Computational models of cognition can have explanatory power when they are structurally valid models of the natural systems that inspired them. The document discusses different approaches to modeling knowledge in cognitive architectures and humans. It analyzes how ACT-R, CLARION, and LIDA represent concepts, and suggests that humans likely use heterogeneous representations including prototypes, exemplars, and other conceptual structures. Models should account for this heterogeneity to better explain human cognition.
Related topics: