SlideShare a Scribd company logo
2
Most read
Common Derivatives and Integrals                                                                                              Common Derivatives and Integrals




                                                      Derivatives                                                                                                                      Integrals
Basic Properties/Formulas/Rules                                                                                             Basic Properties/Formulas/Rules
     d
        ( cf ( x ) ) = cf ¢ ( x ) , c is any constant. ( f ( x ) ± g ( x ) )¢ = f ¢ ( x ) ± g ¢ ( x )                        ò cf ( x ) dx = c ò f ( x ) dx , c is a constant.   ò f ( x ) ± g ( x ) dx = ò f ( x ) dx ± ò g ( x ) dx
     dx                                                                                                                        b                          b
     d n
        ( x ) = nxn-1 , n is any number.                    d
                                                              ( c ) = 0 , c is any constant.                                 ò a f ( x ) dx = F ( x ) a = F (b ) - F ( a ) where F ( x ) = ò f ( x ) dx
     dx                                                    dx                                                                  b                      b                                          b                                        b                     b
                                                                                                                             ò a cf ( x ) dx = c ò a f ( x ) dx , c is a constant. ò a f ( x ) ± g ( x ) dx = ò a f ( x ) dx ± òa g ( x ) dx
                                                           æ f ö¢ f ¢ g - f g ¢
    ( f g )¢ = f ¢ g + f g ¢ – (Product Rule) ç ÷ =                                  – (Quotient Rule)                         a                                                                 b                          a
                                                           ègø             g2                                                ò a f ( x ) dx = 0                                                 ò a f ( x ) dx = -òb f ( x ) dx
     d
           (              )
           f ( g ( x ) ) = f ¢ ( g ( x ) ) g ¢ ( x ) (Chain Rule)
                                                                                                                               b                  c                  b                           b

     dx                                                                                                                      ò a f ( x ) dx = ò a f ( x ) dx + òc f ( x ) dx                    ò a c dx = c ( b - a )
                                                              ( ln g ( x )) = g (x )
                                                                               g¢ x                                                                                          b


     dx
          e( )
     d g ( x)
                   = g ¢( x ) e ( )
                                g x                         d
                                                           dx                    ( )
                                                                                                                            If f ( x ) ³ 0 on a £ x £ b then               ò a f ( x ) dx ³ 0
                                                                                                                                                                                   b                      b
                                                                                                                            If f ( x ) ³ g ( x ) on a £ x £ b then               ò a f ( x ) dx ³ ò a g ( x ) dx
Common Derivatives
Polynomials                                                                                                                 Common Integrals
 d          d                               d                       d n                      d
dx
   (c) = 0
            dx
               ( x) = 1
                                            dx
                                               ( cx ) = c
                                                                    dx
                                                                       ( x ) = nxn-1         dx
                                                                                                ( cxn ) = ncxn -1           Polynomials
                                                                                                                                                                                                                                1
                                                                                                                            ò dx = x + c                        ò k dx = k x + c                              ò x dx = n + 1 x
                                                                                                                                                                                                                                              n+1
                                                                                                                                                                                                                    n
                                                                                                                                                                                                                                                    + c, n ¹ -1
Trig Functions
                                                                                                                            ó 1 dx = ln x + c                                                                                     1
                                                                                                                                                                òx                                            òx
                                                                                                                                                                                                                    -n
 d                                          d                                       d                                       ô
                                                                                                                                                                     -1
                                                                                                                                                                          dx = ln x + c                                  dx =          x - n +1 + c , n ¹ 1
   ( sin x ) = cos x                           ( cos x ) = - sin x                     ( tan x ) = sec2 x                   õx                                                                                                  -n + 1
dx                                          dx                                      dx                                                                                                               p                     p                              p+q
                                                                                                                            ó 1 dx = 1 ln ax + b + c                                                                1 q +1    q
 d                                          d                                       d
                                                                                                                                                                                                òx       dx =          x +c=                                    +c
                                                                                                                                                                                                     q                                                     q
   ( sec x ) = sec x tan x                     ( csc x ) = - csc x cot x               ( cot x ) = - csc2 x                 ô                                                                                                     x
dx                                          dx                                      dx                                      õ ax + b a                                                                          p
                                                                                                                                                                                                                q   +1       p+ q

Inverse Trig Functions                                                                                                      Trig Functions
 d
    ( sin -1 x ) = 1 2                      d
                                               ( cos-1 x ) = - 1 2                  d
                                                                                       ( tan -1 x ) = 1 +1x2                ò cos u du = sin u + c            ò sin u du = - cos u + c          ò sec u du = tan u + c
                                                                                                                                                                                                                                      2

 dx                1- x                     dx                 1- x                 dx
                                                                                                                            ò sec u tan u du = sec u + c ò csc u cot udu = - csc u + c ò csc u du = - cot u + c
                                                                                                                                                                                                                                      2

 d
 dx
    ( sec-1 x ) = 12                        d
                                            dx
                                               ( csc-1 x ) = - 12                   d
                                                                                    dx
                                                                                       ( cot -1 x ) = - 1 +1x2              ò tan u du = ln sec u + c                  ò cot u du = ln sin u + c
                  x x -1                                      x x -1
                                                                                                                                                                                     1
                                                                                                                            ò sec u du = ln sec u + tan u + c          ò sec u du = 2 ( sec u tan u + ln sec u + tan u ) + c
                                                                                                                                                                                         3

Exponential/Logarithm Functions
 d x                        d x                                                                                                                                                                           1
   ( a ) = a x ln ( a )        (e ) = ex                                                                                    ò csc u du = ln csc u - cot u + c                      ò csc
                                                                                                                                                                                           3
                                                                                                                                                                                               u du =
                                                                                                                                                                                                          2
                                                                                                                                                                                                            ( - csc u cot u + ln csc u - cot u ) + c
dx                          dx
 d
   ( ln ( x ) ) = 1 , x > 0 d
                               ( ln x ) = 1 , x ¹ 0
                                                                                    d                       1
dx                x         dx            x                                         dx
                                                                                       ( log a ( x ) ) = x ln a , x > 0     Exponential/Logarithm Functions
                                                                                                                                                                                        au
                                                                                                                            ò e du = e + c                                ò a du =          +c                             ò ln u du = u ln ( u ) - u + c
                                                                                                                               u      u                                      u
Hyperbolic Trig Functions                                                                                                                                                              ln a
 d                                          d                               d                                                                     e au
   ( sinh x ) = cosh x                         ( cosh x ) = sinh x             ( tanh x ) = sech 2 x                        òe
                                                                                                                                 au
                                                                                                                                      sin ( bu ) du =   ( a sin ( bu ) - b cos ( bu ) ) + c                                ò ue du = ( u - 1) e
                                                                                                                                                                                                                                  u                        u
                                                                                                                                                                                                                                                                +c
dx                                          dx                              dx                                                                   a + b2   2

 d                                          d                               d
   ( sech x ) = - sech x tanh x                ( csch x ) = - csch x coth x    ( coth x ) = - csch 2 x                        eau cos ( bu ) du = 2
                                                                                                                                                   e au
                                                                                                                                                        ( a cos ( bu ) + b sin ( bu ) ) + c                                ó 1 du = ln ln u + c
dx                                          dx                              dx                                              ò                    a + b2
                                                                                                                                                                                                                           ô
                                                                                                                                                                                                                           õ u ln u


Visit http://tutorial.math.lamar.edu for a complete set of Calculus I & II notes.                   © 2005 Paul   Dawkins   Visit http://tutorial.math.lamar.edu for a complete set of Calculus I & II notes.                                          © 2005 Paul   Dawkins
Common Derivatives and Integrals                                                                                              Common Derivatives and Integrals



Inverse Trig Functions
ó      1                æu ö                                                                                                  Trig Substitutions
            du = sin -1 ç ÷ + c                       ò sin
                                                              -1
ô                                                              u du = u sin -1 u + 1 - u 2 + c                                If the integral contains the following root use the given substitution and formula.
õ a -u2   2
                        èaø
                                                                                                                                                                        a
ó 1           1      æuö                                                              1                                                        a 2 - b2 x2   Þ       x = sin q      and    cos2 q = 1 - sin 2 q
ô 2      du = tan -1 ç ÷ + c                          ò tan
                                                              -1
                                                                   u du = u tan -1 u - ln (1 + u 2 ) + c                                                                b
õ a +u
       2
              a      èaø                                                              2                                                                                 a
                                                                                                                                               b2x2 - a 2    Þ       x = sec q      and    tan 2 q = sec 2 q -1
ó    1          1      æuö                                                                                                                                              b
            du = sec-1 ç ÷ + c                        ò cos
                                                              -1
ô                                                                  u du = u cos - 1 u - 1 - u 2 + c
õ u u2 - a2     a      èaø                                                                                                                                              a
                                                                                                                                               a2 + b2 x2    Þ       x = tan q      and    sec 2 q = 1 + tan 2 q
                                                                                                                                                                        b
Hyperbolic Trig Functions                                                                                                     Partial Fractions
ò sinh u du = cosh u + c                   ò cosh u du = sinh u + c        ò sech               u du = tanh u + c                             ó P ( x)
                                                                                            2

                                                                                                                              If integrating ô          dx where the degree (largest exponent) of P ( x ) is smaller than the
ò sech tanh u du = - sech u + c            ò csch coth u du = - csch u + c ò csch
                                                                                            2
                                                                                                u du = - coth u + c                           õ Q (x)
                                                                                                                              degree of Q ( x ) then factor the denominator as completely as possible and find the partial
ò tanh u du = ln ( cosh u ) + c            ò sech u du = tan sinh u + c
                                                                     -1

                                                                                                                              fraction decomposition of the rational expression. Integrate the partial fraction
                                                                                                                              decomposition (P.F.D.). For each factor in the denominator we get term(s) in the
Miscellaneous
                                                                                                                              decomposition according to the following table.
ó 1 du = 1 ln u + a + c                                             ó 1 du = 1 ln u - a + c
ô 2                                                                 ô 2
õ a - u2      2a u - a                                              õ u - a2 2a u + a                                           Factor in Q ( x )         Term in P.F.D Factor in Q ( x )                                    Term in P.F.D
                   u            a2
ò   a + u du =       a 2 + u 2 + ln u + a 2 + u 2 + c                                                                                                                                                                A1       A2                Ak
       2        2
                                                                                                                                                                  A                                                      +             +L +
                                                                                                                                                                                        ( ax + b )
                                                                                                                                                                                                     k
                   2            2                                                                                                      ax + b                                                                      ax + b ( ax + b ) 2      ( ax + b )
                                                                                                                                                                                                                                                       k
                                                                                                                                                                ax + b
                   u 2          a2
ò   u 2 - a 2 du =   u - a 2 - ln u + u 2 - a 2 + c                                                                                                            Ax + B                                                A1 x + B1
                                                                                                                                                                                                                               +L +
                                                                                                                                                                                                                                        Ak x + Bk
                   2            2
                                                                                                                                                                                   ( ax       + bx + c )
                                                                                                                                                                                          2                k
                                                                                                                                   ax 2 + bx + c                                                                   ax + bx + c      ( ax2 + bx + c )
                                                                                                                                                                                                                     2                               k
                   u 2          a2    æuö                                                                                                                   ax 2 + bx + c
ò   a - u du =       a - u + sin -1 ç ÷ + c
      2     2                2

                   2            2     èaø
                         u-a                                                                                                  Products and (some) Quotients of Trig Functions
                                         a2     æ a -u ö
ò    2au - u 2 du =
                          2
                             2 au - u 2 + cos-1 ç
                                         2      è a ø
                                                       ÷+c                                                                    ò sin x cos x dx
                                                                                                                                   n     m


                                                                                                                                  1. If n is odd. Strip one sine out and convert the remaining sines to cosines using
Standard Integration Techniques                                                                                                        sin 2 x = 1 - cos2 x , then use the substitution u = cos x
Note that all but the first one of these tend to be taught in a Calculus II class.                                                2. If m is odd. Strip one cosine out and convert the remaining cosines to sines
                                                                                                                                       using cos 2 x = 1 - sin 2 x , then use the substitution u = sin x
u Substitution                                                                                                                    3. If n and m are both odd. Use either 1. or 2.
       ò a f ( g ( x ) ) g¢ ( x ) dx then the substitution u = g ( x ) will convert this into the
            b
Given                                                                                                                             4. If n and m are both even. Use double angle formula for sine and/or half angle
                                                                                                                                       formulas to reduce the integral into a form that can be integrated.
                                           g ( b)
integral, ò f ( g ( x ) ) g ¢ ( x ) dx = ò                                                                                    ò
            b
                                                  f ( u ) du .                                                                  tan n x sec m x dx
           a                               g ( a)
                                                                                                                                   1. If n is odd. Strip one tangent and one secant out and convert the remaining
Integration by Parts                                                                                                                  tangents to secants using tan 2 x = sec 2 x - 1 , then use the substitution u = sec x
The standard formulas for integration by parts are,                                                                                2. If m is even. Strip two secants out and convert the remaining secants to tangents
                                                                           b          b     b                                         using sec 2 x = 1 + tan 2 x , then use the substitution u = tan x
                           ò udv = uv - ò vdu                             òa udv = uv a - òa vdu                                   3. If n is odd and m is even. Use either 1. or 2.
Choose u and dv and then compute du by differentiating u and compute v by using the                                                4. If n is even and m is odd. Each integral will be dealt with differently.
                                                                                                                              Convert Example : cos 6 x = ( cos 2 x ) = (1 - sin 2 x )
                                                                                                                                                                                    3                          3
fact that v = ò dv .


Visit http://tutorial.math.lamar.edu for a complete set of Calculus I & II notes.                     © 2005 Paul   Dawkins   Visit http://tutorial.math.lamar.edu for a complete set of Calculus I & II notes.                         © 2005 Paul   Dawkins

More Related Content

PDF
Stuff You Must Know Cold for the AP Calculus BC Exam!
PDF
Calculus Cheat Sheet All
DOC
Gamma beta functions-1
PDF
Συναρτησεις Γ Λυκειου Κατευθυνση
PDF
1.2: Ασκήσεις στην ισότητα και σύνθεση συναρτήσεων
PDF
Hibbeler chapter10
PPTX
Power series
PDF
απειροστικός ιιι (μερκουράκης)
Stuff You Must Know Cold for the AP Calculus BC Exam!
Calculus Cheat Sheet All
Gamma beta functions-1
Συναρτησεις Γ Λυκειου Κατευθυνση
1.2: Ασκήσεις στην ισότητα και σύνθεση συναρτήσεων
Hibbeler chapter10
Power series
απειροστικός ιιι (μερκουράκης)

What's hot (20)

PPTX
SERIES SOLUTION OF ORDINARY DIFFERENTIALL EQUATION
PDF
Calculus cheat sheet_integrals
DOC
Τεστ στα ΕΠΑΛ στο 1ο κεφάλαιο Ανάλυσης
DOCX
Διαγώνισμα 10- 2ο κεφάλαιο ΕΠΑ.Λ Γ Λυκείου
PPTX
2.2 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ
PPTX
AEM Integrating factor to orthogonal trajactories
PDF
Σημειώσεις στις Σειρές
PPTX
Ode powerpoint presentation1
PPTX
Second Order Derivative | Mathematics
PPTX
limits and continuity
PPT
11365.integral 2
PDF
Laplace table
PDF
Ανάλυση έως αντίστροφη από το θωμά ραϊκόφτσαλη
PPTX
Transformation of axes
PPTX
Fourier integral
PDF
τυπολόγιο αοθ κεφ1 5
PDF
4 Βασικές κατηγορίες ασκήσεων μαθηματικών προσανατολισμού - 1η έκδοση
DOC
Math34 Trigonometric Formulas
PDF
6161103 3.4 three dimensional force systems
PDF
Latif M. Jiji (auth.) - Solutions Manual for Heat Conduction (Chap1-2-3) (200...
SERIES SOLUTION OF ORDINARY DIFFERENTIALL EQUATION
Calculus cheat sheet_integrals
Τεστ στα ΕΠΑΛ στο 1ο κεφάλαιο Ανάλυσης
Διαγώνισμα 10- 2ο κεφάλαιο ΕΠΑ.Λ Γ Λυκείου
2.2 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ
AEM Integrating factor to orthogonal trajactories
Σημειώσεις στις Σειρές
Ode powerpoint presentation1
Second Order Derivative | Mathematics
limits and continuity
11365.integral 2
Laplace table
Ανάλυση έως αντίστροφη από το θωμά ραϊκόφτσαλη
Transformation of axes
Fourier integral
τυπολόγιο αοθ κεφ1 5
4 Βασικές κατηγορίες ασκήσεων μαθηματικών προσανατολισμού - 1η έκδοση
Math34 Trigonometric Formulas
6161103 3.4 three dimensional force systems
Latif M. Jiji (auth.) - Solutions Manual for Heat Conduction (Chap1-2-3) (200...
Ad

Viewers also liked (9)

PDF
Common derivatives integrals
PDF
Trigo cheat sheet_reduced
PDF
Integral table
DOCX
Series expansion of exponential and logarithmic functions
PDF
PPTX
Reverse power rule
PDF
Integral table
PDF
Calculus Derivatives Limits
PPT
Famous Book Fairs Around The World
Common derivatives integrals
Trigo cheat sheet_reduced
Integral table
Series expansion of exponential and logarithmic functions
Reverse power rule
Integral table
Calculus Derivatives Limits
Famous Book Fairs Around The World
Ad

Similar to Common derivatives integrals_reduced (20)

PPTX
Cea0001 ppt project
POT
PDF
11 x1 t16 02 definite integral (2012)
PDF
11X1 T17 02 definite integral
PDF
11X1 T16 02 definite integral (2011)
PDF
11X1 T14 02 definite integral
PDF
Lesson 25: Evaluating Definite Integrals (Section 4 version)
PDF
Formula List Math 1230
DOC
Chapter 4(differentiation)
PDF
Normal
PDF
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
PDF
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
PPTX
Antiderivatives nako sa calculus official
PDF
Lesson 25: Evaluating Definite Integrals (Section 10 version)
PPTX
Math for Bus. and Eco. Chapter 2
PDF
Lesson 25: Evaluating Definite Integrals (slides
PDF
Lesson 25: Evaluating Definite Integrals (slides)
PPT
X2 T05 06 Partial Fractions
DOC
Concept map function
KEY
0210 ch 2 day 10
Cea0001 ppt project
11 x1 t16 02 definite integral (2012)
11X1 T17 02 definite integral
11X1 T16 02 definite integral (2011)
11X1 T14 02 definite integral
Lesson 25: Evaluating Definite Integrals (Section 4 version)
Formula List Math 1230
Chapter 4(differentiation)
Normal
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
Antiderivatives nako sa calculus official
Lesson 25: Evaluating Definite Integrals (Section 10 version)
Math for Bus. and Eco. Chapter 2
Lesson 25: Evaluating Definite Integrals (slides
Lesson 25: Evaluating Definite Integrals (slides)
X2 T05 06 Partial Fractions
Concept map function
0210 ch 2 day 10

Common derivatives integrals_reduced

  • 1. Common Derivatives and Integrals Common Derivatives and Integrals Derivatives Integrals Basic Properties/Formulas/Rules Basic Properties/Formulas/Rules d ( cf ( x ) ) = cf ¢ ( x ) , c is any constant. ( f ( x ) ± g ( x ) )¢ = f ¢ ( x ) ± g ¢ ( x ) ò cf ( x ) dx = c ò f ( x ) dx , c is a constant. ò f ( x ) ± g ( x ) dx = ò f ( x ) dx ± ò g ( x ) dx dx b b d n ( x ) = nxn-1 , n is any number. d ( c ) = 0 , c is any constant. ò a f ( x ) dx = F ( x ) a = F (b ) - F ( a ) where F ( x ) = ò f ( x ) dx dx dx b b b b b ò a cf ( x ) dx = c ò a f ( x ) dx , c is a constant. ò a f ( x ) ± g ( x ) dx = ò a f ( x ) dx ± òa g ( x ) dx æ f ö¢ f ¢ g - f g ¢ ( f g )¢ = f ¢ g + f g ¢ – (Product Rule) ç ÷ = – (Quotient Rule) a b a ègø g2 ò a f ( x ) dx = 0 ò a f ( x ) dx = -òb f ( x ) dx d ( ) f ( g ( x ) ) = f ¢ ( g ( x ) ) g ¢ ( x ) (Chain Rule) b c b b dx ò a f ( x ) dx = ò a f ( x ) dx + òc f ( x ) dx ò a c dx = c ( b - a ) ( ln g ( x )) = g (x ) g¢ x b dx e( ) d g ( x) = g ¢( x ) e ( ) g x d dx ( ) If f ( x ) ³ 0 on a £ x £ b then ò a f ( x ) dx ³ 0 b b If f ( x ) ³ g ( x ) on a £ x £ b then ò a f ( x ) dx ³ ò a g ( x ) dx Common Derivatives Polynomials Common Integrals d d d d n d dx (c) = 0 dx ( x) = 1 dx ( cx ) = c dx ( x ) = nxn-1 dx ( cxn ) = ncxn -1 Polynomials 1 ò dx = x + c ò k dx = k x + c ò x dx = n + 1 x n+1 n + c, n ¹ -1 Trig Functions ó 1 dx = ln x + c 1 òx òx -n d d d ô -1 dx = ln x + c dx = x - n +1 + c , n ¹ 1 ( sin x ) = cos x ( cos x ) = - sin x ( tan x ) = sec2 x õx -n + 1 dx dx dx p p p+q ó 1 dx = 1 ln ax + b + c 1 q +1 q d d d òx dx = x +c= +c q q ( sec x ) = sec x tan x ( csc x ) = - csc x cot x ( cot x ) = - csc2 x ô x dx dx dx õ ax + b a p q +1 p+ q Inverse Trig Functions Trig Functions d ( sin -1 x ) = 1 2 d ( cos-1 x ) = - 1 2 d ( tan -1 x ) = 1 +1x2 ò cos u du = sin u + c ò sin u du = - cos u + c ò sec u du = tan u + c 2 dx 1- x dx 1- x dx ò sec u tan u du = sec u + c ò csc u cot udu = - csc u + c ò csc u du = - cot u + c 2 d dx ( sec-1 x ) = 12 d dx ( csc-1 x ) = - 12 d dx ( cot -1 x ) = - 1 +1x2 ò tan u du = ln sec u + c ò cot u du = ln sin u + c x x -1 x x -1 1 ò sec u du = ln sec u + tan u + c ò sec u du = 2 ( sec u tan u + ln sec u + tan u ) + c 3 Exponential/Logarithm Functions d x d x 1 ( a ) = a x ln ( a ) (e ) = ex ò csc u du = ln csc u - cot u + c ò csc 3 u du = 2 ( - csc u cot u + ln csc u - cot u ) + c dx dx d ( ln ( x ) ) = 1 , x > 0 d ( ln x ) = 1 , x ¹ 0 d 1 dx x dx x dx ( log a ( x ) ) = x ln a , x > 0 Exponential/Logarithm Functions au ò e du = e + c ò a du = +c ò ln u du = u ln ( u ) - u + c u u u Hyperbolic Trig Functions ln a d d d e au ( sinh x ) = cosh x ( cosh x ) = sinh x ( tanh x ) = sech 2 x òe au sin ( bu ) du = ( a sin ( bu ) - b cos ( bu ) ) + c ò ue du = ( u - 1) e u u +c dx dx dx a + b2 2 d d d ( sech x ) = - sech x tanh x ( csch x ) = - csch x coth x ( coth x ) = - csch 2 x eau cos ( bu ) du = 2 e au ( a cos ( bu ) + b sin ( bu ) ) + c ó 1 du = ln ln u + c dx dx dx ò a + b2 ô õ u ln u Visit http://tutorial.math.lamar.edu for a complete set of Calculus I & II notes. © 2005 Paul Dawkins Visit http://tutorial.math.lamar.edu for a complete set of Calculus I & II notes. © 2005 Paul Dawkins
  • 2. Common Derivatives and Integrals Common Derivatives and Integrals Inverse Trig Functions ó 1 æu ö Trig Substitutions du = sin -1 ç ÷ + c ò sin -1 ô u du = u sin -1 u + 1 - u 2 + c If the integral contains the following root use the given substitution and formula. õ a -u2 2 èaø a ó 1 1 æuö 1 a 2 - b2 x2 Þ x = sin q and cos2 q = 1 - sin 2 q ô 2 du = tan -1 ç ÷ + c ò tan -1 u du = u tan -1 u - ln (1 + u 2 ) + c b õ a +u 2 a èaø 2 a b2x2 - a 2 Þ x = sec q and tan 2 q = sec 2 q -1 ó 1 1 æuö b du = sec-1 ç ÷ + c ò cos -1 ô u du = u cos - 1 u - 1 - u 2 + c õ u u2 - a2 a èaø a a2 + b2 x2 Þ x = tan q and sec 2 q = 1 + tan 2 q b Hyperbolic Trig Functions Partial Fractions ò sinh u du = cosh u + c ò cosh u du = sinh u + c ò sech u du = tanh u + c ó P ( x) 2 If integrating ô dx where the degree (largest exponent) of P ( x ) is smaller than the ò sech tanh u du = - sech u + c ò csch coth u du = - csch u + c ò csch 2 u du = - coth u + c õ Q (x) degree of Q ( x ) then factor the denominator as completely as possible and find the partial ò tanh u du = ln ( cosh u ) + c ò sech u du = tan sinh u + c -1 fraction decomposition of the rational expression. Integrate the partial fraction decomposition (P.F.D.). For each factor in the denominator we get term(s) in the Miscellaneous decomposition according to the following table. ó 1 du = 1 ln u + a + c ó 1 du = 1 ln u - a + c ô 2 ô 2 õ a - u2 2a u - a õ u - a2 2a u + a Factor in Q ( x ) Term in P.F.D Factor in Q ( x ) Term in P.F.D u a2 ò a + u du = a 2 + u 2 + ln u + a 2 + u 2 + c A1 A2 Ak 2 2 A + +L + ( ax + b ) k 2 2 ax + b ax + b ( ax + b ) 2 ( ax + b ) k ax + b u 2 a2 ò u 2 - a 2 du = u - a 2 - ln u + u 2 - a 2 + c Ax + B A1 x + B1 +L + Ak x + Bk 2 2 ( ax + bx + c ) 2 k ax 2 + bx + c ax + bx + c ( ax2 + bx + c ) 2 k u 2 a2 æuö ax 2 + bx + c ò a - u du = a - u + sin -1 ç ÷ + c 2 2 2 2 2 èaø u-a Products and (some) Quotients of Trig Functions a2 æ a -u ö ò 2au - u 2 du = 2 2 au - u 2 + cos-1 ç 2 è a ø ÷+c ò sin x cos x dx n m 1. If n is odd. Strip one sine out and convert the remaining sines to cosines using Standard Integration Techniques sin 2 x = 1 - cos2 x , then use the substitution u = cos x Note that all but the first one of these tend to be taught in a Calculus II class. 2. If m is odd. Strip one cosine out and convert the remaining cosines to sines using cos 2 x = 1 - sin 2 x , then use the substitution u = sin x u Substitution 3. If n and m are both odd. Use either 1. or 2. ò a f ( g ( x ) ) g¢ ( x ) dx then the substitution u = g ( x ) will convert this into the b Given 4. If n and m are both even. Use double angle formula for sine and/or half angle formulas to reduce the integral into a form that can be integrated. g ( b) integral, ò f ( g ( x ) ) g ¢ ( x ) dx = ò ò b f ( u ) du . tan n x sec m x dx a g ( a) 1. If n is odd. Strip one tangent and one secant out and convert the remaining Integration by Parts tangents to secants using tan 2 x = sec 2 x - 1 , then use the substitution u = sec x The standard formulas for integration by parts are, 2. If m is even. Strip two secants out and convert the remaining secants to tangents b b b using sec 2 x = 1 + tan 2 x , then use the substitution u = tan x ò udv = uv - ò vdu òa udv = uv a - òa vdu 3. If n is odd and m is even. Use either 1. or 2. Choose u and dv and then compute du by differentiating u and compute v by using the 4. If n is even and m is odd. Each integral will be dealt with differently. Convert Example : cos 6 x = ( cos 2 x ) = (1 - sin 2 x ) 3 3 fact that v = ò dv . Visit http://tutorial.math.lamar.edu for a complete set of Calculus I & II notes. © 2005 Paul Dawkins Visit http://tutorial.math.lamar.edu for a complete set of Calculus I & II notes. © 2005 Paul Dawkins