SlideShare a Scribd company logo
Summary of Lectures
  Just click to see next animation

     Prepared by: Dr. Suhaila Mohamad Yusuf
               suhailamy@utm.my




           Prepared by Dr. Suhaila Mohamad Yusuf
CHAPTER 6
NON-LINEAR EQUATIONS

      Prepared by Dr. Suhaila Mohamad Yusuf
Centre Limit Theorem
• Given an equation of f(x) with an interval of
  [a,b], you need to determine whether there
  exist at least a real root in that interval
• CLT said that if f(a) and f(b) have opposite sign
  (one is –ve and another is +ve) then there
  exist at least a real root in that interval

          a                                                 b
      f(a) +ve                                           f(b) -ve
                 Prepared by Dr. Suhaila Mohamad Yusuf
Bisection Method
f(x) = x3 – 3x2 + 8x - 5     c = (a + b) / 2     [0,1] ℇ=0.005

 i      a          b           f(a)      f(b)        c         f(c)
 0      0          1            -5         1        0.5       -1.625
 1These f(c) > ℇ then,
      0.5are from 1the        -1.625
                           given         Calculated from this stop!
                                          1    Is this < ℇ? Yes,
                                                    0.75     -0.266
 2      new interval!
       0.75 interval
                   1          -0.266            No, next iteration!
                                          1 equation
                                                  0.875      0.373
 3     0.75      0.875        -0.266     0.373    0.8125       0.056
 4     0.75      0.813How to choose 0.056new 0.7815
                           -0.266   the                        -0.103
 5     0.782     0.813           interval?
                              -0.103     0.056    0.7975       -0.021
 6     0.798     0.813        -0.021     0.056    0.8055       0.020
 7     0.798     0.806        -0.021     0.02     0.802        0.002

Make sure these parts
           0        Repeat all the steps
                                      0.5                    1 This is the
                  CAREFULLY until f(c) < ℇ
 have opposite sign!
        -ve f(x)                    -ve f(x)              +ve f(x) root!!
   We need to take this c value. CLT said that f(a) and f(b)
     How about another one?                     should have opposite sign!
                   Prepared by Dr. Suhaila Mohamad Yusuf
False Position Method
f(x) = x3 – 3x2 + 8x - 5   c = [af(b) - bf(a)] / [f(b) – f(a)] [0,1] ℇ=0.005

     i       a         b          f(a)              f(b)              c        f(c)
     0       0         1            -5                1             0.833     -1.625
    1        0       0.8333     -5
         These are from the given                  0.162  Is this < ℇ? Yes,
                                                             0.807
                                                   Calculated from this0.029  stop!
    2        0        0.807
                 interval      -5                  0.029       No, next iteration!
                                                               0.802
                                                             equation   0.004

                                                                            This is the
                      Remember how to choose the                              root!!
                    interval value? What does the CLT
                           said about interval?



                            Prepared by Dr. Suhaila Mohamad Yusuf
Secant Method
f(x) = sin (x) + 3x – e3             xi+2 = [xif(xi+1) – xi+1f(xi)] / [f(xi+1) – f(xi)]
                        x0 = 1 , x1 = 0 ℇ=0.0005

             i      xi              xi+1             xi+2          f(xi+2)
             0      1                0             0.4710          0.2652
            1     0       0.4710
                                                 ℇ? Yes, stop!
             These are from the given Is this <0.0295
                                     0.3723
                                 Calculated from this
                                               -0.0012
            2   0.4710    0.3723
                                         No, next iteration!
                                     0.3599
                values of x0 and x1 equation
            3   0.3723 interval. Take the latest 2
                   New 0.3599        0.3604     0.0000
                       values as next interval
                                Continue iteration
                                 until f(xi+2) < ℇ                       This is the
                                                                           root!!

                           Prepared by Dr. Suhaila Mohamad Yusuf
Newton’s Method
f(x) = x3 – sin x    Xn+1 = xn – [f(xn) / f’(xn)]                            x0 = 1 ℇ=0.0005

              n        xn                   f(xn)                   f’(xn)
              0        1                  0.15853              2.45970
              1      0.93555     0.01392      2.03239
           This is from the given Calculated from the
              2 values of x
                     0.92870     0.00015      1.98858
                     | < ℇ? Yes, stop!
                             0           derivative of f(x)
        Is |xn+1 – xn0.92862Calculated from this
              3                  -0.00001     1.98807
             No, next iteration!
              4      0.92862      equation


                              Continue iteration
                                          This < ℇ
                              until |xn+1 – xn|is the
                                             root!!

                            Prepared by Dr. Suhaila Mohamad Yusuf
CHAPTER 7
EIGENVALUE PROBLEM

     Prepared by Dr. Suhaila Mohamad Yusuf
Characteristic Polynomial
• p(λ) = det (A –λI)
                                 3                2
                   A
                                    1          5
            3       2                 1 0                   3           2
A   I
             1     5                  0 1                       1   5
• p(λ) = det (A –λI)
       = [(3- λ)(5- λ)] – [(-2)(-1)]
       = λ2 - 8λ + 13
                    Prepared by Dr. Suhaila Mohamad Yusuf
Gerschgorin’s Circle Theorem
    3     2   1   Row 1:                   Row 2:               Row 3:
                  |λ – 3| < |–2| + |1|     |λ – 3| < |–1| + |1| |λ – (-4)| < |1| + |–2|
A    1    3   1   |λ – 3| < 3              |λ – 3| < 2          |λ – 4| < 3
    1     2   4    0<λ<6                    1<λ<5                -7 < λ < -1
                   λ ϵ (0,6)                λ ϵ (1,5)            λ ϵ (-7,-1)




                   radius = 3                                            radius = 3


    -7   -6 -5    -4 -3 -2 -1                0       1           2   3      4   5     6

                                                            radius = 2
                                   λ ϵ (-7,6)
                         Prepared by Dr. Suhaila Mohamad Yusuf
Power Method
• Aims to find dominant eigenvalue
  (largest value of eigenvalue)

       1    2             1
                                     v(0) = (0,0,1)T
  A    1    0          1
                                     ε = 0.001
       4    4          5



                Prepared by Dr. Suhaila Mohamad Yusuf
Power Method
         1   2        1   v(0) = (0,0,1)T A * v                                        Abs max
 A       1   0     1                                                                   between
                          ε = 0.001
         4   4     5                                                                 these values
     k                      (v(k))T                                       (Av(k))T          mk+1
     0            0           0                1               -1             1      5       5
     1           -0.2        0.2               1             -0.8             0.8    3.4    3.4
                                                   These values
   ǁv(k+1)-v(k)ǁ < ε ?
     2   -0.235    0.235                       1      0.765 -0.7653.12
                                    Note that ǁv(k+1)-0.755 is a 3.04
                                                       v(k)ǁ
                                                                                           3.12
   3     -0.245    0.245            1       -0.755                                         3.04
  No, next iteration
   4     -0.248    0.248            1       -0.752
                                                    divided by
                                   difference of two vectors.3.016
                                                      0.752                                3.016
                                                     that value
      5        -0.249    0.2492     1      2-0.751    0.751    2 3.008                     3.008
        v u          (v1 u1 ) (v2 u2 ) ... (vn un )
      6        -0.250    0.250      1       -0.750    to have 3.000
                                                      0.750                                3.000
v (1) 7 v ( 0) -0.250( 0.0.250 ) 2 (1 .2 0) 2 (1 1) 2 values
                         2 0         0             these


                          Eigenvector                                                Eigenvalue
                                      Prepared by Dr. Suhaila Mohamad Yusuf
Shifted Power Method
• Aims to find smallest eigenvalue and
  intermediate eigenvalue

       1    2              1
                                      v(0) = (0,1,0)T
  A    1    0           1             ε = 0.001
       4     4          5             λ1 = 3.0




                 Prepared by Dr. Suhaila Mohamad Yusuf
Shifted Power Method
 B   A         I
     A 3 .0 I
     1          2           1           1 0 0
     1          0          1        3.0 0 1 0
     4             4       5                 0 0 1
     1          2           1         3. 0           0    0
     1          0          1            0        3. 0     0
     4             4       5            0            0   3 .0
         2          2           1
         1             3       1
         4             4       2
             Prepared by Dr. Suhaila Mohamad Yusuf
Shifted Power Method
          2   2          1   v(0) = (0,1,0)T B * v                                          Abs max
 B        1    3       1                                                                    between
                             ε = 0.001
          4    4       2                                                                  these values
     k                        (v(k))T                                       (Bv(k))T              mk+1
     0             0            1                0               2               -3       -4       -4
     1            -0.5         0.75              1              1.5             -1.75     -3       -3
    2       -0.5     0.583                 1.166 1
                                        These values -1.249                             -2.332   -2.332
 ǁv(k+1)-v(k)ǁ < ε ? 0.517
    3       -0.5                Note that ǁv(k+1)-v(k)ǁ is a
                                    1      1.072     -1.108                             -2.144   -2.144
No, 4next iteration
            -0.5     0.508     differencedivided by
                                    1     of two vectors.
                                           1.034     -1.051                             -2.068   -2.068
     5          -0.5     0.504      1    that value
                                           1.016     -1.024                             -2.032   -2.032
v u6          (v1 u1 ) 2 0.502 u2 )1 ... tovhave n-1.012
                -0.5       (v2       2
                                           1.008 u )
                                            ( n        2
                                                                                        -2.016   -2.016
     7            -0.5        0.501              1       these values
                                                            1.004  -1.006               -2.008   -2.008
     8            -0.5         0.5               1            1.002         -1.003      -2.004   -2.004
     9            -0.5         0.5               1            1.000         -1.000      -2.000   -2.000
     10           -0.5          10                1              Eigenvector
                                        Prepared by Dr. Suhaila Mohamad Yusuf            Shifted Eigenvalue
Shifted Power Method
• λshifted = -2.0
• λ3 = λshifted + λ1 = -2.0 + 3.0 = 1.0
                                                             1     2       1
• Intermediate λ2                                  A         1     0      1
   λ1 + λ2 + λ3 = a11 + a22 + a33
   3.0 + λ2 + 1.0 = 1 + 0 + 5                               4      4     5
   λ2 = 2.0                                                Caution!!! Use the
                                                            original matrix, A.
                                                             Not the shifted
                    Prepared by Dr. Suhaila Mohamad Yusuf
                                                                matrix, B.
CHAPTER 8
INTERPOLATION

   Prepared by Dr. Suhaila Mohamad Yusuf
Interpolation                         Approximation
                                                     Least Square
  Newton Forward
    Difference

  Newton Backward
     Difference
  Newton Divided
    Difference                   May need table
                                 re-arrangement
  Langrage

             Prepared by Dr. Suhaila Mohamad Yusuf
Newton Forward Difference
            k           0            1                2                 3           4            5
            xk      1.0              1.2             1.4              1.6           1.8         2.0
            yk    0.5000           0.4545         0.4167            0.3846       0.3571        0.3333
          Find y(1.1)
            k      xk         yk           ∆yk       ∆2yk         ∆3yk       ∆4yk       ∆5yk      x=1.0 is
 x=1.1      0     1.0       0.5000       -0.0455 0.0077 -0.0020 0.0009               -0.0007      chosen
located                                                                                            as ref.
            1     1.2       0.4545       -0.0378 0.0057 value
                                                    This -0.0011 0.0002
  here                                                                                             point
            2     1.4       0.4167       -0.0321 0.0046 -0.0009    Repeat until                  because
            3     1.6       0.3846       -0.0275 0.0037 this
                                                    minus                     last column        of higher
                                                      value                                       degree
            4     1.8       0.3571       -0.0238
            5     2.0       0.3333                      To get this
                                                          value


                                     Prepared by Dr. Suhaila Mohamad Yusuf
Newton Forward Difference
• h = 1.2 – 1.0 = 0.2 and
  r = (x – x0) / h = (1.1 – 1.0) / 0.2 = 0.5
                          r( r 1)      2     r( r 1)( r 2 ) 3
  p5 ( x ) y 0   r y0                      y0                  y0
                              2!                     3!
    r( r 1)( r 2 )( r 3) 4        r( r 1)( r 2 )( r 3)( r 4 ) 5
                              y0                                    y0
                4!                                 5!
                                         ( 0.5 )( 0.5 1)
  p5 (1.1) 0.5000 ( 0.5 )( 0.0455)                       ( 0.0077)
                                                  2
    ( 0.5 )( 0.5 1)( 0.5 2 )              ( 0.5 )( 0.5 1)( 0.5 2 )( 0.5 3)
                             ( 0.0020)                                     ( 0.0009)
                 6                                         24
    ( 0.5 )( 0.5 1)( 0.5 2 )( 0.5 3)( 0.5 4 )
                                                 ( 0.0007)
                        120
    0.5000 0.02275 0.0009625 0.000125 0.0000352 0.0000191
    0.4761                Prepared by Dr. Suhaila Mohamad Yusuf
Newton Backward Difference
            k          0            1                2                 3           4            5
            xk     1.0              1.2             1.4              1.6           1.8         2.0
            yk    0.5000          0.4545          0.4167           0.3846      0.3571         0.3333
          Find y(1.9)
            k     xk         yk           ∇yk       ∇2yk         ∇3yk       ∇4yk       ∇5yk      x=2.0 is
            0     1.0      0.5000                                                                chosen
                                                         This value                               as ref.
            1     1.2      0.4545       -0.0455                                                   point
            2     1.4      0.4167       -0.0378 0.0077 this
                                                   minus                                        because
            3     1.6      0.3846                    value
                                        -0.0321 0.0057 -0.0020
                                                                                                of higher
                                                   To get this                                   degree
 x=1.9      4     1.8      0.3571       -0.0275 0.0046 -0.0011 0.0009
located
            5     2.0      0.3333                    value
                                        -0.0238 0.0037 -0.0009 0.0002               -0.0007
  here
                                                                             Repeat until
                                                                             last column
                                    Prepared by Dr. Suhaila Mohamad Yusuf
Newton Backward Difference
• h = 1.2 – 1.0 = 0.2 and
  r = (x – x0) / h = (1.9 – 2.0) / 0.2 = -0.5
                     r (r 1)   2     r (r 1)(r 2) 3
 p5 ( x) y5 r y5                y5                      y5
                         2!                  3!
   r (r 1)(r 2)(r 3) 4      r (r 1)(r 2)(r 3)(r 4) 5
                       y5                                   y5
            4!                            5!
                                    ( 0.5)( 0.5 1)
 p5 (1.9) 0.3333 ( 0.5)( 0.0238)                      (0.0037)
                                              2
   ( 0.5)( 0.5 1)( 0.5 2)               ( 0.5)( 0.5 1)( 0.5 2)( 0.5 3)
                          ( 0.0009)                                    (0.0002)
               6                                         24
   ( 0.5)( 0.5 1)( 0.5 2)( 0.5 3)( 0.5 4)
                                                ( 0.0007)
                     120
   0.3333 0.0119 0.0004625 0.00005625 0.000007869 0.0000191
  0.3448                   Prepared by Dr. Suhaila Mohamad Yusuf
Newton Divided Difference                                                              1st step,
                k            0              1                2                  3            4             mark the
                                                             See this                                       col like
                xk       1.0               1.6              2.5              3.0             3.2
                                                            number?                                        this start
                yk     0.5000             0.3846          0.2857           0.2500         0.2381             from
           Find y(1.3)                                                                                        f[xk].
                                   1               2          3             4         5
                k       xk        f[xk]          f1[xk]     f2[xk]       f3[xk]     f4[xk]          Go to col xk and
           5000 0
0..3846 (0.0.1923)
01099                1 1.0       0.5000         -0.1923 0.0549 -0.0137 0.0032                       count down the
    1.6 1.0
     25                                                                                             col according to
                1    2 1.6
                     1           0.3846         -0.1099 0.0275 -0.0066
0.2857 0.3846                                                                                      number on top of
    2.5 1.6     2    2 2.5
                     3           0.2857         -0.0714 0.0170                                     the col. Then the
                3      3.0       0.2500                                                               last value of x
                                                -0.0595
                                                                                                     minus with the
                4      3.2       0.2381                                                              first value of x.

                        To fill in this col, we
                                                            Big problem is ‘divide
                         know that lower
                        value – upper value                      with what?’
                                            Prepared by Dr. Suhaila Mohamad Yusuf
Newton Divided Difference
• Interpolation Polynomial expression
  p4 ( x ) y 0 f [ x 0 , x1 ]( x x 0 ) f [ x 0 , x1 , x 2 ]( x x 0 )( x x1 )
               f [ x 0 , x1 , x 2 , x 3 ]( x x 0 )( x x1 )( x x 2 )
                  f [ x 0 , x1 , x 2 , x 3 , x 4 ]( x x 0 )( x x1 )( x x 2 )( x x 3 )
• Assign the value into the polynomial
  expression
  p 4 (1.3 )   0.5 ( 0.1923)(1.3 1.0 ) 0.0549(1.3 1.0 )(1.3 1.6 )
                   ( 0.0137)(1.3 1.0 )(1.3 1.6 )(1.3 2.5 )
                   0.0032(1.3 1.0 )(1.3 1.6 )(1.3 2.5 )(1.3 3.0 )
               0.5 0.05769 0.004941 0.0014796 0.00058752
               0.4353
                             Prepared by Dr. Suhaila Mohamad Yusuf
Newton Divided Difference
    k        0           1                2                 3      4
    xk       1.0        1.6              2.5              3.0     3.2
    yk     0.5000      0.3846         0.2857            0.2500   0.2381
  Find y(2.8)

• Re-arrange the table then do as previous
• How to re-arrange table? 2.8 is in here
     k        0           1
          Value of x before                2Decending value of 4
                                                     3
    xk      and after 2.8 1.6
             1.0                          2.5          3.0
                                                   remaining x     3.2
    yk     0.5000       0.3846         0.2857           0.2500   0.2381

     k          0         1                2                 3      4
    xk
    yk                   Prepared by Dr. Suhaila Mohamad Yusuf
Langrage
       k             0                1                 2                  3              4
       xk           1.0              1.6               2.5                3.0         3.2
       yk         0.5000          0.3846            0.2857               0.2500      0.2381
     Find y(1.3)
                                                                                      n
pn ( x ) L 0 ( x )y 0 L1( x )y 1 .......L n ( x )y n                                          L i ( x )y i
                                                                                     i 0
            4
p4 ( x )          L i ( x )y i
            i 0
p4 ( x ) L 0 ( x )y 0            L 1( x )y 1 L 2 ( x )y 2                 L 3 ( x )y 3 L 4 ( x )y 4



                                 Prepared by Dr. Suhaila Mohamad Yusuf
Langrage
                            Because it is L0, x0 is nowhere to
• Calculate L0                    be found up here

              (1.3 x1 )(1.3         x 2 )(1.3         x 3 )(1.3 x 4 )
 L 0 ( 1.3 )
               ( x 0 x1 )( x 0      x 2 )( x 0        x 3 )( x 0 x 4 )
             (1.3 1.6 )(1.3         2.5 )(1.3          3.0 )(1.3 3.2 )
                                                                          0.2936
             (1.0 1.6 )(1.0         2.5 )(1.0           3.0 )(1.0 3.2 )

                                                 Because it is L0, x0 is deducted
• With the same                                          with other x
  method, calculate L1,
  L2 ,L3 ,L4
                         Prepared by Dr. Suhaila Mohamad Yusuf
Langrage
              4
p 4 (1.3 )         L i (1.3 )y i
             i 0

             0.2936( 0.5000) 0.9613 0.3846) 0.6152( 0.2857)
                                   (

             0.7329( 0.2500) 0.3726( 0.2381)

             0.4353



                                   Prepared by Dr. Suhaila Mohamad Yusuf
Least Square
• Determine the appropriate linear polynomial
  expression, p(x) = a0 + a1x based on the following data:
• Determine f(2.3)

      x        1              2                   3           4      5
     f(x)     0.50         1.40                2.00          2.50   3.10

            s 0 s1 a 0               v0
            s1 s 2 a 1               v1

                     Prepared by Dr. Suhaila Mohamad Yusuf
Least Square
xk 0   xk 1   xk 2           fk        xk 0 f k     xk 1 f k
 1      1      1           0.5           0.5          0.5
 1      2      4           1.4           1.4          2.8
 1      3      9           2.0           2.0          6.0
 1      4     16           2.5           2.5         10.0
 1      5     25           3.1           3.1         15.5
 5     15     55             -           9.5         34.8



s 0 s1 a 0              v0                    5 15 a 0         9.5
s1 s 2 a 1              v1                    15 55 a 1        34.8
                   Prepared by Dr. Suhaila Mohamad Yusuf
Least Square
         5 15 a 0                    9.5
         15 55 a 1                   34.8
• Solution, a0 = 0.01 dan a1 = 0.63
• Therefore, the polynomial expression is p(x) =
  0.01x + 0.63
• To determine f(2.3):
          p( 2.3) 0.01( 2.3) 0.63 0.653
          f ( 2.3) p( 2.3) 0.653
               Prepared by Dr. Suhaila Mohamad Yusuf
CHAPTER 9
   NUMERICAL
DIFFERENTIATION
    Prepared by Dr. Suhaila Mohamad Yusuf
Forward      Backward      Forward        Backward          Central             Forward      Central
Difference    Difference   Difference      Difference       Difference          Difference   Difference



     2-point                             3-point                                       5-point
     Formula                             Formula                                       Formula


               FIRST
             DERIVATIVE
                f‘(x)
                                                                                       SECOND
                                                                                      DERIVATIVE
                                                                                         f‘’(x)
          NUMERICAL
         INTEGRATION                                  3-point
                                                      Formula                            5-point
                                                                                         Formula
                             Central
                            Difference                                    Central
                                                                         Difference
                            Prepared by Dr. Suhaila Mohamad Yusuf
SORRY!!! I DIDN’T PREPARE
ANYTHING. THIS CHAPTER IS TOO
 EASY. MAKE SURE YOU KNOW
  WHICH FORMULA TO USE..


         Prepared by Dr. Suhaila Mohamad Yusuf
CHAPTER 10
  NUMERICAL
 INTEGRATION
   Prepared by Dr. Suhaila Mohamad Yusuf
Numerical Integration


• Interval / scale, h
                        b a
               h
                         N




                Prepared by Dr. Suhaila Mohamad Yusuf
Trapezoidal Rule
• Approximate the following integral using the
  Trapezoidal rule with h=0.5
                     4        x
                                          dx
                    1
                            x 4


                 b a                   4 1
            N                              6
                  h                     05
                                         .

                Prepared by Dr. Suhaila Mohamad Yusuf
Trapezoidal Rule
                                                        4    x               4
                              xi                                     dx          f ( x) dx
i      xi         f ( xi )                             1
                                                            x    4           1

                             xi 4                                           h
                                                                              f      f6      2 f1   f2   f3   f4   f5
0     1.0               0.4472                                              2 0
1     1.5                               0.6396                              0.5
                                                                                1.8614 2 4.8486
2     2.0                               0.8165                               2

3     2.5                              0.9806                               2.8896

4     3.0                              1.1339
5     3.5                              1.2780
6    4.0                1.4142
    Total               1.8614          4.8486
    prepared by Razana Alwee


            1st and last         In-between
               values               values


                                    Prepared by Dr. Suhaila Mohamad Yusuf
Simpson’s 1/3 Rule
• Approximate the following integral using the
  Trapezoidal rule with h=0.5
                     4        x
                                          dx
                    1
                            x 4


                 b a                   4 1
            N                              6
                  h                     05
                                         .

                Prepared by Dr. Suhaila Mohamad Yusuf
Simpson’s 1/3 Rule                                                  3                    2
                                                4    x                h
                                                             dx           f0   f6   4         f 2i   1   2         f 2i
                                                1
                                                    x 4               3                 i 1                  i 1


                                                                      0.5
                                         xi                               1.8614 4(2.8982) 2(1.9504)
i    xi             fi      f ( xi )                                   3
                                        xi 4
0   1.0    0.4472                                                     2.8925

1   1.5                       0.6396
2   2.0                                             0.8165
3   2.5                       0.9806
4   3.0                                             1.1339
5   3.5                       1.2780
6    4.0 1.4142
    Total 1.8614              2.8982                1.9504
    1st and last          Odd                     Even
                              Prepared by Dr. Suhaila Mohamad Yusuf
       values            column                 column
Simpson’s 3/8 Rule
• Approximate the following integral using the
  Trapezoidal rule with h=0.25
                     4        x
                                          dx
                    1
                            x 4


              b a 4 1
            N          12
               h  0.25

                Prepared by Dr. Suhaila Mohamad Yusuf
Simpson’s 3/8 Rule
                                                                                       4                               3
                                       4     x               3h
                                                      dx             f0     f12    3         f 3i   2   f 3i   1   2         f 3i
                                      1
                                             x    4           8                        i 1                             i 1
                                       xi
i      xi             fi   f ( xi )
                                      xi 4                    3(0.25)
0    1.00    0.4472
                                                                      1.8614 3(7.7191)                     2(2.9174)
                                                                 8
1    1.25                    0.5455
2    1.50                    0.6396                           2.8925
3    1.75                                        0.7298
4     2.00                   0.8165
5     2.25                   0.9000
6     2.50                                       0.9806
7     2.75                   1.0586
8     3.00                   1.1339
9     3.25                                       1.2070
10    3.50                   1.2780
11    3.75                   1.3470
12    4.00   1.4142
     Total   1.8614          7.7191              2.9174

                                            ‘Ganda
       1st and        Remaining
                                           3’ (3,6,9)
     last values        values             Prepared by Dr. Suhaila Mohamad Yusuf
Romberg Integration
            Formula for Romberg Table
i                  hi                          Ri,1                     Ri,2                Ri,3


1              b a                            h1
                                    R1,1         f0       f1
                                              2
2              1
                 h1
               2
3              1
                 h2
               2

            1                       2   i 2
                                                                         4 j 1 Ri , j   1   Ri     1, j 1
    Ri ,1     Ri           hi                 f 2k             Ri , j
            2
                   1,1          1
                                    k 1
                                                      1                          4j     1
                                                                                            1


                         Prepared by Dr. Suhaila Mohamad Yusuf
Romberg Integration

• Use Romberg integration to approximate

               4            x
                                             dx
              1
                        x 4
• Compute the Romberg table until
  |Ri,j Ri,j-1|<0.0005


                   Prepared by Dr. Suhaila Mohamad Yusuf
Romberg Integration
                                    How to calculate
 4      x                               these?
                        dx                                                 b a     4 1
1                                                                     N                1
       x 4                                From the h here, we               h       3
                                            can know the N
h1     b a       4 1 3                   (number of segments)
                                     Integration starts from        Therefore, we only have
                                      1 to 4 and only has 1         f0 and f1, the first node
       h1                                                              and the last node
R1,1       f 0 f1                            segment
       2                                             1                               4
                                                                    h=3
       3
          0.4472 1.4142                                                              f1
       2                                              f0
                                               4    1                          4    4
       2.7921.                                 1
                                                   1 4
                                                           0.4772              1
                                                                                   4 4
                                                                                          1.4142

             Find the f0 = f(1) and f1
               = f(4) using this f(x)by Dr. Suhaila Mohamad Yusuf
                              Prepared
Romberg Integration

i             hi                     Ri,1                  Ri,2   Ri,3



1             3                 2.7921

2            1.5            h2 is half of h1
                           Now we need
3                         to fill in the 2nd
                                  row
                     This value needs to be
 Fill in the Rombergcalculated using other
                      Table with answers that
              you’ve got previously
                             formula

                   Prepared by Dr. Suhaila Mohamad Yusuf
Romberg Integration
                                              How to calculate
   4         x                                     this?
                                        dx Remember!!                                            b a    4 1
 1                                                                                         N                2
            x Every time you calculatewe R ,
               4           From the h here,                                                       h     1.5
                             can know the N new xx
              1 your f , f , ...(number ofbe changed!!
                                 fx will segments)
       h2       h1 1.5 0 1
              2
                                Draw diagram to be safe!! , we have three
                             Integration starts from   Therefore
       1             1
                                                    1 to 4 and has 2                       nodes f0 ,f1, and f2,
R2,1     R1,1 h1             f 2k
       2         k       1
                                    1
                                                       segments
       1
         R1,1 h1 ( f1 )                                          1        h = 1.5    2.5                  4
       2
       1                                                          f0                  f1                  f2
         R1,1 h1 ( f (2.5))
       2                                                                      4    2 .5
       1                                                                                       0.9806
                                                                             1
          2.7921 3 0.9806                                                         2 .5 4
       2
       2.8670                                                                       Find the f1 = f(2.5) using
                                          Prepared by Dr. Suhaila Mohamad Yusuf             this f(x)
Romberg Integration
• Calculate R2,2 using another formula

             4 R2,1       R1,1       4 2.8670                2.7921
    R2 , 2                                                            2.8920
                      3                                3
• Is |Ri,j Ri,j-1|<0.0005? Only compare with R in
  the same row, not the same column
    R2, 2 R2,1            2.8920 2.8670                     0.025 0.0005


                            Prepared by Dr. Suhaila Mohamad Yusuf
Romberg Integration
i         hi                     Ri,1                    Ri,2   Ri,3



1         3                 2.7921

2        1.5                2.8670                     2.8920

3   Fill in0.75Romberg half ofwith answers that
            the    h3 is Table h2
                you’ve got previously
                       Now we need
                      to fill in the 3rd
                 This value row to be
                              needs
                 calculated using other
                         formula
               Prepared by Dr. Suhaila Mohamad Yusuf
Romberg Integration
                                             How to calculate
       4            x                             this?
                                    dx                                                 b a       4 1
       1                                                                          N                      4
                 x 4                              From the h here, we                   h        0.75
                                                    can know the N
                    1                            (number of segments)
            h3        h2      0.75
                    2                         Integration starts from           Therefore, we have five
           1         2                            1 to 4 and has 4             nodes f0 ,f1, f2 ,f3 and f4,
R3,1         R2,1 h2 f 2 k      1                    segments
           2        k 1

           1                                 1                1.75          2.5       3.25         4
             R2,1 h2 ( f1 f 3 )
           2                                     h = 0.75
           1                                 f0                f1            f2         f3        f4
              R2,1 h2 ( f (1.75) f (3.25))              4    1.75
           2                                                             0.7298
                                                                                      4   3.25
                                                       1
                                                                                                   1.2070
           1                                               1.75 4                    1
                                                                                         3.25 4
              2.8670 1.5 0.7298 1.2070
           2                                                                     Find the f1 = f(1.75) and
           2.8861                     Prepared by Dr. Suhaila Mohamad Yusuf     f3 = f(3.25) using this f(x)
Romberg Integration
• Calculate R3,2 using another formula

            4 R3,1 R2,1      4 2.8861 2.8670
    R3, 2                                                    2.8925
                 3                   3
• Is |Ri,j Ri,j-1|<0.0005? Only compare with R in
  the same row, not the same column
    R3, 2 R3,1    2.8925 2.8861 0.0064 0.0005


                     Prepared by Dr. Suhaila Mohamad Yusuf
Romberg Integration
• Calculate R3,3 using another formula

          4 R3, 2     R2, 2     16 2.8925 2.8920
   R3,3                                                              2.8925
                 15                     15
• Is |Ri,j Ri,j-1|<0.0005? Only compare with R in
  the same row, not the same column
    R3,3 R3, 2      2.8925 2.8925                      0.0000 0.0005

                                                          Stop Iteration!!
                         Prepared by Dr. Suhaila Mohamad Yusuf
Romberg Integration
i         hi                     Ri,1                  Ri,2   Ri,3



1         3                 2.7921

2   You 1.5
        don’t need to generate
               2.8670  2.8920
         Trapezoidal Table!
3      0.75    2.8861  2.8925 2.8925
       Just follow my way..
                              The solution of
    Fill in the Romberg Table with answers that
                            integration is here
                 you’ve got previously


               Prepared by Dr. Suhaila Mohamad Yusuf
ALL THE BEST!

    Prepared by Dr. Suhaila Mohamad Yusuf

More Related Content

PPTX
Complex Variable & Numerical Method
PDF
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-IV
PPTX
numericai matmatic matlab uygulamalar ali abdullah
PDF
Bender schmidt method
PDF
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-V
PPTX
Finite difference method
PDF
Study Material Numerical Differentiation and Integration
PDF
Maths digital text
Complex Variable & Numerical Method
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-IV
numericai matmatic matlab uygulamalar ali abdullah
Bender schmidt method
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-V
Finite difference method
Study Material Numerical Differentiation and Integration
Maths digital text

What's hot (18)

PDF
PDF
Interpolation with Finite differences
PDF
Study Material Numerical Solution of Odinary Differential Equations
PDF
Numerical Differentiation and Integration
PDF
NUMERICAL METHODS
PPT
Chapter 3
PPS
Unit iv
PPTX
Interpolation
PPTX
AEM Integrating factor to orthogonal trajactories
PDF
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-I
DOCX
Matlab lab manual
PDF
Numerical Solution of Ordinary Differential Equations
PPTX
Initial value problems
PPT
Linear differential equation with constant coefficient
PDF
CalculusStudyGuide
PDF
FPDE presentation
PPTX
Interpolation In Numerical Methods.
PDF
Numerical Methods - Oridnary Differential Equations - 2
Interpolation with Finite differences
Study Material Numerical Solution of Odinary Differential Equations
Numerical Differentiation and Integration
NUMERICAL METHODS
Chapter 3
Unit iv
Interpolation
AEM Integrating factor to orthogonal trajactories
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-I
Matlab lab manual
Numerical Solution of Ordinary Differential Equations
Initial value problems
Linear differential equation with constant coefficient
CalculusStudyGuide
FPDE presentation
Interpolation In Numerical Methods.
Numerical Methods - Oridnary Differential Equations - 2
Ad

Similar to Computational mathematic (20)

PPT
Newton-Raphson Method
PPT
BBM-501-U-II_-_Linear_Programming (1).ppt
PDF
1520 differentiation-l1
PPTX
Lecture 29 fuzzy systems
PPTX
Presentation on the bisection method.pptx
PPSX
Numerical Method
PDF
me310_6_interpolation.pdf for numerical method
PDF
Amth250 octave matlab some solutions (1)
PPTX
Bisection
PDF
jacobi method, gauss siedel for solving linear equations
PDF
Amth250 octave matlab some solutions (2)
PPT
Introduction to Artificial Intelligence
DOCX
Statistics Assignment 1 HET551 – Design and Developm.docx
PPT
BS1501 tutorial 3_final
PPT
BS1501 tutorial 3_final
PDF
Lesson 19: The Mean Value Theorem (Section 041 handout)
PDF
engineeringmathematics-iv_unit-iv
PDF
Numerical integration
Newton-Raphson Method
BBM-501-U-II_-_Linear_Programming (1).ppt
1520 differentiation-l1
Lecture 29 fuzzy systems
Presentation on the bisection method.pptx
Numerical Method
me310_6_interpolation.pdf for numerical method
Amth250 octave matlab some solutions (1)
Bisection
jacobi method, gauss siedel for solving linear equations
Amth250 octave matlab some solutions (2)
Introduction to Artificial Intelligence
Statistics Assignment 1 HET551 – Design and Developm.docx
BS1501 tutorial 3_final
BS1501 tutorial 3_final
Lesson 19: The Mean Value Theorem (Section 041 handout)
engineeringmathematics-iv_unit-iv
Numerical integration
Ad

More from Abdul Khaliq (20)

PDF
UHB 3022 / ULAB 3122 - Final Exam Paper
PDF
SCSJ3203 - Theory Science Computer - Midterm Paper
DOCX
SCSJ3553 - Artificial Intelligence Final Exam paper - UTM
DOCX
ULAB3122 / UHS3022 - Final Exam Paper
PDF
ULAB3122 / UHS3022 - Final Exam Paper (2009)
PDF
UHB2422 / ULAB2112 - Final exam paper with answer sample
PDF
UHB2422 / ULAB2112 - Final exam paper
DOC
Soalan orienteering
PPT
Orienteering - titik utara
PPT
orienteering - saling pandang
PPT
orienteering - cerun
PPT
orenteering - mengenal cerun
PPT
Orienteering - kompas prismatik
DOC
UICI 2022 - Bab 04 teknologi dalam islam (nota)
DOC
UICI 2022 - Bab 03 sains dan islam (nota)
DOCX
UICI 2022 - Bab 02 perpindahan ilmu (nota)
DOCX
UICI 2022 -Bab 01 manusia dan ilmu (nota)
PPT
A intro uici 2022 sains teknologi dan manusia
PPT
UICI 2022 - sains dan islam
PPT
UICI 2022 - Perpindahan ilmu
UHB 3022 / ULAB 3122 - Final Exam Paper
SCSJ3203 - Theory Science Computer - Midterm Paper
SCSJ3553 - Artificial Intelligence Final Exam paper - UTM
ULAB3122 / UHS3022 - Final Exam Paper
ULAB3122 / UHS3022 - Final Exam Paper (2009)
UHB2422 / ULAB2112 - Final exam paper with answer sample
UHB2422 / ULAB2112 - Final exam paper
Soalan orienteering
Orienteering - titik utara
orienteering - saling pandang
orienteering - cerun
orenteering - mengenal cerun
Orienteering - kompas prismatik
UICI 2022 - Bab 04 teknologi dalam islam (nota)
UICI 2022 - Bab 03 sains dan islam (nota)
UICI 2022 - Bab 02 perpindahan ilmu (nota)
UICI 2022 -Bab 01 manusia dan ilmu (nota)
A intro uici 2022 sains teknologi dan manusia
UICI 2022 - sains dan islam
UICI 2022 - Perpindahan ilmu

Recently uploaded (20)

PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PDF
Anesthesia in Laparoscopic Surgery in India
PDF
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PPTX
GDM (1) (1).pptx small presentation for students
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PDF
Computing-Curriculum for Schools in Ghana
PDF
Sports Quiz easy sports quiz sports quiz
PPTX
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
PDF
O7-L3 Supply Chain Operations - ICLT Program
PPTX
Pharma ospi slides which help in ospi learning
PDF
TR - Agricultural Crops Production NC III.pdf
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PDF
Classroom Observation Tools for Teachers
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PPTX
Cell Structure & Organelles in detailed.
PDF
Pre independence Education in Inndia.pdf
PDF
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
2.FourierTransform-ShortQuestionswithAnswers.pdf
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
Anesthesia in Laparoscopic Surgery in India
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
Microbial diseases, their pathogenesis and prophylaxis
GDM (1) (1).pptx small presentation for students
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
Computing-Curriculum for Schools in Ghana
Sports Quiz easy sports quiz sports quiz
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
O7-L3 Supply Chain Operations - ICLT Program
Pharma ospi slides which help in ospi learning
TR - Agricultural Crops Production NC III.pdf
Module 4: Burden of Disease Tutorial Slides S2 2025
Classroom Observation Tools for Teachers
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
Cell Structure & Organelles in detailed.
Pre independence Education in Inndia.pdf
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx

Computational mathematic

  • 1. Summary of Lectures Just click to see next animation Prepared by: Dr. Suhaila Mohamad Yusuf suhailamy@utm.my Prepared by Dr. Suhaila Mohamad Yusuf
  • 2. CHAPTER 6 NON-LINEAR EQUATIONS Prepared by Dr. Suhaila Mohamad Yusuf
  • 3. Centre Limit Theorem • Given an equation of f(x) with an interval of [a,b], you need to determine whether there exist at least a real root in that interval • CLT said that if f(a) and f(b) have opposite sign (one is –ve and another is +ve) then there exist at least a real root in that interval a b f(a) +ve f(b) -ve Prepared by Dr. Suhaila Mohamad Yusuf
  • 4. Bisection Method f(x) = x3 – 3x2 + 8x - 5 c = (a + b) / 2 [0,1] ℇ=0.005 i a b f(a) f(b) c f(c) 0 0 1 -5 1 0.5 -1.625 1These f(c) > ℇ then, 0.5are from 1the -1.625 given Calculated from this stop! 1 Is this < ℇ? Yes, 0.75 -0.266 2 new interval! 0.75 interval 1 -0.266 No, next iteration! 1 equation 0.875 0.373 3 0.75 0.875 -0.266 0.373 0.8125 0.056 4 0.75 0.813How to choose 0.056new 0.7815 -0.266 the -0.103 5 0.782 0.813 interval? -0.103 0.056 0.7975 -0.021 6 0.798 0.813 -0.021 0.056 0.8055 0.020 7 0.798 0.806 -0.021 0.02 0.802 0.002 Make sure these parts 0 Repeat all the steps 0.5 1 This is the CAREFULLY until f(c) < ℇ have opposite sign! -ve f(x) -ve f(x) +ve f(x) root!! We need to take this c value. CLT said that f(a) and f(b) How about another one? should have opposite sign! Prepared by Dr. Suhaila Mohamad Yusuf
  • 5. False Position Method f(x) = x3 – 3x2 + 8x - 5 c = [af(b) - bf(a)] / [f(b) – f(a)] [0,1] ℇ=0.005 i a b f(a) f(b) c f(c) 0 0 1 -5 1 0.833 -1.625 1 0 0.8333 -5 These are from the given 0.162 Is this < ℇ? Yes, 0.807 Calculated from this0.029 stop! 2 0 0.807 interval -5 0.029 No, next iteration! 0.802 equation 0.004 This is the Remember how to choose the root!! interval value? What does the CLT said about interval? Prepared by Dr. Suhaila Mohamad Yusuf
  • 6. Secant Method f(x) = sin (x) + 3x – e3 xi+2 = [xif(xi+1) – xi+1f(xi)] / [f(xi+1) – f(xi)] x0 = 1 , x1 = 0 ℇ=0.0005 i xi xi+1 xi+2 f(xi+2) 0 1 0 0.4710 0.2652 1 0 0.4710 ℇ? Yes, stop! These are from the given Is this <0.0295 0.3723 Calculated from this -0.0012 2 0.4710 0.3723 No, next iteration! 0.3599 values of x0 and x1 equation 3 0.3723 interval. Take the latest 2 New 0.3599 0.3604 0.0000 values as next interval Continue iteration until f(xi+2) < ℇ This is the root!! Prepared by Dr. Suhaila Mohamad Yusuf
  • 7. Newton’s Method f(x) = x3 – sin x Xn+1 = xn – [f(xn) / f’(xn)] x0 = 1 ℇ=0.0005 n xn f(xn) f’(xn) 0 1 0.15853 2.45970 1 0.93555 0.01392 2.03239 This is from the given Calculated from the 2 values of x 0.92870 0.00015 1.98858 | < ℇ? Yes, stop! 0 derivative of f(x) Is |xn+1 – xn0.92862Calculated from this 3 -0.00001 1.98807 No, next iteration! 4 0.92862 equation Continue iteration This < ℇ until |xn+1 – xn|is the root!! Prepared by Dr. Suhaila Mohamad Yusuf
  • 8. CHAPTER 7 EIGENVALUE PROBLEM Prepared by Dr. Suhaila Mohamad Yusuf
  • 9. Characteristic Polynomial • p(λ) = det (A –λI) 3 2 A 1 5 3 2 1 0 3 2 A I 1 5 0 1 1 5 • p(λ) = det (A –λI) = [(3- λ)(5- λ)] – [(-2)(-1)] = λ2 - 8λ + 13 Prepared by Dr. Suhaila Mohamad Yusuf
  • 10. Gerschgorin’s Circle Theorem 3 2 1 Row 1: Row 2: Row 3: |λ – 3| < |–2| + |1| |λ – 3| < |–1| + |1| |λ – (-4)| < |1| + |–2| A 1 3 1 |λ – 3| < 3 |λ – 3| < 2 |λ – 4| < 3 1 2 4 0<λ<6 1<λ<5 -7 < λ < -1 λ ϵ (0,6) λ ϵ (1,5) λ ϵ (-7,-1) radius = 3 radius = 3 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 radius = 2 λ ϵ (-7,6) Prepared by Dr. Suhaila Mohamad Yusuf
  • 11. Power Method • Aims to find dominant eigenvalue (largest value of eigenvalue) 1 2 1 v(0) = (0,0,1)T A 1 0 1 ε = 0.001 4 4 5 Prepared by Dr. Suhaila Mohamad Yusuf
  • 12. Power Method 1 2 1 v(0) = (0,0,1)T A * v Abs max A 1 0 1 between ε = 0.001 4 4 5 these values k (v(k))T (Av(k))T mk+1 0 0 0 1 -1 1 5 5 1 -0.2 0.2 1 -0.8 0.8 3.4 3.4 These values ǁv(k+1)-v(k)ǁ < ε ? 2 -0.235 0.235 1 0.765 -0.7653.12 Note that ǁv(k+1)-0.755 is a 3.04 v(k)ǁ 3.12 3 -0.245 0.245 1 -0.755 3.04 No, next iteration 4 -0.248 0.248 1 -0.752 divided by difference of two vectors.3.016 0.752 3.016 that value 5 -0.249 0.2492 1 2-0.751 0.751 2 3.008 3.008 v u (v1 u1 ) (v2 u2 ) ... (vn un ) 6 -0.250 0.250 1 -0.750 to have 3.000 0.750 3.000 v (1) 7 v ( 0) -0.250( 0.0.250 ) 2 (1 .2 0) 2 (1 1) 2 values 2 0 0 these Eigenvector Eigenvalue Prepared by Dr. Suhaila Mohamad Yusuf
  • 13. Shifted Power Method • Aims to find smallest eigenvalue and intermediate eigenvalue 1 2 1 v(0) = (0,1,0)T A 1 0 1 ε = 0.001 4 4 5 λ1 = 3.0 Prepared by Dr. Suhaila Mohamad Yusuf
  • 14. Shifted Power Method B A I A 3 .0 I 1 2 1 1 0 0 1 0 1 3.0 0 1 0 4 4 5 0 0 1 1 2 1 3. 0 0 0 1 0 1 0 3. 0 0 4 4 5 0 0 3 .0 2 2 1 1 3 1 4 4 2 Prepared by Dr. Suhaila Mohamad Yusuf
  • 15. Shifted Power Method 2 2 1 v(0) = (0,1,0)T B * v Abs max B 1 3 1 between ε = 0.001 4 4 2 these values k (v(k))T (Bv(k))T mk+1 0 0 1 0 2 -3 -4 -4 1 -0.5 0.75 1 1.5 -1.75 -3 -3 2 -0.5 0.583 1.166 1 These values -1.249 -2.332 -2.332 ǁv(k+1)-v(k)ǁ < ε ? 0.517 3 -0.5 Note that ǁv(k+1)-v(k)ǁ is a 1 1.072 -1.108 -2.144 -2.144 No, 4next iteration -0.5 0.508 differencedivided by 1 of two vectors. 1.034 -1.051 -2.068 -2.068 5 -0.5 0.504 1 that value 1.016 -1.024 -2.032 -2.032 v u6 (v1 u1 ) 2 0.502 u2 )1 ... tovhave n-1.012 -0.5 (v2 2 1.008 u ) ( n 2 -2.016 -2.016 7 -0.5 0.501 1 these values 1.004 -1.006 -2.008 -2.008 8 -0.5 0.5 1 1.002 -1.003 -2.004 -2.004 9 -0.5 0.5 1 1.000 -1.000 -2.000 -2.000 10 -0.5 10 1 Eigenvector Prepared by Dr. Suhaila Mohamad Yusuf Shifted Eigenvalue
  • 16. Shifted Power Method • λshifted = -2.0 • λ3 = λshifted + λ1 = -2.0 + 3.0 = 1.0 1 2 1 • Intermediate λ2 A 1 0 1  λ1 + λ2 + λ3 = a11 + a22 + a33  3.0 + λ2 + 1.0 = 1 + 0 + 5 4 4 5  λ2 = 2.0 Caution!!! Use the original matrix, A. Not the shifted Prepared by Dr. Suhaila Mohamad Yusuf matrix, B.
  • 17. CHAPTER 8 INTERPOLATION Prepared by Dr. Suhaila Mohamad Yusuf
  • 18. Interpolation Approximation Least Square Newton Forward Difference Newton Backward Difference Newton Divided Difference May need table re-arrangement Langrage Prepared by Dr. Suhaila Mohamad Yusuf
  • 19. Newton Forward Difference k 0 1 2 3 4 5 xk 1.0 1.2 1.4 1.6 1.8 2.0 yk 0.5000 0.4545 0.4167 0.3846 0.3571 0.3333 Find y(1.1) k xk yk ∆yk ∆2yk ∆3yk ∆4yk ∆5yk x=1.0 is x=1.1 0 1.0 0.5000 -0.0455 0.0077 -0.0020 0.0009 -0.0007 chosen located as ref. 1 1.2 0.4545 -0.0378 0.0057 value This -0.0011 0.0002 here point 2 1.4 0.4167 -0.0321 0.0046 -0.0009 Repeat until because 3 1.6 0.3846 -0.0275 0.0037 this minus last column of higher value degree 4 1.8 0.3571 -0.0238 5 2.0 0.3333 To get this value Prepared by Dr. Suhaila Mohamad Yusuf
  • 20. Newton Forward Difference • h = 1.2 – 1.0 = 0.2 and r = (x – x0) / h = (1.1 – 1.0) / 0.2 = 0.5 r( r 1) 2 r( r 1)( r 2 ) 3 p5 ( x ) y 0 r y0 y0 y0 2! 3! r( r 1)( r 2 )( r 3) 4 r( r 1)( r 2 )( r 3)( r 4 ) 5 y0 y0 4! 5! ( 0.5 )( 0.5 1) p5 (1.1) 0.5000 ( 0.5 )( 0.0455) ( 0.0077) 2 ( 0.5 )( 0.5 1)( 0.5 2 ) ( 0.5 )( 0.5 1)( 0.5 2 )( 0.5 3) ( 0.0020) ( 0.0009) 6 24 ( 0.5 )( 0.5 1)( 0.5 2 )( 0.5 3)( 0.5 4 ) ( 0.0007) 120 0.5000 0.02275 0.0009625 0.000125 0.0000352 0.0000191 0.4761 Prepared by Dr. Suhaila Mohamad Yusuf
  • 21. Newton Backward Difference k 0 1 2 3 4 5 xk 1.0 1.2 1.4 1.6 1.8 2.0 yk 0.5000 0.4545 0.4167 0.3846 0.3571 0.3333 Find y(1.9) k xk yk ∇yk ∇2yk ∇3yk ∇4yk ∇5yk x=2.0 is 0 1.0 0.5000 chosen This value as ref. 1 1.2 0.4545 -0.0455 point 2 1.4 0.4167 -0.0378 0.0077 this minus because 3 1.6 0.3846 value -0.0321 0.0057 -0.0020 of higher To get this degree x=1.9 4 1.8 0.3571 -0.0275 0.0046 -0.0011 0.0009 located 5 2.0 0.3333 value -0.0238 0.0037 -0.0009 0.0002 -0.0007 here Repeat until last column Prepared by Dr. Suhaila Mohamad Yusuf
  • 22. Newton Backward Difference • h = 1.2 – 1.0 = 0.2 and r = (x – x0) / h = (1.9 – 2.0) / 0.2 = -0.5 r (r 1) 2 r (r 1)(r 2) 3 p5 ( x) y5 r y5 y5 y5 2! 3! r (r 1)(r 2)(r 3) 4 r (r 1)(r 2)(r 3)(r 4) 5 y5 y5 4! 5! ( 0.5)( 0.5 1) p5 (1.9) 0.3333 ( 0.5)( 0.0238) (0.0037) 2 ( 0.5)( 0.5 1)( 0.5 2) ( 0.5)( 0.5 1)( 0.5 2)( 0.5 3) ( 0.0009) (0.0002) 6 24 ( 0.5)( 0.5 1)( 0.5 2)( 0.5 3)( 0.5 4) ( 0.0007) 120 0.3333 0.0119 0.0004625 0.00005625 0.000007869 0.0000191 0.3448 Prepared by Dr. Suhaila Mohamad Yusuf
  • 23. Newton Divided Difference 1st step, k 0 1 2 3 4 mark the See this col like xk 1.0 1.6 2.5 3.0 3.2 number? this start yk 0.5000 0.3846 0.2857 0.2500 0.2381 from Find y(1.3) f[xk]. 1 2 3 4 5 k xk f[xk] f1[xk] f2[xk] f3[xk] f4[xk] Go to col xk and 5000 0 0..3846 (0.0.1923) 01099 1 1.0 0.5000 -0.1923 0.0549 -0.0137 0.0032 count down the 1.6 1.0 25 col according to 1 2 1.6 1 0.3846 -0.1099 0.0275 -0.0066 0.2857 0.3846 number on top of 2.5 1.6 2 2 2.5 3 0.2857 -0.0714 0.0170 the col. Then the 3 3.0 0.2500 last value of x -0.0595 minus with the 4 3.2 0.2381 first value of x. To fill in this col, we Big problem is ‘divide know that lower value – upper value with what?’ Prepared by Dr. Suhaila Mohamad Yusuf
  • 24. Newton Divided Difference • Interpolation Polynomial expression p4 ( x ) y 0 f [ x 0 , x1 ]( x x 0 ) f [ x 0 , x1 , x 2 ]( x x 0 )( x x1 ) f [ x 0 , x1 , x 2 , x 3 ]( x x 0 )( x x1 )( x x 2 ) f [ x 0 , x1 , x 2 , x 3 , x 4 ]( x x 0 )( x x1 )( x x 2 )( x x 3 ) • Assign the value into the polynomial expression p 4 (1.3 ) 0.5 ( 0.1923)(1.3 1.0 ) 0.0549(1.3 1.0 )(1.3 1.6 ) ( 0.0137)(1.3 1.0 )(1.3 1.6 )(1.3 2.5 ) 0.0032(1.3 1.0 )(1.3 1.6 )(1.3 2.5 )(1.3 3.0 ) 0.5 0.05769 0.004941 0.0014796 0.00058752 0.4353 Prepared by Dr. Suhaila Mohamad Yusuf
  • 25. Newton Divided Difference k 0 1 2 3 4 xk 1.0 1.6 2.5 3.0 3.2 yk 0.5000 0.3846 0.2857 0.2500 0.2381 Find y(2.8) • Re-arrange the table then do as previous • How to re-arrange table? 2.8 is in here k 0 1 Value of x before 2Decending value of 4 3 xk and after 2.8 1.6 1.0 2.5 3.0 remaining x 3.2 yk 0.5000 0.3846 0.2857 0.2500 0.2381 k 0 1 2 3 4 xk yk Prepared by Dr. Suhaila Mohamad Yusuf
  • 26. Langrage k 0 1 2 3 4 xk 1.0 1.6 2.5 3.0 3.2 yk 0.5000 0.3846 0.2857 0.2500 0.2381 Find y(1.3) n pn ( x ) L 0 ( x )y 0 L1( x )y 1 .......L n ( x )y n L i ( x )y i i 0 4 p4 ( x ) L i ( x )y i i 0 p4 ( x ) L 0 ( x )y 0 L 1( x )y 1 L 2 ( x )y 2 L 3 ( x )y 3 L 4 ( x )y 4 Prepared by Dr. Suhaila Mohamad Yusuf
  • 27. Langrage Because it is L0, x0 is nowhere to • Calculate L0 be found up here (1.3 x1 )(1.3 x 2 )(1.3 x 3 )(1.3 x 4 ) L 0 ( 1.3 ) ( x 0 x1 )( x 0 x 2 )( x 0 x 3 )( x 0 x 4 ) (1.3 1.6 )(1.3 2.5 )(1.3 3.0 )(1.3 3.2 ) 0.2936 (1.0 1.6 )(1.0 2.5 )(1.0 3.0 )(1.0 3.2 ) Because it is L0, x0 is deducted • With the same with other x method, calculate L1, L2 ,L3 ,L4 Prepared by Dr. Suhaila Mohamad Yusuf
  • 28. Langrage 4 p 4 (1.3 ) L i (1.3 )y i i 0 0.2936( 0.5000) 0.9613 0.3846) 0.6152( 0.2857) ( 0.7329( 0.2500) 0.3726( 0.2381) 0.4353 Prepared by Dr. Suhaila Mohamad Yusuf
  • 29. Least Square • Determine the appropriate linear polynomial expression, p(x) = a0 + a1x based on the following data: • Determine f(2.3) x 1 2 3 4 5 f(x) 0.50 1.40 2.00 2.50 3.10 s 0 s1 a 0 v0 s1 s 2 a 1 v1 Prepared by Dr. Suhaila Mohamad Yusuf
  • 30. Least Square xk 0 xk 1 xk 2 fk xk 0 f k xk 1 f k 1 1 1 0.5 0.5 0.5 1 2 4 1.4 1.4 2.8 1 3 9 2.0 2.0 6.0 1 4 16 2.5 2.5 10.0 1 5 25 3.1 3.1 15.5 5 15 55 - 9.5 34.8 s 0 s1 a 0 v0 5 15 a 0 9.5 s1 s 2 a 1 v1 15 55 a 1 34.8 Prepared by Dr. Suhaila Mohamad Yusuf
  • 31. Least Square 5 15 a 0 9.5 15 55 a 1 34.8 • Solution, a0 = 0.01 dan a1 = 0.63 • Therefore, the polynomial expression is p(x) = 0.01x + 0.63 • To determine f(2.3): p( 2.3) 0.01( 2.3) 0.63 0.653 f ( 2.3) p( 2.3) 0.653 Prepared by Dr. Suhaila Mohamad Yusuf
  • 32. CHAPTER 9 NUMERICAL DIFFERENTIATION Prepared by Dr. Suhaila Mohamad Yusuf
  • 33. Forward Backward Forward Backward Central Forward Central Difference Difference Difference Difference Difference Difference Difference 2-point 3-point 5-point Formula Formula Formula FIRST DERIVATIVE f‘(x) SECOND DERIVATIVE f‘’(x) NUMERICAL INTEGRATION 3-point Formula 5-point Formula Central Difference Central Difference Prepared by Dr. Suhaila Mohamad Yusuf
  • 34. SORRY!!! I DIDN’T PREPARE ANYTHING. THIS CHAPTER IS TOO EASY. MAKE SURE YOU KNOW WHICH FORMULA TO USE.. Prepared by Dr. Suhaila Mohamad Yusuf
  • 35. CHAPTER 10 NUMERICAL INTEGRATION Prepared by Dr. Suhaila Mohamad Yusuf
  • 36. Numerical Integration • Interval / scale, h b a h N Prepared by Dr. Suhaila Mohamad Yusuf
  • 37. Trapezoidal Rule • Approximate the following integral using the Trapezoidal rule with h=0.5 4 x dx 1 x 4 b a 4 1 N 6 h 05 . Prepared by Dr. Suhaila Mohamad Yusuf
  • 38. Trapezoidal Rule 4 x 4 xi dx f ( x) dx i xi f ( xi ) 1 x 4 1 xi 4 h f f6 2 f1 f2 f3 f4 f5 0 1.0 0.4472 2 0 1 1.5 0.6396 0.5 1.8614 2 4.8486 2 2.0 0.8165 2 3 2.5 0.9806 2.8896 4 3.0 1.1339 5 3.5 1.2780 6 4.0 1.4142 Total 1.8614 4.8486 prepared by Razana Alwee 1st and last In-between values values Prepared by Dr. Suhaila Mohamad Yusuf
  • 39. Simpson’s 1/3 Rule • Approximate the following integral using the Trapezoidal rule with h=0.5 4 x dx 1 x 4 b a 4 1 N 6 h 05 . Prepared by Dr. Suhaila Mohamad Yusuf
  • 40. Simpson’s 1/3 Rule 3 2 4 x h dx f0 f6 4 f 2i 1 2 f 2i 1 x 4 3 i 1 i 1 0.5 xi 1.8614 4(2.8982) 2(1.9504) i xi fi f ( xi ) 3 xi 4 0 1.0 0.4472 2.8925 1 1.5 0.6396 2 2.0 0.8165 3 2.5 0.9806 4 3.0 1.1339 5 3.5 1.2780 6 4.0 1.4142 Total 1.8614 2.8982 1.9504 1st and last Odd Even Prepared by Dr. Suhaila Mohamad Yusuf values column column
  • 41. Simpson’s 3/8 Rule • Approximate the following integral using the Trapezoidal rule with h=0.25 4 x dx 1 x 4 b a 4 1 N 12 h 0.25 Prepared by Dr. Suhaila Mohamad Yusuf
  • 42. Simpson’s 3/8 Rule 4 3 4 x 3h dx f0 f12 3 f 3i 2 f 3i 1 2 f 3i 1 x 4 8 i 1 i 1 xi i xi fi f ( xi ) xi 4 3(0.25) 0 1.00 0.4472 1.8614 3(7.7191) 2(2.9174) 8 1 1.25 0.5455 2 1.50 0.6396 2.8925 3 1.75 0.7298 4 2.00 0.8165 5 2.25 0.9000 6 2.50 0.9806 7 2.75 1.0586 8 3.00 1.1339 9 3.25 1.2070 10 3.50 1.2780 11 3.75 1.3470 12 4.00 1.4142 Total 1.8614 7.7191 2.9174 ‘Ganda 1st and Remaining 3’ (3,6,9) last values values Prepared by Dr. Suhaila Mohamad Yusuf
  • 43. Romberg Integration Formula for Romberg Table i hi Ri,1 Ri,2 Ri,3 1 b a h1 R1,1 f0 f1 2 2 1 h1 2 3 1 h2 2 1 2 i 2 4 j 1 Ri , j 1 Ri 1, j 1 Ri ,1 Ri hi f 2k Ri , j 2 1,1 1 k 1 1 4j 1 1 Prepared by Dr. Suhaila Mohamad Yusuf
  • 44. Romberg Integration • Use Romberg integration to approximate 4 x dx 1 x 4 • Compute the Romberg table until |Ri,j Ri,j-1|<0.0005 Prepared by Dr. Suhaila Mohamad Yusuf
  • 45. Romberg Integration How to calculate 4 x these? dx b a 4 1 1 N 1 x 4 From the h here, we h 3 can know the N h1 b a 4 1 3 (number of segments) Integration starts from Therefore, we only have 1 to 4 and only has 1 f0 and f1, the first node h1 and the last node R1,1 f 0 f1 segment 2 1 4 h=3 3 0.4472 1.4142 f1 2 f0 4 1 4 4 2.7921. 1 1 4 0.4772 1 4 4 1.4142 Find the f0 = f(1) and f1 = f(4) using this f(x)by Dr. Suhaila Mohamad Yusuf Prepared
  • 46. Romberg Integration i hi Ri,1 Ri,2 Ri,3 1 3 2.7921 2 1.5 h2 is half of h1 Now we need 3 to fill in the 2nd row This value needs to be Fill in the Rombergcalculated using other Table with answers that you’ve got previously formula Prepared by Dr. Suhaila Mohamad Yusuf
  • 47. Romberg Integration How to calculate 4 x this? dx Remember!! b a 4 1 1 N 2 x Every time you calculatewe R , 4 From the h here, h 1.5 can know the N new xx 1 your f , f , ...(number ofbe changed!! fx will segments) h2 h1 1.5 0 1 2 Draw diagram to be safe!! , we have three Integration starts from Therefore 1 1 1 to 4 and has 2 nodes f0 ,f1, and f2, R2,1 R1,1 h1 f 2k 2 k 1 1 segments 1 R1,1 h1 ( f1 ) 1 h = 1.5 2.5 4 2 1 f0 f1 f2 R1,1 h1 ( f (2.5)) 2 4 2 .5 1 0.9806 1 2.7921 3 0.9806 2 .5 4 2 2.8670 Find the f1 = f(2.5) using Prepared by Dr. Suhaila Mohamad Yusuf this f(x)
  • 48. Romberg Integration • Calculate R2,2 using another formula 4 R2,1 R1,1 4 2.8670 2.7921 R2 , 2 2.8920 3 3 • Is |Ri,j Ri,j-1|<0.0005? Only compare with R in the same row, not the same column R2, 2 R2,1 2.8920 2.8670 0.025 0.0005 Prepared by Dr. Suhaila Mohamad Yusuf
  • 49. Romberg Integration i hi Ri,1 Ri,2 Ri,3 1 3 2.7921 2 1.5 2.8670 2.8920 3 Fill in0.75Romberg half ofwith answers that the h3 is Table h2 you’ve got previously Now we need to fill in the 3rd This value row to be needs calculated using other formula Prepared by Dr. Suhaila Mohamad Yusuf
  • 50. Romberg Integration How to calculate 4 x this? dx b a 4 1 1 N 4 x 4 From the h here, we h 0.75 can know the N 1 (number of segments) h3 h2 0.75 2 Integration starts from Therefore, we have five 1 2 1 to 4 and has 4 nodes f0 ,f1, f2 ,f3 and f4, R3,1 R2,1 h2 f 2 k 1 segments 2 k 1 1 1 1.75 2.5 3.25 4 R2,1 h2 ( f1 f 3 ) 2 h = 0.75 1 f0 f1 f2 f3 f4 R2,1 h2 ( f (1.75) f (3.25)) 4 1.75 2 0.7298 4 3.25 1 1.2070 1 1.75 4 1 3.25 4 2.8670 1.5 0.7298 1.2070 2 Find the f1 = f(1.75) and 2.8861 Prepared by Dr. Suhaila Mohamad Yusuf f3 = f(3.25) using this f(x)
  • 51. Romberg Integration • Calculate R3,2 using another formula 4 R3,1 R2,1 4 2.8861 2.8670 R3, 2 2.8925 3 3 • Is |Ri,j Ri,j-1|<0.0005? Only compare with R in the same row, not the same column R3, 2 R3,1 2.8925 2.8861 0.0064 0.0005 Prepared by Dr. Suhaila Mohamad Yusuf
  • 52. Romberg Integration • Calculate R3,3 using another formula 4 R3, 2 R2, 2 16 2.8925 2.8920 R3,3 2.8925 15 15 • Is |Ri,j Ri,j-1|<0.0005? Only compare with R in the same row, not the same column R3,3 R3, 2 2.8925 2.8925 0.0000 0.0005 Stop Iteration!! Prepared by Dr. Suhaila Mohamad Yusuf
  • 53. Romberg Integration i hi Ri,1 Ri,2 Ri,3 1 3 2.7921 2 You 1.5 don’t need to generate 2.8670 2.8920 Trapezoidal Table! 3 0.75 2.8861 2.8925 2.8925 Just follow my way.. The solution of Fill in the Romberg Table with answers that integration is here you’ve got previously Prepared by Dr. Suhaila Mohamad Yusuf
  • 54. ALL THE BEST! Prepared by Dr. Suhaila Mohamad Yusuf