducer.py 
 -input /tmp/wordcount/input -output /tmp/ wordcount/output 23
  • 24. Map Reduce w Java (input) <k1, v1> -> map -> <k2, v2> -> combine -> <k2, v2> -> reduce -> <k3, v3> (output) 1) Mapper 2) Reducer 3) run public class WordCount extends Configured implements Tool { public static class TokenizerMapper{...} public static class IntSumReducer{...} public int run(...){...} } 24
  • 25. Mapper<KEYIN,VALUEIN,KEY OUT,VALUEOUT> public static class TokenizerMapper
 extends Mapper<LongWritable, Text, Text, IntWritable>{
 
 private final static IntWritable one = new IntWritable(1);
 private Text word = new Text();
 
 public void map(LongWritable key, Text value, Context context
 ) throws IOException, InterruptedException {
 StringTokenizer itr = new StringTokenizer(value.toString());
 while (itr.hasMoreTokens()) {
 word.set(itr.nextToken());
 context.write(word, one);
 }
 } public void setup(...) {...} public void cleanup(...) {...} public void run(...) {...}
 } value = “Ala ma kota” Ala,1 ma,1 kota,1
  • 26. Reducer<KEYIN,VALUEIN,KEY OUT,VALUEOUT> public static class IntSumReducer
 extends Reducer<Text,IntWritable,Text,IntWritable> {
 private IntWritable result = new IntWritable();
 
 public void reduce(Text key, Iterable<IntWritable> values,
 Context context
 ) throws IOException, InterruptedException {
 int sum = 0;
 for (IntWritable val : values) {
 sum += val.get();
 }
 result.set(sum);
 context.write(key, result);
 } public void setup(...) {...} public void cleanup(...) {...} public void run(...) {...}
 } kota,(1,1,1,1) kota,4
  • 27. Main public int run(String[] args) throws Exception {
 Configuration conf = new Configuration();
 Job job = Job.getInstance(conf, "word count");
 job.setJarByClass(WordCount.class);
 job.setMapperClass(TokenizerMapper.class);
 job.setCombinerClass(IntSumReducer.class);
 job.setReducerClass(IntSumReducer.class);
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);
 FileInputFormat.addInputPath(job, new Path(args[0]));
 FileOutputFormat.setOutputPath(job, new Path(args[1]));
 System.exit(job.waitForCompletion(true) ? 0 : 1);
 } public static void main(String[] args) throws Exception { int res = ToolRunner.run(new Configuration(), new WordCount(),args); System.exit(res); } yarn jar wc.jar WordCount /tmp/wordcount/input /tmp/wordcount/output
  • 28. Wprowadzenie do przetwarzania danych na przykładzie Pig 28
  • 30. Czy warto? Top 5 stron odwiedzanych przez użytkowników mających 18 lat
  • 31. import java.io.IOException; import java.util.ArrayList; import java.util.Iterator; import java.util.List; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.io.Writable; import org.apache.hadoop.io.WritableComparable; import org.apache.hadoop.mapred.FileInputFormat; import org.apache.hadoop.mapred.FileOutputFormat; import org.apache.hadoop.mapred.JobConf; import org.apache.hadoop.mapred.KeyValueTextInputFormat; import org.apache.hadoop.mapred.Mapper; import org.apache.hadoop.mapred.MapReduceBase; import org.apache.hadoop.mapred.OutputCollector; import org.apache.hadoop.mapred.RecordReader; import org.apache.hadoop.mapred.Reducer; import org.apache.hadoop.mapred.Reporter; import org.apache.hadoop.mapred.SequenceFileInputFormat; import org.apache.hadoop.mapred.SequenceFileOutputFormat; import org.apache.hadoop.mapred.TextInputFormat; import org.apache.hadoop.mapred.jobcontrol.Job; import org.apache.hadoop.mapred.jobcontrol.JobControl; import org.apache.hadoop.mapred.lib.IdentityMapper; public class MRExample { public static class LoadPages extends MapReduceBase implements Mapper<LongWritable, Text, Text, Text> { public void map(LongWritable k, Text val, OutputCollector<Text, Text> oc, Reporter reporter) throws IOException { // Pull the key out String line = val.toString(); int firstComma = line.indexOf(','); String key = line.substring(0, firstComma); String value = line.substring(firstComma + 1); Text outKey = new Text(key); // Prepend an index to the value so we know which file // it came from. Text outVal = new Text("1" + value); oc.collect(outKey, outVal); } } public static class LoadAndFilterUsers extends MapReduceBase implements Mapper<LongWritable, Text, Text, Text> { public void map(LongWritable k, Text val, OutputCollector<Text, Text> oc, Reporter reporter) throws IOException { // Pull the key out String line = val.toString(); int firstComma = line.indexOf(','); String value = line.substring(firstComma + 1); int age = Integer.parseInt(value); if (age < 18 || age > 25) return; String key = line.substring(0, firstComma); Text outKey = new Text(key); // Prepend an index to the value so we know which file // it came from. Text outVal = new Text("2" + value); oc.collect(outKey, outVal); } } public static class Join extends MapReduceBase implements Reducer<Text, Text, Text, Text> { public void reduce(Text key, Iterator<Text> iter, OutputCollector<Text, Text> oc, Reporter reporter) throws IOException { // For each value, figure out which file it's from and store it // accordingly. List<String> first = new ArrayList<String>(); List<String> second = new ArrayList<String>(); while (iter.hasNext()) { Text t = iter.next(); String value = t.toString(); if (value.charAt(0) == '1') first.add(value.substring(1)); else second.add(value.substring(1)); reporter.setStatus("OK"); } // Do the cross product and collect the values for (String s1 : first) { for (String s2 : second) { String outval = key + "," + s1 + "," + s2; oc.collect(null, new Text(outval)); reporter.setStatus("OK"); } } }
  • 32. public static class LoadJoined extends MapReduceBase implements Mapper<Text, Text, Text, LongWritable> { public void map( Text k, Text val, OutputCollector<Text, LongWritable> oc, Reporter reporter) throws IOException { // Find the url String line = val.toString(); int firstComma = line.indexOf(','); int secondComma = line.indexOf(',', firstComma); String key = line.substring(firstComma, secondComma); // drop the rest of the record, I don't need it anymore, // just pass a 1 for the combiner/reducer to sum instead. Text outKey = new Text(key); oc.collect(outKey, new LongWritable(1L)); } } public static class ReduceUrls extends MapReduceBase implements Reducer<Text, LongWritable, WritableComparable, Writable> { public void reduce( Text key, Iterator<LongWritable> iter, OutputCollector<WritableComparable, Writable> oc, Reporter reporter) throws IOException { // Add up all the values we see long sum = 0; while (iter.hasNext()) { sum += iter.next().get(); reporter.setStatus("OK"); } oc.collect(key, new LongWritable(sum)); } } public static class LoadClicks extends MapReduceBase implements Mapper<WritableComparable, Writable, LongWritable, Text> { public void map( WritableComparable key, Writable val, OutputCollector<LongWritable, Text> oc, Reporter reporter) throws IOException { oc.collect((LongWritable)val, (Text)key); } } public static class LimitClicks extends MapReduceBase implements Reducer<LongWritable, Text, LongWritable, Text> { int count = 0; public void reduce( LongWritable key, Iterator<Text> iter, OutputCollector<LongWritable, Text> oc, Reporter reporter) throws IOException { // Only output the first 100 records while (count < 100 && iter.hasNext()) { oc.collect(key, iter.next()); count++; } } }
  • 33. public static void main(String[] args) throws IOException { JobConf lp = new JobConf(MRExample.class); lp.setJobName("Load Pages"); lp.setInputFormat(TextInputFormat.class); lp.setOutputKeyClass(Text.class); lp.setOutputValueClass(Text.class); lp.setMapperClass(LoadPages.class); FileInputFormat.addInputPath(lp, new Path("/user/gates/pages")); FileOutputFormat.setOutputPath(lp, new Path("/user/gates/tmp/indexed_pages")); lp.setNumReduceTasks(0); Job loadPages = new Job(lp); JobConf lfu = new JobConf(MRExample.class); lfu.setJobName("Load and Filter Users"); lfu.setInputFormat(TextInputFormat.class); lfu.setOutputKeyClass(Text.class); lfu.setOutputValueClass(Text.class); lfu.setMapperClass(LoadAndFilterUsers.class); FileInputFormat.addInputPath(lfu, new Path("/user/gates/users")); FileOutputFormat.setOutputPath(lfu, new Path("/user/gates/tmp/filtered_users")); lfu.setNumReduceTasks(0); Job loadUsers = new Job(lfu); JobConf join = new JobConf(MRExample.class); join.setJobName("Join Users and Pages"); join.setInputFormat(KeyValueTextInputFormat.class); join.setOutputKeyClass(Text.class); join.setOutputValueClass(Text.class); join.setMapperClass(IdentityMapper.class); join.setReducerClass(Join.class); FileInputFormat.addInputPath(join, new Path("/user/gates/tmp/indexed_pages")); FileInputFormat.addInputPath(join, new Path("/user/gates/tmp/filtered_users")); FileOutputFormat.setOutputPath(join, new Path("/user/gates/tmp/joined")); join.setNumReduceTasks(50); Job joinJob = new Job(join); joinJob.addDependingJob(loadPages); joinJob.addDependingJob(loadUsers); JobConf group = new JobConf(MRExample.class); group.setJobName("Group URLs"); group.setInputFormat(KeyValueTextInputFormat.class); group.setOutputKeyClass(Text.class); group.setOutputValueClass(LongWritable.class); group.setOutputFormat(SequenceFileOutputFormat.class); group.setMapperClass(LoadJoined.class); group.setCombinerClass(ReduceUrls.class); group.setReducerClass(ReduceUrls.class); FileInputFormat.addInputPath(group, new Path("/user/gates/tmp/joined")); FileOutputFormat.setOutputPath(group, new Path("/user/gates/tmp/grouped")); group.setNumReduceTasks(50); Job groupJob = new Job(group); groupJob.addDependingJob(joinJob); JobConf top100 = new JobConf(MRExample.class); top100.setJobName("Top 100 sites"); top100.setInputFormat(SequenceFileInputFormat.class); top100.setOutputKeyClass(LongWritable.class); top100.setOutputValueClass(Text.class); top100.setOutputFormat(SequenceFileOutputFormat.class); top100.setMapperClass(LoadClicks.class); top100.setCombinerClass(LimitClicks.class); top100.setReducerClass(LimitClicks.class); FileInputFormat.addInputPath(top100, new Path("/user/gates/tmp/grouped")); FileOutputFormat.setOutputPath(top100, new Path("/user/gates/top100sitesforusers18to25")); top100.setNumReduceTasks(1); Job limit = new Job(top100); limit.addDependingJob(groupJob); JobControl jc = new JobControl("Find top 100 sites for users 18 to 25"); jc.addJob(loadPages); jc.addJob(loadUsers); jc.addJob(joinJob); jc.addJob(groupJob); jc.addJob(limit); jc.run(); } }
  • 34. Users = load ‘users’ as (name, age); Fltrd = filter Users by age >= 18 and age <= 25; Pages = load ‘pages’ as (user, url); Jnd = join Fltrd by name, Pages by user; Grpd = group Jnd by url; Smmd = foreach Grpd generate group, COUNT(Jnd) as clicks; Srtd = order Smmd by clicks desc; Top5 = limit Srtd 5; store Top5 into ‘top5sites’;
  • 37. Tryb Pracy Lokalny lub Rozproszony 37
  • 38. Tryb Pracy Map Reduce lub Tez 38
  • 39. Typy danych 39 int long float double chararray datetime boolean bytearray biginteger bigdecimal
  • 41. Podstawy Pig Latin - wielkość liter • A = LOAD 'data' USING PigStorage() AS (f1:int, f2:int, f3:int);
 B = GROUP A BY f1;
 C = FOREACH B GENERATE COUNT ($0);
 DUMP C; • Nazwy zmiennych A, B, and C (tzw. aliasy) są case sensitive. • Wielkość liter jest też istotna dla: • nazwy pól f1, f2, i f3 • nazwy zmiennych A, B, C • nazwy funkcji PigStorage, COUNT • Z wyjątkiem: LOAD, USING, AS, GROUP, BY, FOREACH, GENERATE, oraz DUMP 41
  • 42. assert, and, any, all, arrange, as, asc, AVG, bag, BinStorage, by, bytearray, BIGINTEGER, BIGDECIMAL, cache, CASE, cat, cd, chararray, cogroup, CONCAT, copyFromLocal, copyToLocal, COUNT, cp, cross, datetime, %declare, %default, define, dense, desc, describe, DIFF, distinct, double, du, dump, e, E, eval, exec, explain, f, F, filter, flatten, float, foreach, full, generate, group, help, if, illustrate, import, inner, input, int, into, is, join, kill, l, L, left, limit, load, long, ls, map, matches, MAX, MIN, mkdir, mv, not, null, onschema, or, order, outer, output, parallel, pig, PigDump, PigStorage, pwd, quit, register, returns, right, rm, rmf, rollup, run, sample, set, ship, SIZE, split, stderr, stdin, stdout, store, stream, SUM, TextLoader, TOKENIZE, through, tuple, union, using, void 42 Słowa kluczowe
  • 43. Pierwsze kroki data = LOAD 'input' AS (query:CHARARRAY); A = LOAD 'data' USING PigStorage('t') AS (f1:int, f2:int, f3:int); STORE A INTO '/tmp/result' USING PigStorage(';') 43
  • 45. Kolejne kroki - operacje na danych A = LOAD 'student' USING PigStorage() AS (name:chararray, age:int, semestre:int, scholarship:float); B = FILTER A BY age > 20; 45
  • 46. Kolejne kroki - operacje na danych A = LOAD 'student' USING PigStorage() AS (name:chararray, age:int, semestre:int, scholarship:float); B = FILTER A BY age > 20; C = LIMIT B 5; 46
  • 47. Kolejne kroki - operacje na danych A = LOAD 'student' USING PigStorage() AS (name:chararray, age:int, semestre:int, scholarship:float); B = FILTER A BY age > 20; C = LIMIT B 5; D = FOREACH C GENERATE name, scholarship*semestre as funds 47
  • 48. Kolejne kroki - operacje na danych A = LOAD 'student' USING PigStorage() AS (name:chararray, age:int, semestre:int, scholarship:float); E = GROUP A by age 48
  • 49. Kolejne kroki - operacje na danych A = LOAD 'student' USING PigStorage() AS (name:chararray, age:int, semestre:int, scholarship:float); E = GROUP A by age F = FOREACH E GENERATE group as age, AVG(A.scholarship) 49
  • 51. Warsztat adres serwera ssh: 52.5.251.228 51 https://www.notehub.org/veuk1
  • 52. Wprowadzenie do analizy danych na przykładzie Hive 52
  • 54. Unikalne cechy Hive Zapytania SQL na plikach płaskich, np. CSV 54
  • 55. Unikalne cechy Hive Znaczne przyspieszenie analizy - nie potrzeba pisać Map Reduce Optymalizacja, wykonywanie części operacji w pamięci zamiast MR 55
  • 56. Unikalne cechy Hive Nieograniczone formy integracji - MongoDB, Elastic Search, HBase 56
  • 57. Unikalne cechy Hive Integracja narzędzi BI oraz DWH z Hive poprzez JDBC 57
  • 58. Hive CLI Tryb Interaktywny hive Tryb Wsadowy: hive -e ‘select foo from bar’ hive -f ‘/path/to/my/script.q’ hive -f ‘hdfs://namenode:port/path/to/my/ script.q’ więcej opcji: hive --help 58
  • 59. Typy danych INT, TINYINT, SMALLINT, BIGINT BOOLEAN DECIMAL FLOAT, DOUBLE STRING BINARY TIMESTAMP ARRAY, MAP, STRUCT, UNION DATE CHAR VARCHAR 59
  • 60. Składnia zapytań SELECT, INSERT, UPDATE GROUP BY UNION LEFT, RIGHT, FULL INNER, FULL OUTER JOIN OVER, RANK (NOT) IN, HAVING (NOT) EXISTS 60
  • 61. Data Definition Language • CREATE DATABASE/SCHEMA, TABLE, VIEW, FUNCTION, INDEX • DROP DATABASE/SCHEMA, TABLE, VIEW, INDEX • TRUNCATE TABLE • ALTER DATABASE/SCHEMA, TABLE, VIEW • MSCK REPAIR TABLE (or ALTER TABLE RECOVER PARTITIONS) • SHOW DATABASES/SCHEMAS, TABLES, TBLPROPERTIES, PARTITIONS, FUNCTIONS, INDEX[ES], COLUMNS, CREATE TABLE • DESCRIBE DATABASE/SCHEMA, table_name, view_name 61
  • 62. Tabele CREATE TABLE page_view(viewTime INT, userid BIGINT, page_url STRING, referrer_url STRING, ip STRING COMMENT 'IP Address of the User') COMMENT 'This is the page view table' PARTITIONED BY(dt STRING, country STRING) ROW FORMAT DELIMITED FIELDS TERMINATED BY '001' STORED AS TEXTFILE; 62
  • 63. Pierwsze kroki w Hive CREATE TABLE tablename1 (foo INT, bar STRING) PARTITIONED BY (ds STRING); LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename1; INSERT INTO TABLE tablename1 PARTITION (ds='2014') select_statement1 FROM from_statement; 63
  • 64. Inne formaty plików? SerDe 127.0.0.1 - frank [10/Oct/2000:13:55:36 -0700] "GET /apache_pb.gif HTTP/1.0" 200 2326 "http://www.example.com/ start.html" "Mozilla/4.08 [en] (Win98; I ;Nav)" CREATE TABLE apachelog ( host STRING, identity STRING, user STRING, time STRING, request STRING, status STRING, size STRING, referer STRING, agent STRING) ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.RegexSerDe' WITH SERDEPROPERTIES ( "input.regex" = "([^]*) ([^]*) ([^]*) (-|[^]*]) ([^ "]*|"[^"]*") (-|[0-9]*) (-|[0-9]*)(?: ([^ "]*|".*") ([^ "]*|".*"))?" ) STORED AS TEXTFILE; 64
  • 65. Inne formaty plików? SerDe CREATE TABLE table ( foo STRING, bar STRING) STORED AS TEXTFILE; ← lub SEQUENCEFILE, ORC, AVRO lub PARQUET 65
  • 66. Zalety, wady, porównanie Hive Pig deklaratywny proceduralny tabele tymczasowe pipeline polegamy na optymalizatorze bardziej ingerujemy w implementacje UDF, Transform UDF, streaming sterowniki sql data pipeline splits 66
  • 73. Chcesz wiedzieć więcej? Szkolenia pozwalają na indywidualną pracę z każdym uczestnikiem • pracujemy w grupach 4-8 osobowych • program może być dostosowany do oczekiwań grupy • rozwiązujemy i odpowiadamy na indywidualne pytania uczestników • mamy dużo więcej czasu :)
  • 74. Szkolenie dedykowane dla Ciebie Jesteś architektem lub team leaderem? • na przekrojowym szkoleniu 5-dniowym omawiamy i ćwiczymy cały ekosystem Hadoopa • na szkoleniu dedykowanym dla architektów dyskutujemy o projektowaniu systemów BigData Jesteś analitykiem? • na dedykowanym szkoleniu przećwiczysz w szczegółach Pig i Hive i rozwiążesz przykładowe problemy analityczne
  • 75. Szkolenie dedykowane dla Ciebie Jesteś programistą? • szkolenie 3-dniowe pozwala w szczegółach zapoznać się z programowaniem zaawansowanych aspektów MapReduce w Javie i programowaniem w podejściu strumieniowym Interesuje Cię całość zagadnienia BigData? • Przetwarzanie Big Data z użyciem Apache Spark • Bazy danych NoSQL - Cassandra • Bazy danych NoSQL - MongoDB
  • 76. źródła • HikingArtist.com - rysunki • hortonworks.com - architektura HDP • apache.org - grafiki Pig, Hive, Hadoop