SlideShare a Scribd company logo
CCOOMMMMEERRCCIIAALLIIZZAATTIIOONN OOPPTTIIOONNSS FFOORR AA SSEETT OOFF 
WWIIRREELLEESSSS PPAATTEENNTTSS 
Department of Management Studies, IISc 
Shanmukha Sreenivas P , M.MGT II Year 
Project Advisor : Prof. Mary Mathew 
Industry Supervisor: Mr. Mihir Mahajan
CCoonntteennttss 
Problem Statement 
Objectives 
Literature Review 
Methodology 
Results 
Conclusions 
Bibliography 
2
PPrroobblleemm SSttaatteemmeenntt 
To compare a given set of patents to class similar 
benchmark patents of the world and suggest 
commercialization options for a selected set of 
patents. 
3
4 
OObbjjeeccttiivveess 
1) To compare the given set of wireless patents with the 
identified sample of wireless world patents. 
2) To identify a benchmark sample of wireless patents in 
the world, given the patent classes of the given set of 
wireless patents. 
3) To evolve an elimination model to select a sample of 
patents with higher commercial potential. 
4) Suggest commercialization options for the selected 
set of patents.
LLiitteerraattuurree RReevviieeww 
5 
Variable Insights Author 
No of US classes Breadth, Extent of core technology diffusion Shapiro (2003) 
No of IPC classes Breadth, Extent of core technology diffusion Shapiro (2003) 
No of Inventors 
Degree of inventor collaboration, Opposition 
Survivability 
Reitzig (2003), Gibbs 
(2008) 
No of family members Patent value and Market size Gambardella et al. (2008) 
Patent Grant Lag Degree of Technology Complexity, Patent Value Popp (2003), Retzig (2003) 
Age Probability of Patent trade, Patent Value Serrano (2008) 
Backward citations count Quantitative indicator of prior art, Market size 
Reitzig (2003), Lemley 
(2013) 
Forward citations count Patent Value, Probability of patent trade Serrano (2008) 
No of claims Patent Value Ughetto (2011) 
No of words in first claim Scope of Claim, Patent Quality Osenga (2012) 
No of elements in first 
claim Scope of Claim, Patent Quality Osenga (2012)
MMeetthhooddoollooggyy 
6
7 
Set of 175 Wireless 
communication patents 
Demographic analysis 
Patent Bucketing exercise 
(3 methods) 
Three search techniques 
for potential licensees 
World benchmark patents 
obtained for each bucket. 
(n5 = 135) 
Selected set 
of patents 
(n4 = 135) 
Demographic comparison of 
benchmark and given set of 
patents 
Discriminant analysis to identify 
patents similar to benchmark 
Commercialization strategy 
Shortlist of frequently 
appearing companies 
Sampling of world 
patents from above 
companies 
(n2 = 252);(n3 = 252) 
Cont… 
25 Buckets 
Patents of high potential 
List of potential licensees 
for each Bucket
8 
Given set of patents 
Cont… 
Sample of world patents 
from above 
(n2 = 252);(n3= 252) (n1 = 175) 
Comparison of 2 random samples 
& given set of patents
DDaattaa SSeettss 
Given Set of Patents (n1= 175) 
Two samples of patents from short listed 
companies of random world sample (n2= 252, 
n3= 252) 
Patents from the given set considered after 
bucketing (n4= 135) 
World benchmark patents obtained for each 
bucket (n5= 135) 
 Ocean Tomo auctioned patents (n6= 10) 
Extracted from – Innography(2013) ; Relecura(2013) )
11..11 PPaatteenntt DDeemmooggrraapphhiicc AAnnaallyyssiiss 
USP class wise analysis of given data set 
Status of the applications (awarded v/s filed) 
Patents by inventor type ( academic v/s non-academic) 
Patent class by key inventors 
Analysis of families 
Descriptive statistics on : 
Patent lag and Age 
Number of Citations – forward and backward 
Number of Foreign Filings 
Number of Inventors 
Number of words and elements in the first claim
11..22 PPaatteenntt BBuucckkeettiinngg EExxeerrcciissee 
Identified 5 broad categories. 
The above 5 categories further into 25 buckets. 
11
11..33 SSeeaarrcchh tteecchhnniiqquueess eemmppllooyyeedd oonn 
bbuucckkeettss 
Search Techniques: 
IPC classification based search 
Forward and Backward citations based search (Two - level) 
Keyword based search 
Outcome: 
List of potential licensees for each bucket 
Shortlist of frequently appearing companies (14) 
12
22..11 MMooddeell ttoo sshhoorrttlliisstt ppaatteennttss wwiitthh 
ccoommmmeerrcciiaall ppootteennttiiaall -- LLDDAA 
Classification method 
D= v1X1+v2X2+v3X3+v4X4+…+c 
D= Discriminate function 
v=Discriminant coefficient or weight for that variable 
X=Variable considered 
c=Constant 
Patents of the given set (n4) having a greater extent of 
similarity with the benchmark patents (n5) are considered 
for further analysis. 
13
22..22 PPoossiittiioonniinngg ooff sshhoorrttlliisstteedd ppaatteennttss 
oonn IInnnnoovvaattiioonn cchhaaiinn && WWiirreelleessss cchhaaiinn 
Concept / Device based 
Basic R&D / Applied R&D / NPD 
Academic / Industry based inventors 
Device value chain 
Network value chain 
Infrastructure value chain 
Application value chain 
Content value chain 
14 
}Wireless Value Chain
RREESSUULLTTSS 
15
DDeemmooggrraapphhiicc AAnnaallyyssiiss ooff GGiivveenn SSeett ((nn11 ==117755)) 
16
DDeemmooggrraapphhiicc AAnnaallyyssiiss……11 
17 
No. of patents/patent applications filed in each USP class 
Patent filings w.r.t Filing Year and Publication Year 
Based on data extracted from Innography
DDeemmooggrraapphhiicc AAnnaallyyssiiss……22 
Jurisdictional Spread and Family analysis 
18 
Publication_Country 
No of 
Applications 
CA 1 
CN 35 
DE 7 
EP 6 
JP 33 
KR 23 
US 175 
WO 89 
Total 369 
No. of Filings No. of applications 
1 68 
2 61 
3 19 
4 16 
5 10 
8 1 
Total 175 
Based on data extracted from Innography 
Few country filings are not included in Innography
PPaatteenntt bbuucckkeettss iiddeennttiiffiieedd :: 
19 
Category-Buckets No. of patents 
Telecommunications Software 34 
Digital Image Processing 5 
Quality of Service 7 
Security 13 
Data Management 5 
Other 4 
Category-Buckets No. of patents 
Communication 60 
Massive MIMO 16 
Modulation 2 
Space Time Coding 7 
Energy Optimization & Error 
9 
detection 
Cognitive Radios 8 
Multi hop Communication 4 
Other 14 
Networking 64 
Location Discovery 7 
Node authentication 7 
Internetwork Load balancing 3 
Quality of Experience 
4 
determination 
Device handoff 3 
Scheduling in adhoc networks 5 
Optical Networks 5 
Packet Management 9 
Sensor Management 4 
Resource – Network Management 8 
Other 9 
Category-Buckets No. of patents 
Hardware-Medical Devices 7 
OTHER 10 
Category-Buckets No. of patents
o Search techniques applied onn bbuucckkeettss iiddeennttiiffiieedd……11 
20 
Ex: Massive MIMO 
IPC Classification based search 
Forward & Backward citations based 
search Keyword based search 
Airgo Networks Inc. Alcatel-lucent Alcatel-lucent 
Atheros Communications, Inc. Deere & Company Broadcom Corporation 
Broadcom Corporation Ems Technologies, Inc. 
Electronics And Telecommunications Research 
Institute 
Electronics And Telecommunications Research 
Institute Fujitsu Limited Fujitsu Limited 
Fujitsu Limited General Telecommunications Institute Huawei Technologies Co., Ltd. 
Hitachi, Ltd. Google Inc. Intel Corporation 
Intel Corporation Htc Corporation Interdigital, Inc. 
Interdigital, Inc. Ikanos Communications, Inc. Koninklijke Philips Electronics Nv 
Lg Corp. Intel Corporation Lg Corp. 
Marvell Technology Group Ltd. Kathrein-werke Kg Mimos, Berhad 
Nippon Telegraph & Telephone Corp. Microsoft Corporation Nec Corporation 
Panasonic Corporation Motorola Solutions Inc Nippon Telegraph & Telephone Corp. 
Qualcomm, Inc. Nokia Corporation Nokia Corporation 
Sony Corporation Qualcomm, Inc. Panasonic Corporation 
Sharp Corporation Rockwell Collins, Inc. Qualcomm, Inc. 
Samsung Electronics Co., Ltd. Samsung Electronics Co., Ltd. Samsung Electronics Co., Ltd. 
Telefonaktiebolaget Lm Ericsson Toshiba Corporation Sony Corporation 
Toshiba Corporation Unwired Planet Inc Telefonaktiebolaget Lm Ericsson 
Wionics Res Xr Communications, Llc Zte Corporation
o Search techniques applied onn bbuucckkeettss iiddeennttiiffiieedd……22 
Potential licensees for the portfolio 
21 
Potential licensees - Massive MIMO 
Airgo Networks Inc. 
Atheros Communications, Inc. 
Deere & Company 
Ems Technologies, Inc. 
Ikanos Communications, Inc. 
Kathrein-werke Kg 
Marvell Technology Group Ltd. 
Mimos, Berhad 
Rockwell Collins, Inc. 
Unwired Planet Inc 
Wionics Res 
Xr Communications, Llc 
Apple 
Broadcom 
Cisco Systems 
Fujitsu Limited 
Huawei 
Koninklijke Philips Electronics 
LG Electronics 
Motorola Mobility (acquired by 
Google) 
NEC corporation 
Nokia corporation 
Qualcomm 
Research in Motion (Blackberry) 
Samsung Electronics 
ZTE corporation
Patent Demographic ccoommppaarriissoonnss -- 
nn11 ((GGiivveenn SSeett)) vv//ss nn22 && nn33 ((WWoorrlldd SSaammpplleess)) 
22
PPaatteenntt DDeemmooggrraapphhiiccss nn11 vv//ss nn22 && nn33 
23 
Mean of Given 
Set(1) 
Mean of World 
Set-I(2) 
Mean of World Set- 
II(3) F statistic 
t12 
statistic 
t13 
statistic 
t23 
statistic 
No of IPC 
classes 1.57 3.29 2.98 21.934** -6.54** -6.25** 1.14 
No of 
Inventors 1.67 2.88 2.79 32.75** -7.95** -7.68** 0.558 
No of family 
members 1.96 5.52988 4.438247 53.29** 10.343** -8.872** 1.553 
Patent Grant 
Lag 1128.46 1507.12 1582.15 10.58** 3.872** -5.122** -0.95 
Backward 
Citations 
Count 
6.31 29.27 20.75 29.889** -7.81** -6.085** 2.744* 
Forward 
Citations 
Count 
0.57 2.69 3.02 17.551** -5.377** -6.266** -0.71 
No of words 
in first claim 209.5 158.5 171.89 7.27** 3.6223* 2.49* -1.566 
No of claims 22.01 22.12 21.33 0.269 -0.09 0.59 0.615 
No of 
elements in 
first claim 
4.3571 4.4936 4.6107 0.23 0.387 0.626 0.402 
No of US 
classes 2.53 2.92 3.04 2.167 -1.62 -1.962 -0.493 
Significance level: * for 0.05, ** for 0.01
Discrimination of given set ( nn44) and world 
benchmark (nn55) to identify commercially 
potential patents in the given set
DDaattaa iinnppuutt ttoo tthhee LLDDAA mmooddeell 
25 
Category-Buckets No. of patents 
from given set 
No. of world 
benchmark 
patents 
considered 
Telecommunications Software 30 30 
Digital Image Processing 5 5 
Quality of Service 7 7 
Security 13 13 
Data Management 5 5 
Similarly, we extracted data for all the remaining buckets
VVaarriiaabblleess cchhoosseenn ffoorr aannaallyyssiiss -- LLDDAA 
26 
Forward Citations 
Count 
V01 
Backward Citations 
Count 
V02 
No of US classes V03 
No of IPC classes V04 
No of Inventors V05 
No of family members V06 
Patent Grant Lag V07 
No of claims V08 
Strength V09 
Age V10 
No of words in first 
V11 
claim 
No of elements in first 
claim 
V12 
{1, if patent belongs to given set 
0, if patent belongs to benchmark set 
The class variable =
Comparison ooff mmeeaannss bbeettwweeeenn tthhee ttwwoo ggrroouuppss 
27 
Mean of Given 
Set(1) 
Mean of Benchmark 
Set(2) 
t12 statistic 
Forward Citations 
Count 0.6 5.8 -10.79** 
Backward Citations 
Count 5.95 19.26 4.59** 
No of IPC classes 1.52 1.94 -2.98* 
No of Inventors 1.64 3.23 -8.12** 
No of family members 1.61 2.93 6.086** 
Patent Grant Lag 708.86 848.32 -2.602* 
No of claims 22.33 32.83 6.733** 
Strength 31.07 75.07 -19.31** 
Age 1307.28 1736.07 7.822** 
No of words in first 
claim 142.25 139.58 0.247 
No of elements in 
first claim 4.14 4.17 0.119 
No of US classes 2.3 2.73 -1.33 
Significance level: * for 0.05, ** for 0.01
BBooxx PPlloott ooff tthhee ssttrreennggtthh vvaarriiaabbllee 
High Strength 
-Given set patents 
Low Strength 
benchmark patents 
Box Plot of the Strength variable for the two sets 28
29 
LLiinneeaarr DDiissccrriimmiinnaanntt AAnnaallyyssiiss 
1. Classification Results without strength variable 
2. Classification Results with outliers 
removed without strength variable 
Membership misfit of benchmark patents = 28.1 % Membership misfit of benchmark patents = 25.5 %
30 
LLDDAA ffuunnccttiioonn 
3. Classification Results with strength variable 
Is_given_set 
Predicted 
Group 
Membership 
0 1 Total 
Cross-validated 
Results 
Count 0 111 24 135 
1 10 125 135 
% 0 82.4 17.6 100.0 
1 7.4 92.6 100.0 
Membership misfit of benchmark patents = 17.6 % 
87.5% (236/270) of cross validated grouped 
cases are correctly classified
GGooooddnneessss ooff ffiitt ooff tthhee mmooddeell 
31 
Function Eigenvalue 
% of 
Variance 
Cumulative 
% 
Canonical 
Correlation 
1 1.606 100.0 100.0 .785 
Test of 
Function(s) 
Wilks' 
Lambda Chi-square df Sig. 
1 .384 253.302 9 .000 
62 % of the variability is 
explained 
Model is significant 
Fairly good 
discrimination is 
achieved between 
the two groups
SShhoorrttlliisstteedd PPaatteennttss 
S.No Publication No 
Forward 
Citations 
Count 
Backward 
Citations 
Count 
No of 
US 
classes 
No of 
IPC 
classes 
No of 
Inventors 
No of 
family 
members 
Patent 
Grant 
Lag 
No of 
claims 
Patent 
Granted Strength Age Bucket 
P1 US8266256 6 19 7 1 1 4 1148 10 1 85 1403 
Sensor 
mngmnt 
P2 US20100217345 4 0 2 2 2 2 547 20 0 55 1547 Health 
P3 US20100226491 3 5 3 3 2 1 549 20 0 55 1535 Health 
P4 US20100271994 3 5 1 1 1 0 552 20 0 55 1489 node auth 
P5 US20120014424 2 3 1 1 2 0 553 33 0 65 1042 MIMO 
P6 US20110003612 1 13 1 1 2 0 553 33 0 55 1420 node auth 
P7 US20120068845 1 0 1 1 1 1 566 29 0 65 992 QoS 
P8 US8126486 0 26 10 8 2 1 1278 18 1 55 1727 MIMO 
P9 US8327367 0 39 9 5 3 3 1370 12 1 55 1539 
Sensor 
mngmnt 
P10 US8193941 0 26 5 2 2 2 1126 28 1 65 1477 Health 
The last three patents are the additional ones that are obtained using model 3 32
CCoommppaarraattiivvee AAnnaallyyssiiss wwiitthh ssoolldd 
ppaatteennttss 
Shortlisted patents of given set – 10 
Ocean Tomo Auctioned Patents – 10 
Sample of benchmark patents – 10 
Sample of patents from given set – 10 
33
34 
CCoommppaarraattiivvee AAnnaallyyssiiss 
(days)
35 
SSuuggggeesstteedd ppoossiittiioonniinngg iinn –– 
WWiirreelleessss VVaalluuee CChhaaiinn 
ffoorr tthhee sshhoorrttlliisstteedd ppaatteennttss 
ooff ggiivveenn sseett 
P9P9 
P8P8 
P1P1 P2P2 
P3P3 
P9P9 
P4P4 
P5P5 
P7P7 
P6P6 P7P7 
P8P8 
P1P010 
Source : “Value network dynamics in 3G–4G wireless communications: A systems thinking approach to strategic value assessment” Pagani, 2008
SSuuggggeesstteedd ppoossiittiioonniinngg iinn –– 
IInnnnoovvaattiioonn VVaalluuee CChhaaiinn ffoorr tthhee sshhoorrttlliisstteedd ppaatteennttss ooff ggiivveenn sseett 
P3P3 P2P2 
P4P4 P5P5 P6P6 P7 P7 
P8P8 P9P9 
P1P010 
P1P1 
36 Source : Innovation Value Chain , Hansen (2007)
f Rationale foorr ccoommmmeerrcciiaalliizzaattiioonn 
ooppttiioonnss 
Commercialization options available are : 
 New product development investments: 
Valid if the patent is a concept suitable to enter the device development 
stage. 
 License the patent/s : Valid if a potential licensee keen to work further 
on the patent and based on a mutually agreed royalty model. 
 Sell out of the patent/s: Selling a patent may not be substantial unless the 
product has been on the market for a long time. The patent buyer 
usually won't want to spend a lot for an unproven product that might not 
generate a big profits. 
 Initiate a startup: Valid if the patent is at that stage where it can be 
manifested into a service or product for a customer and revenues are in 
sight within 6 months. It should also have a willing entrepreneur keen to 
take it out. 
 Cross Licensing: Usually, this type of agreement happens between two 
parties in order to avoid litigation or to settle an infringement 
dispute. Very often, the patents that each party owns covers different 
essential aspects of a given commercial product. 
Source: Shapiro, Carl, “Navigating the Patent Thicket: Cross Licenses, Patent Pools, and Standard Setting )”,2010 37 
 

c Suggested coommmmeerrcciiaalliizzaattiioonn ooppttiioonnss ffoorr 
tthhee sshhoorrttlliisstteedd PPaatteennttss//PPaatteenntt AApppplliiccaattiioonnss 
38 
Publication No 
Patent 
Granted 
Device 
based 
Concept 
based 
Academic 
Inventor 
Industrial 
Inventor 
Suggested 
positioning in - 
Wireless Value 
Chain 
Suggested 
positioning in - 
Innovation Value 
Chain 
Suggested 
– Bucket 
Suggested - 
Commercialization 
Route 
US8266256 • • • Infrastructure Applied R&D 
Sensor 
mgmt Technology Licensing 
US20100217345 • • Infrastructure 
Development & 
Design Health NPD 
US20100226491 • • Device 
Development & 
Design Health NPD 
US20100271994 • • Infrastructure Applied R&D Node Auth Technology Licensing 
US20120014424 • • Infrastructure Applied R&D MIMO Technology Licensing 
US20110003612 • • Infrastructure Applied R&D Node Auth Technology Licensing 
US20120068845 • • 
Network & 
Infrastructure 
Development & 
Design QoS NPD 
US8126486 • • • Infrastructure Applied R&D MIMO Technology Licensing 
US8327367 • • • 
Network & 
Infrastructure Applied R&D 
Sensor 
mgmt Technology Licensing 
US8193941 • • • Infrastructure 
Development & 
Design Health NPD 
Snoring Treatment
CCoonncclluussiioonnss 
Objectives 
1) To compare the given set of wireless 
patents with the identified sample of 
world wireless patents. 
2) To identify a benchmark sample of 
wireless patents in the world, given 
the patent classes of the given set of 
wireless patents. 
3) To evolve an elimination model to 
select a sample of patents with higher 
commercial potential. 
4) Suggest commercialization options 
for the selected set of patents. 
Results 
1) Analyzed the gap between the given set of 
wireless patents with the identified sample 
of world wireless patents based on Patent 
Latent Variables. 
2) Identified benchmark patents of 14 
companies shortlisted on applying search 
techniques on the buckets identified. 
3) Used Linear Discriminant Analysis to 
identify the patents with higher commercial 
potential. 
4) Positioned the shortlisted patents on the 
Wireless Value Chain and on the Innovation 
Value Chain and suggested 
commercialization options. 
39
41 
BBiibblliiooggrraapphhyy……1 
 Aronoff, R. (2013). Use it or lose it: monetize patents while others still need them. Intellectual Asset 
Management2, 57, 39–45. 
 Bekkers, R., & Nuvolari, A. (2011) .Economics of information systems and policies, 1001–1015. 
 Berkowitz, L. (1993). Getting the most from your patents. Research Technology Management, Volume 32, Issue 2, 
pp. 26. 
 Bessen, J. (2008). The value of U.S. patents by owner and patent characteristics. Research Policy, 37(5), 932–945. 
doi:10.1016/j.respol.2008.02.005 
 Bessen, J., & Maskin, E. (2009). Sequential innovation, patents and imitation , 40(4), 611–635. 
 Bilir, L. K. (2011). Patent Laws , Product Lifecycle Lengths , and the Global Sourcing Decisions of U.S. 
Multinationals. 
 Calderini, M., Caviggioli, F., Franzoni, C., & Ughetto, E. (2011). Study on the quality of the patent system in 
Europe Tender MARKT / 2009 / 11 / D Contract Notice in the Official Journal of the European March 2011 
Disclaims :, (March), 1–194. 
 Chesbrough, H. (2006). Open Innovation : A New Paradigm for Understanding Industrial Innovation. 
 Cohen, W. M., Goto, A., Nagata, A., Nelson, R. R., & Walsh, J. P. (2002).R & D spillovers, patents and the 
incentives to innovate in Japan and the United States, 31, 1349–1367. 
 Cotropia, C. A., Lemley, M., & Neukom, W. H. (2012). Do Applicant Patent citations matter? , 600 W 168, 1– 
44. 
 CTIA. (2012) Wireless & Wireline Industry Comparison Report Mid-Year 2012. 
http://files.ctia.org/pdf/CTIA_Survey_MY_2012_Graphics-_final.pdf 
 Dahlman, E., Furuskär, A., Jading, Y., Lindström, M., & Parkvall, S. (2008). Key features of the LTE radio 
interface, 77–80. 
 Ewing, T., & Feldman, R. (2012). The Giants Among Us. Stanford Technology Law Review, (expected). 
 Wanetick, D. (2012). Strategies for Negotiating Licenses, 1–16. 
 Wirtz, B. W. (2001). Reconfiguration of Value Chains in Converging Media and Communications Markets, 34, 
489–506.
42 
BBiibblliiooggrraapphhyy……22 
 Gambardella, A., Harhoff, D., & Verspagen, B. (2008). The value of European patents, (2006), 69–84. 
 Gans, J. S., & Stern, S. (2003). The product market and the market for “ideas”: commercialization strategies for 
technology entrepreneurs, 32, 333–350. 
 Gassmann, O., & Zedtwitz, M. Von. (1999). New concepts and trends in international R & D organizations. 
 Gibbs, A. (2008). Explanation of PatentCafe ® Patent Factor Index TM Reports ( PFI ) The Practical Application of 
Statistical Quality Scoring to Effective Patent Management PATENT QUALITY IMPACT FOLLOWING KSR V . 
 Hall, B. H., Jaffe, A., & Trajtenberg, M. (2005). Market value and patent citations, 1–50. 
 Harhoff, D., Scherer, F. M., & Vopel, K. (2003). Citations, family size, opposition and the value of patent rights. 
Research Policy, 32(8), 1343–1363. doi:10.1016/S0048-7333(02)00124-5 
 Hoydis, J. (2011). Massive MIMO : How many antennas do we need ? 
 http://www.innography.com. Innography- Intellectual Property Business Intelligence Solution. Accessed on 
January 10, 2013. 
 http://www.relecura.com. Reclecura- Patent and Portfolio Analysis Platform. Accessed on April 30, 2013. 
 http://www.uspto.gov. United States Patent and Trademark Office. Accessed on January 10, 2013. 
 IBM Corp. 2011. IBM SPSS Statistics for Windows .(Version 20.0.) [Software] Armonk, NY: IBM Corp. 
 Kayal, a. a., & Waters, R. C. (1999). An empirical evaluation of the technology cycle time indicator as a measure 
of the pace of technological progress in superconductor technology. IEEE Transactions on Engineering 
Management, 46(2), 127–131. doi:10.1109/17.759138 
 Li, F., & Whalley, J. (2002). Deconstruction of the telecommunications industry : From value chains to value 
networks, 26, 451–472. 
 Maitland, C. F., Bauer, J. M., & Westerveld, R. (2002). The European market for mobile data : evolving value 
chains and industry structures, 26, 485–504. 
 Misek, P. (2011). Research in Motion (RIMM) (pp. 1–12). Retrieved from 
http://ipcloseup.files.wordpress.com/2011/10/rimm.pdf 
 Olla, P., & Patel, N. V. (2002). A value chain model for mobile data service providers, 26, 551–571. 
 Osenga, K. (2012). The Shape of Things to Come : What We Can Learn From Patent Claim Length, 28(3).
43 
BBiibblliiooggrraapphhyy……33 
 Pagani, M., & Fine, C. H. (2008). Value network dynamics in 3G–4G wireless communications: A systems 
thinking approach to strategic value assessment. Journal of Business Research, 61(11), 1102–1112. 
doi:10.1016/j.jbusres.2007.11.004 
 Peppard, J., & Rylander, A. (2006). From Value Chain to Value Network: European Management Journal, 24(2- 
3), 128–141. doi:10.1016/j.emj.2006.03.003 
 Pham, A. (2011). Strategic Portfolio-based patent investment and management. Intellectual Asset Management, 
45. 
 R Development Core Team. 2013 R: A language and environment for statistical computing. (Version 3.0.1) 
[Software] R Foundation for Statistical Computing, Vienna, Austria. Available from http://www.R-project.org. 
 Reitzig, M. (2004). Improving patent valuations for management purposes—validating new indicators by 
analyzing application rationales. Research Policy, 33(6-7), 939–957. doi:10.1016/j.respol.2004.02.004 
 Sabat, H. K. (2002). The evolving mobile wireless value chain and market structure, 26, 505–535. 
 Schankerman, M. (1985). “Estimates of the value of patent rights in European countries during the Post – 1950 
period”. Economic Journal. Vol.97 . pp.1-25. 
 Serrano, C. J., Holmes, T., Kortum, S., Aguirregabiria, V., Eckstein, Z., Ge, S., Leon, F. G. De, et al. (2013). 
Estimating the Gains from Trade in the Market for Patent Rights This draft : January , 2013, 25–27. 
 Shadunsky, A. (2012). Nokia Patent Portfolio Valuation. Retrieved February 4, 2013, from 
http://seekingalpha.com/article/688381-nokia-patent-portfolio-valuation-range-too-great-to-make-nokia-a-compelling- 
buy 
 Shapiro, C. (2001). Antitrust Limits to Patent Settlements, (1998), 1–42. 
 Somaya, D., Teece, D., & Wakeman, S. (2011). Innovation in Multi-Invention Contexts:, 53(4), 47–79. 
 Sreekumaran, S., Mathew, M., & Nag, D. (2011). Technovation Dynamics between patent latent variables and 
patent price. Technovation, 31(12), 648–654. doi:10.1016/j.technovation.2011.07.002 
 Straathof, B., & Veldhuizen, S. Van. (2010). Market size, institutions, and the value of rights provided by patents. 
 Talluri, S., Baker, R. C., & Sarkis, J. (1999). A framework for designing efficient value chain networks, 62. 
 USPTO. 2012 U.S. Patent Statistics Report 2012. http://www.uspto.gov/web/offices/ac/ido/oeip/taf/us_stat.pdf
48 
TThhaannkk YYoouu

More Related Content

PPT
A brief introduction to 'R' statistical package
PPTX
Proactive planning for catastrophic events in supply chains
PDF
Merrill Lynch: Understanding financial statements
PDF
VaR Methodologies Jp Morgan
PDF
OTC Derivatives: Pervasive Regulatory Changes and Impact on Market Participan...
PPSX
How NOT to make a presentation!!
PDF
Private Placement
PPTX
HR Analytics: New approaches, higher returns on human capital investment
A brief introduction to 'R' statistical package
Proactive planning for catastrophic events in supply chains
Merrill Lynch: Understanding financial statements
VaR Methodologies Jp Morgan
OTC Derivatives: Pervasive Regulatory Changes and Impact on Market Participan...
How NOT to make a presentation!!
Private Placement
HR Analytics: New approaches, higher returns on human capital investment

Viewers also liked (8)

PPTX
Time series data mining techniques
PPTX
Construction of 6 CPCL Oil storage tankers - A critical Project Management pe...
PPT
Introduction to strategic management
PPTX
Marketing, Value, Value Propositions, Selling, Value Adding, Sales
PPT
BIDIRECTIONAL SPEED CONTROL OF DC MOTOR USING 8051 MICROCONTROLLER
PDF
Loan impairment modeling according to IAS 39 by using Basel II parameters
PPTX
The financial crisis
Time series data mining techniques
Construction of 6 CPCL Oil storage tankers - A critical Project Management pe...
Introduction to strategic management
Marketing, Value, Value Propositions, Selling, Value Adding, Sales
BIDIRECTIONAL SPEED CONTROL OF DC MOTOR USING 8051 MICROCONTROLLER
Loan impairment modeling according to IAS 39 by using Basel II parameters
The financial crisis
Ad

Similar to Commercialization Options for a set of Wireless Patents (20)

PDF
3D Cell Culture technologies Patent Landscape Sample 2016
PDF
Nanofabrics
PDF
How to valuate and determine standard essential patents
PDF
How to proactively manage your MEMS IP (or any IP for that matter), by Sergio...
PDF
System-On-Chip Market Outlook, Trends, Forecast of Top Countries 2023
PDF
Spider Patent Search - New Tool for Mining Intelligence from Patent Information
PPTX
Internet of Things (IoT) Strategic Patent Development and Monetization 1Q 2016
PDF
Nano Fabrics - Patent Analysis Report
PDF
Intellectual Property and ABS
PDF
K-Means Clustering for Analyzing Productivity in Light of R & D Spillover
PDF
K-MEANS CLUSTERING FOR ANALYZING PRODUCTIVITY IN LIGHT OF R & D SPILLOVER
PDF
K-Means Clustering for Analyzing Productivity in Light of R & D Spillover
PDF
K-Means Clustering for Analyzing Productivity in Light of R & D Spillover
PDF
Microfluidic technologies for diagnostic applications - Sample
PDF
Next Generation Sequencing & DNA Synthesis: Technology, Consumables Manufactu...
PDF
Solution to Help Companies Patent their Inventions, License Technologies, and...
PDF
Ltcc market
PPTX
Patent Mining for Business Insights: RFID Case Study
PPTX
Roland Berger Future sectors and technologies - French position
3D Cell Culture technologies Patent Landscape Sample 2016
Nanofabrics
How to valuate and determine standard essential patents
How to proactively manage your MEMS IP (or any IP for that matter), by Sergio...
System-On-Chip Market Outlook, Trends, Forecast of Top Countries 2023
Spider Patent Search - New Tool for Mining Intelligence from Patent Information
Internet of Things (IoT) Strategic Patent Development and Monetization 1Q 2016
Nano Fabrics - Patent Analysis Report
Intellectual Property and ABS
K-Means Clustering for Analyzing Productivity in Light of R & D Spillover
K-MEANS CLUSTERING FOR ANALYZING PRODUCTIVITY IN LIGHT OF R & D SPILLOVER
K-Means Clustering for Analyzing Productivity in Light of R & D Spillover
K-Means Clustering for Analyzing Productivity in Light of R & D Spillover
Microfluidic technologies for diagnostic applications - Sample
Next Generation Sequencing & DNA Synthesis: Technology, Consumables Manufactu...
Solution to Help Companies Patent their Inventions, License Technologies, and...
Ltcc market
Patent Mining for Business Insights: RFID Case Study
Roland Berger Future sectors and technologies - French position
Ad

Recently uploaded (20)

PDF
Unlocking AI with Model Context Protocol (MCP)
PDF
cuic standard and advanced reporting.pdf
PDF
Diabetes mellitus diagnosis method based random forest with bat algorithm
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PDF
Approach and Philosophy of On baking technology
PPTX
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
PPTX
Understanding_Digital_Forensics_Presentation.pptx
PPT
Teaching material agriculture food technology
PPTX
20250228 LYD VKU AI Blended-Learning.pptx
PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
DOCX
The AUB Centre for AI in Media Proposal.docx
PDF
Machine learning based COVID-19 study performance prediction
PPTX
PA Analog/Digital System: The Backbone of Modern Surveillance and Communication
PDF
Review of recent advances in non-invasive hemoglobin estimation
PDF
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
PDF
Dropbox Q2 2025 Financial Results & Investor Presentation
PDF
Bridging biosciences and deep learning for revolutionary discoveries: a compr...
PDF
Advanced methodologies resolving dimensionality complications for autism neur...
PDF
Encapsulation_ Review paper, used for researhc scholars
PDF
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
Unlocking AI with Model Context Protocol (MCP)
cuic standard and advanced reporting.pdf
Diabetes mellitus diagnosis method based random forest with bat algorithm
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
Approach and Philosophy of On baking technology
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
Understanding_Digital_Forensics_Presentation.pptx
Teaching material agriculture food technology
20250228 LYD VKU AI Blended-Learning.pptx
Digital-Transformation-Roadmap-for-Companies.pptx
The AUB Centre for AI in Media Proposal.docx
Machine learning based COVID-19 study performance prediction
PA Analog/Digital System: The Backbone of Modern Surveillance and Communication
Review of recent advances in non-invasive hemoglobin estimation
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
Dropbox Q2 2025 Financial Results & Investor Presentation
Bridging biosciences and deep learning for revolutionary discoveries: a compr...
Advanced methodologies resolving dimensionality complications for autism neur...
Encapsulation_ Review paper, used for researhc scholars
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf

Commercialization Options for a set of Wireless Patents

  • 1. CCOOMMMMEERRCCIIAALLIIZZAATTIIOONN OOPPTTIIOONNSS FFOORR AA SSEETT OOFF WWIIRREELLEESSSS PPAATTEENNTTSS Department of Management Studies, IISc Shanmukha Sreenivas P , M.MGT II Year Project Advisor : Prof. Mary Mathew Industry Supervisor: Mr. Mihir Mahajan
  • 2. CCoonntteennttss Problem Statement Objectives Literature Review Methodology Results Conclusions Bibliography 2
  • 3. PPrroobblleemm SSttaatteemmeenntt To compare a given set of patents to class similar benchmark patents of the world and suggest commercialization options for a selected set of patents. 3
  • 4. 4 OObbjjeeccttiivveess 1) To compare the given set of wireless patents with the identified sample of wireless world patents. 2) To identify a benchmark sample of wireless patents in the world, given the patent classes of the given set of wireless patents. 3) To evolve an elimination model to select a sample of patents with higher commercial potential. 4) Suggest commercialization options for the selected set of patents.
  • 5. LLiitteerraattuurree RReevviieeww 5 Variable Insights Author No of US classes Breadth, Extent of core technology diffusion Shapiro (2003) No of IPC classes Breadth, Extent of core technology diffusion Shapiro (2003) No of Inventors Degree of inventor collaboration, Opposition Survivability Reitzig (2003), Gibbs (2008) No of family members Patent value and Market size Gambardella et al. (2008) Patent Grant Lag Degree of Technology Complexity, Patent Value Popp (2003), Retzig (2003) Age Probability of Patent trade, Patent Value Serrano (2008) Backward citations count Quantitative indicator of prior art, Market size Reitzig (2003), Lemley (2013) Forward citations count Patent Value, Probability of patent trade Serrano (2008) No of claims Patent Value Ughetto (2011) No of words in first claim Scope of Claim, Patent Quality Osenga (2012) No of elements in first claim Scope of Claim, Patent Quality Osenga (2012)
  • 7. 7 Set of 175 Wireless communication patents Demographic analysis Patent Bucketing exercise (3 methods) Three search techniques for potential licensees World benchmark patents obtained for each bucket. (n5 = 135) Selected set of patents (n4 = 135) Demographic comparison of benchmark and given set of patents Discriminant analysis to identify patents similar to benchmark Commercialization strategy Shortlist of frequently appearing companies Sampling of world patents from above companies (n2 = 252);(n3 = 252) Cont… 25 Buckets Patents of high potential List of potential licensees for each Bucket
  • 8. 8 Given set of patents Cont… Sample of world patents from above (n2 = 252);(n3= 252) (n1 = 175) Comparison of 2 random samples & given set of patents
  • 9. DDaattaa SSeettss Given Set of Patents (n1= 175) Two samples of patents from short listed companies of random world sample (n2= 252, n3= 252) Patents from the given set considered after bucketing (n4= 135) World benchmark patents obtained for each bucket (n5= 135)  Ocean Tomo auctioned patents (n6= 10) Extracted from – Innography(2013) ; Relecura(2013) )
  • 10. 11..11 PPaatteenntt DDeemmooggrraapphhiicc AAnnaallyyssiiss USP class wise analysis of given data set Status of the applications (awarded v/s filed) Patents by inventor type ( academic v/s non-academic) Patent class by key inventors Analysis of families Descriptive statistics on : Patent lag and Age Number of Citations – forward and backward Number of Foreign Filings Number of Inventors Number of words and elements in the first claim
  • 11. 11..22 PPaatteenntt BBuucckkeettiinngg EExxeerrcciissee Identified 5 broad categories. The above 5 categories further into 25 buckets. 11
  • 12. 11..33 SSeeaarrcchh tteecchhnniiqquueess eemmppllooyyeedd oonn bbuucckkeettss Search Techniques: IPC classification based search Forward and Backward citations based search (Two - level) Keyword based search Outcome: List of potential licensees for each bucket Shortlist of frequently appearing companies (14) 12
  • 13. 22..11 MMooddeell ttoo sshhoorrttlliisstt ppaatteennttss wwiitthh ccoommmmeerrcciiaall ppootteennttiiaall -- LLDDAA Classification method D= v1X1+v2X2+v3X3+v4X4+…+c D= Discriminate function v=Discriminant coefficient or weight for that variable X=Variable considered c=Constant Patents of the given set (n4) having a greater extent of similarity with the benchmark patents (n5) are considered for further analysis. 13
  • 14. 22..22 PPoossiittiioonniinngg ooff sshhoorrttlliisstteedd ppaatteennttss oonn IInnnnoovvaattiioonn cchhaaiinn && WWiirreelleessss cchhaaiinn Concept / Device based Basic R&D / Applied R&D / NPD Academic / Industry based inventors Device value chain Network value chain Infrastructure value chain Application value chain Content value chain 14 }Wireless Value Chain
  • 16. DDeemmooggrraapphhiicc AAnnaallyyssiiss ooff GGiivveenn SSeett ((nn11 ==117755)) 16
  • 17. DDeemmooggrraapphhiicc AAnnaallyyssiiss……11 17 No. of patents/patent applications filed in each USP class Patent filings w.r.t Filing Year and Publication Year Based on data extracted from Innography
  • 18. DDeemmooggrraapphhiicc AAnnaallyyssiiss……22 Jurisdictional Spread and Family analysis 18 Publication_Country No of Applications CA 1 CN 35 DE 7 EP 6 JP 33 KR 23 US 175 WO 89 Total 369 No. of Filings No. of applications 1 68 2 61 3 19 4 16 5 10 8 1 Total 175 Based on data extracted from Innography Few country filings are not included in Innography
  • 19. PPaatteenntt bbuucckkeettss iiddeennttiiffiieedd :: 19 Category-Buckets No. of patents Telecommunications Software 34 Digital Image Processing 5 Quality of Service 7 Security 13 Data Management 5 Other 4 Category-Buckets No. of patents Communication 60 Massive MIMO 16 Modulation 2 Space Time Coding 7 Energy Optimization & Error 9 detection Cognitive Radios 8 Multi hop Communication 4 Other 14 Networking 64 Location Discovery 7 Node authentication 7 Internetwork Load balancing 3 Quality of Experience 4 determination Device handoff 3 Scheduling in adhoc networks 5 Optical Networks 5 Packet Management 9 Sensor Management 4 Resource – Network Management 8 Other 9 Category-Buckets No. of patents Hardware-Medical Devices 7 OTHER 10 Category-Buckets No. of patents
  • 20. o Search techniques applied onn bbuucckkeettss iiddeennttiiffiieedd……11 20 Ex: Massive MIMO IPC Classification based search Forward & Backward citations based search Keyword based search Airgo Networks Inc. Alcatel-lucent Alcatel-lucent Atheros Communications, Inc. Deere & Company Broadcom Corporation Broadcom Corporation Ems Technologies, Inc. Electronics And Telecommunications Research Institute Electronics And Telecommunications Research Institute Fujitsu Limited Fujitsu Limited Fujitsu Limited General Telecommunications Institute Huawei Technologies Co., Ltd. Hitachi, Ltd. Google Inc. Intel Corporation Intel Corporation Htc Corporation Interdigital, Inc. Interdigital, Inc. Ikanos Communications, Inc. Koninklijke Philips Electronics Nv Lg Corp. Intel Corporation Lg Corp. Marvell Technology Group Ltd. Kathrein-werke Kg Mimos, Berhad Nippon Telegraph & Telephone Corp. Microsoft Corporation Nec Corporation Panasonic Corporation Motorola Solutions Inc Nippon Telegraph & Telephone Corp. Qualcomm, Inc. Nokia Corporation Nokia Corporation Sony Corporation Qualcomm, Inc. Panasonic Corporation Sharp Corporation Rockwell Collins, Inc. Qualcomm, Inc. Samsung Electronics Co., Ltd. Samsung Electronics Co., Ltd. Samsung Electronics Co., Ltd. Telefonaktiebolaget Lm Ericsson Toshiba Corporation Sony Corporation Toshiba Corporation Unwired Planet Inc Telefonaktiebolaget Lm Ericsson Wionics Res Xr Communications, Llc Zte Corporation
  • 21. o Search techniques applied onn bbuucckkeettss iiddeennttiiffiieedd……22 Potential licensees for the portfolio 21 Potential licensees - Massive MIMO Airgo Networks Inc. Atheros Communications, Inc. Deere & Company Ems Technologies, Inc. Ikanos Communications, Inc. Kathrein-werke Kg Marvell Technology Group Ltd. Mimos, Berhad Rockwell Collins, Inc. Unwired Planet Inc Wionics Res Xr Communications, Llc Apple Broadcom Cisco Systems Fujitsu Limited Huawei Koninklijke Philips Electronics LG Electronics Motorola Mobility (acquired by Google) NEC corporation Nokia corporation Qualcomm Research in Motion (Blackberry) Samsung Electronics ZTE corporation
  • 22. Patent Demographic ccoommppaarriissoonnss -- nn11 ((GGiivveenn SSeett)) vv//ss nn22 && nn33 ((WWoorrlldd SSaammpplleess)) 22
  • 23. PPaatteenntt DDeemmooggrraapphhiiccss nn11 vv//ss nn22 && nn33 23 Mean of Given Set(1) Mean of World Set-I(2) Mean of World Set- II(3) F statistic t12 statistic t13 statistic t23 statistic No of IPC classes 1.57 3.29 2.98 21.934** -6.54** -6.25** 1.14 No of Inventors 1.67 2.88 2.79 32.75** -7.95** -7.68** 0.558 No of family members 1.96 5.52988 4.438247 53.29** 10.343** -8.872** 1.553 Patent Grant Lag 1128.46 1507.12 1582.15 10.58** 3.872** -5.122** -0.95 Backward Citations Count 6.31 29.27 20.75 29.889** -7.81** -6.085** 2.744* Forward Citations Count 0.57 2.69 3.02 17.551** -5.377** -6.266** -0.71 No of words in first claim 209.5 158.5 171.89 7.27** 3.6223* 2.49* -1.566 No of claims 22.01 22.12 21.33 0.269 -0.09 0.59 0.615 No of elements in first claim 4.3571 4.4936 4.6107 0.23 0.387 0.626 0.402 No of US classes 2.53 2.92 3.04 2.167 -1.62 -1.962 -0.493 Significance level: * for 0.05, ** for 0.01
  • 24. Discrimination of given set ( nn44) and world benchmark (nn55) to identify commercially potential patents in the given set
  • 25. DDaattaa iinnppuutt ttoo tthhee LLDDAA mmooddeell 25 Category-Buckets No. of patents from given set No. of world benchmark patents considered Telecommunications Software 30 30 Digital Image Processing 5 5 Quality of Service 7 7 Security 13 13 Data Management 5 5 Similarly, we extracted data for all the remaining buckets
  • 26. VVaarriiaabblleess cchhoosseenn ffoorr aannaallyyssiiss -- LLDDAA 26 Forward Citations Count V01 Backward Citations Count V02 No of US classes V03 No of IPC classes V04 No of Inventors V05 No of family members V06 Patent Grant Lag V07 No of claims V08 Strength V09 Age V10 No of words in first V11 claim No of elements in first claim V12 {1, if patent belongs to given set 0, if patent belongs to benchmark set The class variable =
  • 27. Comparison ooff mmeeaannss bbeettwweeeenn tthhee ttwwoo ggrroouuppss 27 Mean of Given Set(1) Mean of Benchmark Set(2) t12 statistic Forward Citations Count 0.6 5.8 -10.79** Backward Citations Count 5.95 19.26 4.59** No of IPC classes 1.52 1.94 -2.98* No of Inventors 1.64 3.23 -8.12** No of family members 1.61 2.93 6.086** Patent Grant Lag 708.86 848.32 -2.602* No of claims 22.33 32.83 6.733** Strength 31.07 75.07 -19.31** Age 1307.28 1736.07 7.822** No of words in first claim 142.25 139.58 0.247 No of elements in first claim 4.14 4.17 0.119 No of US classes 2.3 2.73 -1.33 Significance level: * for 0.05, ** for 0.01
  • 28. BBooxx PPlloott ooff tthhee ssttrreennggtthh vvaarriiaabbllee High Strength -Given set patents Low Strength benchmark patents Box Plot of the Strength variable for the two sets 28
  • 29. 29 LLiinneeaarr DDiissccrriimmiinnaanntt AAnnaallyyssiiss 1. Classification Results without strength variable 2. Classification Results with outliers removed without strength variable Membership misfit of benchmark patents = 28.1 % Membership misfit of benchmark patents = 25.5 %
  • 30. 30 LLDDAA ffuunnccttiioonn 3. Classification Results with strength variable Is_given_set Predicted Group Membership 0 1 Total Cross-validated Results Count 0 111 24 135 1 10 125 135 % 0 82.4 17.6 100.0 1 7.4 92.6 100.0 Membership misfit of benchmark patents = 17.6 % 87.5% (236/270) of cross validated grouped cases are correctly classified
  • 31. GGooooddnneessss ooff ffiitt ooff tthhee mmooddeell 31 Function Eigenvalue % of Variance Cumulative % Canonical Correlation 1 1.606 100.0 100.0 .785 Test of Function(s) Wilks' Lambda Chi-square df Sig. 1 .384 253.302 9 .000 62 % of the variability is explained Model is significant Fairly good discrimination is achieved between the two groups
  • 32. SShhoorrttlliisstteedd PPaatteennttss S.No Publication No Forward Citations Count Backward Citations Count No of US classes No of IPC classes No of Inventors No of family members Patent Grant Lag No of claims Patent Granted Strength Age Bucket P1 US8266256 6 19 7 1 1 4 1148 10 1 85 1403 Sensor mngmnt P2 US20100217345 4 0 2 2 2 2 547 20 0 55 1547 Health P3 US20100226491 3 5 3 3 2 1 549 20 0 55 1535 Health P4 US20100271994 3 5 1 1 1 0 552 20 0 55 1489 node auth P5 US20120014424 2 3 1 1 2 0 553 33 0 65 1042 MIMO P6 US20110003612 1 13 1 1 2 0 553 33 0 55 1420 node auth P7 US20120068845 1 0 1 1 1 1 566 29 0 65 992 QoS P8 US8126486 0 26 10 8 2 1 1278 18 1 55 1727 MIMO P9 US8327367 0 39 9 5 3 3 1370 12 1 55 1539 Sensor mngmnt P10 US8193941 0 26 5 2 2 2 1126 28 1 65 1477 Health The last three patents are the additional ones that are obtained using model 3 32
  • 33. CCoommppaarraattiivvee AAnnaallyyssiiss wwiitthh ssoolldd ppaatteennttss Shortlisted patents of given set – 10 Ocean Tomo Auctioned Patents – 10 Sample of benchmark patents – 10 Sample of patents from given set – 10 33
  • 35. 35 SSuuggggeesstteedd ppoossiittiioonniinngg iinn –– WWiirreelleessss VVaalluuee CChhaaiinn ffoorr tthhee sshhoorrttlliisstteedd ppaatteennttss ooff ggiivveenn sseett P9P9 P8P8 P1P1 P2P2 P3P3 P9P9 P4P4 P5P5 P7P7 P6P6 P7P7 P8P8 P1P010 Source : “Value network dynamics in 3G–4G wireless communications: A systems thinking approach to strategic value assessment” Pagani, 2008
  • 36. SSuuggggeesstteedd ppoossiittiioonniinngg iinn –– IInnnnoovvaattiioonn VVaalluuee CChhaaiinn ffoorr tthhee sshhoorrttlliisstteedd ppaatteennttss ooff ggiivveenn sseett P3P3 P2P2 P4P4 P5P5 P6P6 P7 P7 P8P8 P9P9 P1P010 P1P1 36 Source : Innovation Value Chain , Hansen (2007)
  • 37. f Rationale foorr ccoommmmeerrcciiaalliizzaattiioonn ooppttiioonnss Commercialization options available are :  New product development investments: Valid if the patent is a concept suitable to enter the device development stage.  License the patent/s : Valid if a potential licensee keen to work further on the patent and based on a mutually agreed royalty model.  Sell out of the patent/s: Selling a patent may not be substantial unless the product has been on the market for a long time. The patent buyer usually won't want to spend a lot for an unproven product that might not generate a big profits.  Initiate a startup: Valid if the patent is at that stage where it can be manifested into a service or product for a customer and revenues are in sight within 6 months. It should also have a willing entrepreneur keen to take it out.  Cross Licensing: Usually, this type of agreement happens between two parties in order to avoid litigation or to settle an infringement dispute. Very often, the patents that each party owns covers different essential aspects of a given commercial product. Source: Shapiro, Carl, “Navigating the Patent Thicket: Cross Licenses, Patent Pools, and Standard Setting )”,2010 37  
  • 38. c Suggested coommmmeerrcciiaalliizzaattiioonn ooppttiioonnss ffoorr tthhee sshhoorrttlliisstteedd PPaatteennttss//PPaatteenntt AApppplliiccaattiioonnss 38 Publication No Patent Granted Device based Concept based Academic Inventor Industrial Inventor Suggested positioning in - Wireless Value Chain Suggested positioning in - Innovation Value Chain Suggested – Bucket Suggested - Commercialization Route US8266256 • • • Infrastructure Applied R&D Sensor mgmt Technology Licensing US20100217345 • • Infrastructure Development & Design Health NPD US20100226491 • • Device Development & Design Health NPD US20100271994 • • Infrastructure Applied R&D Node Auth Technology Licensing US20120014424 • • Infrastructure Applied R&D MIMO Technology Licensing US20110003612 • • Infrastructure Applied R&D Node Auth Technology Licensing US20120068845 • • Network & Infrastructure Development & Design QoS NPD US8126486 • • • Infrastructure Applied R&D MIMO Technology Licensing US8327367 • • • Network & Infrastructure Applied R&D Sensor mgmt Technology Licensing US8193941 • • • Infrastructure Development & Design Health NPD Snoring Treatment
  • 39. CCoonncclluussiioonnss Objectives 1) To compare the given set of wireless patents with the identified sample of world wireless patents. 2) To identify a benchmark sample of wireless patents in the world, given the patent classes of the given set of wireless patents. 3) To evolve an elimination model to select a sample of patents with higher commercial potential. 4) Suggest commercialization options for the selected set of patents. Results 1) Analyzed the gap between the given set of wireless patents with the identified sample of world wireless patents based on Patent Latent Variables. 2) Identified benchmark patents of 14 companies shortlisted on applying search techniques on the buckets identified. 3) Used Linear Discriminant Analysis to identify the patents with higher commercial potential. 4) Positioned the shortlisted patents on the Wireless Value Chain and on the Innovation Value Chain and suggested commercialization options. 39
  • 40. 41 BBiibblliiooggrraapphhyy……1  Aronoff, R. (2013). Use it or lose it: monetize patents while others still need them. Intellectual Asset Management2, 57, 39–45.  Bekkers, R., & Nuvolari, A. (2011) .Economics of information systems and policies, 1001–1015.  Berkowitz, L. (1993). Getting the most from your patents. Research Technology Management, Volume 32, Issue 2, pp. 26.  Bessen, J. (2008). The value of U.S. patents by owner and patent characteristics. Research Policy, 37(5), 932–945. doi:10.1016/j.respol.2008.02.005  Bessen, J., & Maskin, E. (2009). Sequential innovation, patents and imitation , 40(4), 611–635.  Bilir, L. K. (2011). Patent Laws , Product Lifecycle Lengths , and the Global Sourcing Decisions of U.S. Multinationals.  Calderini, M., Caviggioli, F., Franzoni, C., & Ughetto, E. (2011). Study on the quality of the patent system in Europe Tender MARKT / 2009 / 11 / D Contract Notice in the Official Journal of the European March 2011 Disclaims :, (March), 1–194.  Chesbrough, H. (2006). Open Innovation : A New Paradigm for Understanding Industrial Innovation.  Cohen, W. M., Goto, A., Nagata, A., Nelson, R. R., & Walsh, J. P. (2002).R & D spillovers, patents and the incentives to innovate in Japan and the United States, 31, 1349–1367.  Cotropia, C. A., Lemley, M., & Neukom, W. H. (2012). Do Applicant Patent citations matter? , 600 W 168, 1– 44.  CTIA. (2012) Wireless & Wireline Industry Comparison Report Mid-Year 2012. http://files.ctia.org/pdf/CTIA_Survey_MY_2012_Graphics-_final.pdf  Dahlman, E., Furuskär, A., Jading, Y., Lindström, M., & Parkvall, S. (2008). Key features of the LTE radio interface, 77–80.  Ewing, T., & Feldman, R. (2012). The Giants Among Us. Stanford Technology Law Review, (expected).  Wanetick, D. (2012). Strategies for Negotiating Licenses, 1–16.  Wirtz, B. W. (2001). Reconfiguration of Value Chains in Converging Media and Communications Markets, 34, 489–506.
  • 41. 42 BBiibblliiooggrraapphhyy……22  Gambardella, A., Harhoff, D., & Verspagen, B. (2008). The value of European patents, (2006), 69–84.  Gans, J. S., & Stern, S. (2003). The product market and the market for “ideas”: commercialization strategies for technology entrepreneurs, 32, 333–350.  Gassmann, O., & Zedtwitz, M. Von. (1999). New concepts and trends in international R & D organizations.  Gibbs, A. (2008). Explanation of PatentCafe ® Patent Factor Index TM Reports ( PFI ) The Practical Application of Statistical Quality Scoring to Effective Patent Management PATENT QUALITY IMPACT FOLLOWING KSR V .  Hall, B. H., Jaffe, A., & Trajtenberg, M. (2005). Market value and patent citations, 1–50.  Harhoff, D., Scherer, F. M., & Vopel, K. (2003). Citations, family size, opposition and the value of patent rights. Research Policy, 32(8), 1343–1363. doi:10.1016/S0048-7333(02)00124-5  Hoydis, J. (2011). Massive MIMO : How many antennas do we need ?  http://www.innography.com. Innography- Intellectual Property Business Intelligence Solution. Accessed on January 10, 2013.  http://www.relecura.com. Reclecura- Patent and Portfolio Analysis Platform. Accessed on April 30, 2013.  http://www.uspto.gov. United States Patent and Trademark Office. Accessed on January 10, 2013.  IBM Corp. 2011. IBM SPSS Statistics for Windows .(Version 20.0.) [Software] Armonk, NY: IBM Corp.  Kayal, a. a., & Waters, R. C. (1999). An empirical evaluation of the technology cycle time indicator as a measure of the pace of technological progress in superconductor technology. IEEE Transactions on Engineering Management, 46(2), 127–131. doi:10.1109/17.759138  Li, F., & Whalley, J. (2002). Deconstruction of the telecommunications industry : From value chains to value networks, 26, 451–472.  Maitland, C. F., Bauer, J. M., & Westerveld, R. (2002). The European market for mobile data : evolving value chains and industry structures, 26, 485–504.  Misek, P. (2011). Research in Motion (RIMM) (pp. 1–12). Retrieved from http://ipcloseup.files.wordpress.com/2011/10/rimm.pdf  Olla, P., & Patel, N. V. (2002). A value chain model for mobile data service providers, 26, 551–571.  Osenga, K. (2012). The Shape of Things to Come : What We Can Learn From Patent Claim Length, 28(3).
  • 42. 43 BBiibblliiooggrraapphhyy……33  Pagani, M., & Fine, C. H. (2008). Value network dynamics in 3G–4G wireless communications: A systems thinking approach to strategic value assessment. Journal of Business Research, 61(11), 1102–1112. doi:10.1016/j.jbusres.2007.11.004  Peppard, J., & Rylander, A. (2006). From Value Chain to Value Network: European Management Journal, 24(2- 3), 128–141. doi:10.1016/j.emj.2006.03.003  Pham, A. (2011). Strategic Portfolio-based patent investment and management. Intellectual Asset Management, 45.  R Development Core Team. 2013 R: A language and environment for statistical computing. (Version 3.0.1) [Software] R Foundation for Statistical Computing, Vienna, Austria. Available from http://www.R-project.org.  Reitzig, M. (2004). Improving patent valuations for management purposes—validating new indicators by analyzing application rationales. Research Policy, 33(6-7), 939–957. doi:10.1016/j.respol.2004.02.004  Sabat, H. K. (2002). The evolving mobile wireless value chain and market structure, 26, 505–535.  Schankerman, M. (1985). “Estimates of the value of patent rights in European countries during the Post – 1950 period”. Economic Journal. Vol.97 . pp.1-25.  Serrano, C. J., Holmes, T., Kortum, S., Aguirregabiria, V., Eckstein, Z., Ge, S., Leon, F. G. De, et al. (2013). Estimating the Gains from Trade in the Market for Patent Rights This draft : January , 2013, 25–27.  Shadunsky, A. (2012). Nokia Patent Portfolio Valuation. Retrieved February 4, 2013, from http://seekingalpha.com/article/688381-nokia-patent-portfolio-valuation-range-too-great-to-make-nokia-a-compelling- buy  Shapiro, C. (2001). Antitrust Limits to Patent Settlements, (1998), 1–42.  Somaya, D., Teece, D., & Wakeman, S. (2011). Innovation in Multi-Invention Contexts:, 53(4), 47–79.  Sreekumaran, S., Mathew, M., & Nag, D. (2011). Technovation Dynamics between patent latent variables and patent price. Technovation, 31(12), 648–654. doi:10.1016/j.technovation.2011.07.002  Straathof, B., & Veldhuizen, S. Van. (2010). Market size, institutions, and the value of rights provided by patents.  Talluri, S., Baker, R. C., & Sarkis, J. (1999). A framework for designing efficient value chain networks, 62.  USPTO. 2012 U.S. Patent Statistics Report 2012. http://www.uspto.gov/web/offices/ac/ido/oeip/taf/us_stat.pdf

Editor's Notes

  • #11: Demographic analysis includes descriptive statistics and graphical representations of data that allow us to measure the dimensions and dynamics of the patent set at hand and compare with the world.
  • #20: Communications Technologies pertaining to the design, construction and maintenance of communication systems fall under this category Telecommunications Software Software packages that aid in the process of electronic communications, especially those that involve the transmission of audio/images/video in some manner. Networking A telecommunications network is a collection of terminals, links and nodes which connect to enable telecommunication between users of the terminals Hardware-Medical Devices Inventions that can be used in an instrument, apparatus, implant, in vitro reagent, or similar or related articles that are used to diagnose, prevent, or treat disease or other conditions. Other Techniques for global optimization of functions, Error correction, Object tracking are few among the set, which fall into this category.
  • #22: Government entities, Security agencies, independent inventors, Universities were removed from the lists.
  • #24: Explanation and interpretation of significance of the difference in the means for all variables. In terms of breadth we don’t obtain meaningful insights (1st nd 2nd variables) ability to survive an opposition is relatively greater whereas inventor collaboration is relative low when compared with the world set. Patent value and market size relatively less when compared to world Lower technology complexity of given set v/s world Thus the given set of patents are relatively novel and have a greater Claim Scope Breadth but with a limited market when compared with the rest. The given set of patents are relatively of lesser value than the world set The first claim is lengthier -> narrower scope when compared with the patents of the world.
  • #26: How the benchmarks are chosen.Based on file date, USP classes covered, Keywords and then from this list high strength patents are chosen
  • #28: The variables for which there is a significant difference between the groups are only chosen. The other variables are dropped since these variables might marginally improve the proportion of variability explained but drastically increase the error rate in terms of classification.
  • #29: From the box plot it is evident that Strength values are low even for the benchmark patentsSince other filters are also applied and these are across all the buckets identified earlier. “Outliers in the benchmark set are not removed since this leads to absence of representation from few buckets !!”
  • #30: Strength variable was removed and LDA was fit. Use only “Membership misfit”
  • #31: It is found that in this case the internal inconsistency within the benchmark set is the least and thus we go with this model where strength is also considered.We have’nt picked up the ones in the given set only based on strength since literature talks about all the other variables as indicators of commercial potential. We wanted to factor in these variables as well, in order to determine the best ones in the given set. It is the misclassified patents of the given set that we are interested in, as these are the ones with characteristics similar to the benchmark patents.The no. of instances misclassified within the given set are 10.
  • #32: .785*.785= 62 %
  • #36: Network equipment – Sensors,WLAN/ PAN modems
  • #39: Taking an Ex of last patent What stage ? – Patent is granted and in Applied RnD phase What could be done ? – NPD since device based Whom to target ? – Players in the infra value chain – and licensees identified specific to Health bucket
  • #41: The first activity to testing these new venture assumptions is to investigate the technical validity of the product.  This step is called the Technical Concept Analysis.  To have commercial value, the product or service should solve a real world problem better, cheaper, or faster than existing solutions, and the feature advantages of the new product must be powerfully better than existing ones.  Entrepreneurs should remember that existing products and services are often supported by huge advertising budgets, aggressive marketing strategies, and fierce customer loyalty.   It is seldom enough for an incremental improvement in a product to displace a well-entrenched product already in the market.  Also, remember that product benefits take precedence over product features.  Customers buy electric drills to make holes, not to get fancy cases. The next activity is to assess the intellectual property status of any technology involved in the product.  This involves determining whether the product or any of its components are covered by intellectual property protection such as patents or copyrights.  If intellectual property protection is in place, then it could signal the need to enter into a license agreement with the previous inventor for rights to use the technology.  If there is no intellectual property protection, it could mean the entrepreneur should consider filing a patent or copyright, but not just yet. A final activity is to discuss the features and functionality of the product with experts who are knowledgeable about the science, engineering, and manufacturability of the product.  One might discover that others have tried and failed at exactly the same opportunity or there is a fundamental flaw in concept, design or other assumptions
  • #42: Delphi method to identify the factors , factor analysi use to condense into four factors – management risk, mngmnt benefits, offensive benefits, cost related risks
  • #43: Delphi method to identify the factors , factor analysi use to condense into four factors – management risk, mngmnt benefits, offensive benefits, cost related risks
  • #44: Delphi method to identify the factors , factor analysi use to condense into four factors – management risk, mngmnt benefits, offensive benefits, cost related risks
  • #46: From the scatter plot it is evident that the two groups can be discriminated using a linear model since the two groups (pink and blue) separate out quite well, when plotted against pairs of variables.