SlideShare a Scribd company logo
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308
__________________________________________________________________________________________
Volume: 02 Issue: 11 | Nov-2013, Available @ http://www.ijret.org 418
COMPUTATIONAL MODEL TO DESIGN CIRCULAR RUNNER
CONDUIT FOR PLASTIC INJECTION MOULD
Muralidhar Lakkanna*, Yashwanth Nagamallappa, R Nagaraja
PG & PD Studies, Government Tool room & Training Centre, Bangalore, Karnataka, India
* Corresponding author Tel +91 8105899334, Email: lmurali_research@yahoo.com
Abstract
Analytical solution quest for viscoelastic shear thinning fluid flow through circular conduit is a matter of great prominence as it
directly evolvesmost efficient criteria to investigate various responses of independent parameters. Envisaging this facet present
endeavour attempts to develop a computational model for designing runner conduit lateral dimension in a plastic injection mould
through which thermoplastic melt gets injected. At outset injection phenomenon is represented by governing equations on the basis of
mass, momentum and energy conservation principles [1]. Embracing Hagen Poiseuille flow problem analogous to runner conduit
injection the manuscript uniquely imposes runner conduit inlet and outlet boundary conditions along with relative to appropriate
assumptions; governing equations evolve a computation model as criteria for designing. To overwhelm Non-Newtonian’s abstruse
Weissenberg-Rabinowitsch correction factor has been adopted byaccommodating thermoplastic melt behaviour towards the final
stage of derivation. The resulting final computational model is believed to express runner conduit dimensions as a function of
available type of injection moulding machine specifications, characteristics of thermoplastic melt and required features of component
being moulded. Later the equation so obtained has been verified by using dimensional analysis method.
Keywords: Computational modelling, Runner conduit design, Plastic injection mould, Hagen-Poiseuille flow
---------------------------------------------------------------------***---------------------------------------------------------------------
1. INTRODUCTION
Mathematical models for polymer processingisby and large
deterministic (as are the processes)typically transport based
unsteady (cyclic process) and distributed parameter.
Particularly complex thermoplastic melt injection mould
system was broken into clearly defined subsystems for
modelling. Runner dimension plays a vital role in the
idealization of an injection mould and hence deriving a
computational model to determine runner dimension was of
immense need. There have been a fairly large number of
Newtonian apprehensions for which a closed form analytical
solution are prevailing. However, for non-Newtonian
apprehension fluids such as thermoplastic melts exact
solutions are rare. In general, non-Newtonian melt injection
behaviours are more complicated and subtle compared to
Newtonian fluid circumstances[2].Developing a model for
complex process like thermoplastic melt (which is non-
Newtonian highly viscoelastic, shinning type fluid) injection
through runner conduit (circular conduit) requires a clear
objective definition. Hereto the sole objective of this
derivation is to obtain a runner diameter design criteria as a
function of injection moulding machine specifications used for
the purpose of injection, type of thermoplastic melt being
injected and features of the component being moulded as
known parameters.
The physical process of thermoplastic melt injection through
runner conduit in a typical plastic injection mould is
represented by a set of expressions, which insights adept
acquaintance of in-situ physical phenomena that occurs within
actualprocessing[3]. Mathematical modelling involves
assembling sets of various mathematical equations, which
originates from engineering fundamentals, such as the
material, energy and momentum balance equations [4]. Herein
representative mathematical equations attempts to
computationally model the interrelations that govern actual
processing situate[5]. More complex the mathematical model,
the more accurately it mimics the actual process [6]. Towards
obtaining an analytical solution we must first simplify the
balance equations, although the resulting equations are
fundamental, rigorous,nonlinear, collective, complex and
difficult to solve [2]. Therefore, the resulting equations are
sufficiently simplified by considering appropriate assumptions
that correspond to those the actual processing interrelations
between variables and parameters. These assumptions are
geometric simplifications, initial conditions and physical
assumptions, such as isothermal systems, isotropic materials
as well as material models, such as Newtonian, elastic, visco-
elastic, shear thinning, or others [6]. Finally boundary
conditions like velocity and temperature profiles are applied to
simplifying the resulting equations completely [7]. Further
meticulous rearranging of the functions leads us to a complete
computational model that enables design engineers to
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308
__________________________________________________________________________________________
Volume: 02 Issue: 11 | Nov-2013, Available @ http://www.ijret.org 419
confidently design superior moulds at bonus costs thus
idealizing the process from mould design perspective [8].
2. GOVERNING EQUATIONS
The phenomenon ofactual melt injection through the runner
conduit is represented by governing equations that
discriminately appreciate compressibility, unsteadiness and
non-Newtonian factors. Hence are highly rigorous, nonlinear,
comprehensive, complex and difficult to solve. Few explicit
assumptions are made herein are:
(a) Thermoplastic viscosity remain consistent
(b)Body forces are neglected when compared to that of
viscous forces
(c) Thermoplastic melt thermal conductivity is considered
constant.
2.1 Equation of Continuity (Mass Balance)
 rr
( U )U ( U )U 1
0
t r r r
 
    
   

 
 
(1)
 . U 0
t

  


 (2)
Substituting  . U .U .U   
  
   , in equation (2),
.U .U 0
t

    

 
  (3)
d
.U 0
dt
  


 d log
.U 0
dt
 

 d log
.U
dt
  
 
(4)
2.2 Equations of Motion
2
r r r r
r
rrrr
U UU U U U
U U
t r r r
( )( )(r )P 1 1
r r r r r
    
    
    
 
      
    
 

 

 
 
 
(5)
r
r
2
r r r
2
U U U U U U U
U U
t r r r
( )(r ) ( )1 P 1 1
r r r rr
    
    
    
   
      
    
     

   

 
   
  
(6)
r
r
U U U UU
U U
t r r
(r ) ( ) ( )P 1 1
r r r
    
   
    
   
     
    
   

  

 
  
  
(7)
The Newtonian constitutive relations are
 r
rr
U 2
2 .U
r 3
 
     

  (8)
 rU U1 2
2 .U
r r 3
   
        

 

(9)
 
U 2
2 .U
3
 
    
 

 

(10)
r
r r
U U1
r
r r r
   
        

   

(11)
r
r r
U U
r
 
    
  

   

(12)
UU 1
r
 
    
  

   
 
(13)
 r
UU1 1
.U rU
r r r

   
  
 
 
(14)
Substituting Newtonian constitutive relation Eqn. (8) to (14) in
equations of motion Eqn. (5) to (7) we get,
2
r r r r
r
r r r
r r
U U U U U U
U U
t r r r
P U 2 2 U 1 U U
2 .U
r r r 3 r r r r
U1 1 U U U U
r r r r r
    
    
    
        
                   
        
                  

 


 

 



 
   
(15)
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308
__________________________________________________________________________________________
Volume: 02 Issue: 11 | Nov-2013, Available @ http://www.ijret.org 420
r
r
r r
U U U U U U U
U U
t r r r
1 P 1 2 U U 2
2 .U
r r r r 3
2 1 U U U 1 U U U
r r r r r r r r
U1 U
r
    
    
    
     
           
         
                 
    
   
    

     

 
   
 

 

  


 

  
(16)
r
r
r
U U U UU
U U
t r r
U UP 2 U
2 .U
3 r r
U U1 1 U U
r r r r
    
   
    
        
          
        
           
         
           

   

 
 

 


   
 
   
(17)
2.3 Energy Balance Equation
   
ˆdu
P .U . k T : U
dt
      
  
  (18)
From thermodynamic relation we have,
v v
ˆdu
ˆC , du C dT
dT
  
Hence Eqn. (18) simplifies as
   v
dT
C P .U . k T : U
dt
       
  
(19)
 
 
v 2
222
r r
22
r
2
2
r
dT 1 T 1 T T
C P .U kr k k
dt r r r r
UUU U1
r r r
UU U UU1 1 1 1
2
2 r r r 2 r
UU1 1
.U
2 r 3

  


   
 

  

         
         
          
    
              
   
             
 
    
  


 
 
 
 
 
 
 
 
 
 
 
(20)
Equation of Entropy
 
dS
T . k T : U
dt
    
 
  (21)
We can apprehend from Eqn. (19) and (21) that entropy is
already present quantitatively in energy equation Eqn. (19)
itself.
3. SOLUTION FOR GOVERNING EQUATIONS
Geometrical conditions
a) Analogous to pipe flow transverse velocity components
could be considered almost zero (geometrical constraint)
i.e., rU U 0  , accordingly transverse pressure
gradience would also be zero. Hence
P P
0
r
 
 
 
b) Since runner cross section is axis-symmetric profile,
tangential gradience could be considered zero i.e.,
0



c) Only lateral gradience of temperature is considered
because radial gradience far exceeds than other two
directionsi.e.,
T T T
0, 0
r 
  
  
  
Upon substituting above (a) to (c), governing equations reduce
to,
 
Ud
log
dt

 




(22)
U U U UP 4
U r
t 3 r r r
          
         
           
   

 

   
(23)
2 2
v
U U UT 1 T 4 3
C P kr
t r r r 3 4 r
  
 
 
         
        
            
(24)
Substituting Eqn. (22) in Eqn. (23) and Eqn. (24) we get
 
 
U d
U log
t dt
UP 4 d
log r
3 dt r r r
 
 
 
    
      
      



 
 

 
(25)
 
 
v
22
T d
C P log
t dt
U1 T 4 d 3
kr log
r r r 3 dt 4 r



      
         
        

 
 
(26)
3.1 Hagen-Poiscuille Velocity Profile
Thermoplastic melt transportation studies are critical
fordesigninglateral dimension of runner conduits as well as
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308
__________________________________________________________________________________________
Volume: 02 Issue: 11 | Nov-2013, Available @ http://www.ijret.org 421
injectionbehaviours [9]. Cognising axial velocity of non-
Newtonian, shear thinning thermoplastic melt injection can
conversely enable conduit dimension determination, because
Axial velocity component is a function of conduit radius
through which melt is being injected [10]. Since thermoplastic
melt injection through circular runner conduit occurs at creep
level Reynolds number, the flow is fully developed and
laminar. Hence well-established incompressible laminar flow
Hagen-Poiscuille velocity profile can be considered analogous
to represent velocity for thermoplastic melt injection through
circular conduits. Parabolic velocity profile through circular
conduits varies from core to wall in such a way that core
velocity would be maximum while almost zero at the rigid
stationary wall. Accordingly velocity profile would be,
 2 21 P
U R r
4
 
 


 
(27)
Although Eqn. (27) neglects compressibility factor, herein we
retain it right from equation of continuity to appreciate actual
expandability and compressibility phenomenon through each
cycle typically involved in injection moulding. Substituting
Eqn. (27) in Eqn. (25) we get,
     
   
2 2 2 2
2 2
1 P 1 P d
R r R r log
t 4 4 dt
P 4 d 1 P
log r R r
3 dt r r r 4
        
      
      
        
       
        
 
   
 

   
   
 
 
2 2 2 2
R r R rP P d
log
4 t 4 dt
P 4 d P
log
3 dt
 

   


  
       
     
      
   
    
   
 
 
 
2 2
4 d
log
3 dt
R r
1 P d P
log
4 dt t
     
                        


 

  
 
 
2 2
4 d
log
3 dt
r R
1 P d P
log
4 dt t
     
                        


 

  
 
 
2 2
4 d
log
3 dt
r R
1 P d P
log
4 dt t
     
                       


 

  
(28)
Similarly substitute Eqn.(27) in Eqn.(26) we get,
 
   
v
22
2 2
T d 1 T
C P log kr
t dt r r r
4 d 3 1 P
log R r
3 dt 4 r 4
   
   
   
      
       
       
 
 
 
   
2
v
22
T d 1 T 4 d
C P log kr log
t dt r r r 3 dt
r P
4
     
     
     
 
  
 
   
 
   
2
v
2
2
4 d d 1 T T
log P log kr C
3 dt dt r r r t
r
1 P
4
            
        
  
    
   
 
(29)
Now consideringHagen-Poiscuille temperature profiles for
thermoplastic melt injection through circular conduit
 
2
max w maxT T U
4k
 

(30)
Eqn. 30featuresmaximum temperature at conduit core with an
almost constant streaming gradience, while in actual injection
consequent to concurrent cooling melt temperature reduces
non-linearly, despite cooling melt streams keep moving ahead.
Hence temperature profile is appropriately modified as,
 
2
wT T U
4k
 

(30a)
Where  2 21 P
U R r
4
 
 
 
wT = wall temperature
Substituting Eqn. (27) in Eqn. (30a) we get,
 
2
2 2
w
1 P
T R r T
4k 4
  
   
 

 
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308
__________________________________________________________________________________________
Volume: 02 Issue: 11 | Nov-2013, Available @ http://www.ijret.org 422
 
2
22 2
w2
1 P
T R r T
4k 16
  
       


 
2 22 2
w
R r P
T T
64 k
  
  
  
(31)
Now substituting Eqn. (31) in Eqn. (29), we get
 
 
 
 
2 22 22
w
2 22 2
v w
2
2
R r4 d 1 P
log kr T
3 dt r r r 64 k
R rd P
P log C T
dt t 64 k
r
1 P
4
                           
 
              
   
 
  
 
 
 
 
 
As wall temperature variation throughout the cycle is very
nominal, it can be considered to be almost constant. Thus
applying the condition, equation reduces to,
    
 
 
22
22 2
2 22 2
v
2
2
4 d 1 r P
log R r
3 dt r r 64 r
C R rd P
P log
dt 64 k t
r
1 P
4
                    
 
                 
 
  
 
 


 
 
    
 
 
22
2 2
2 22 2
v
2
2
4 d 1 r P
log 2 R r 2r
3 dt r r 64
C R rd P
P log
dt 64 k t
r
1 P
4
                   
 
                 
 
  
 
 


 
 
 
 
 
 
24 2 22
2 22 2
v
2
2
r R r4 d 1 P
log
3 dt r r 16
C R rd P
P log
dt 64 k t
r
1 P
4
 
 


 
 
                   
                 
 
  
 
 
 
 
23 22
2 22 2
v
2
2
4r 2R r4 d 1 P d
log P log
3 dt r 16 dt
C R r P
64 k t
r
1 P
4
             
 
    
          
 
  
  
 

 
 
 
 
 
 
2 22 2 2
v
22 2
2
2
C R r P 4 d
log
64 k t 3 dt
2r Rd P
P log
dt 8
r
1 P
4
                     
          
 
  

 
 

 
 
(32)
Thus equating Eqn. (28) and (32) we get,
 
 
 
 
 
 
2
2 22 2 2
v
22 2
2
4 d
log
3 dt
R
1 P d P
log
4 dt t
C R r P 4 d
log
64 k t 3 dt
2r Rd P
P log
dt 8
1 P
4
     
                       
                     
          
 
  


 

  

 
 

 
 
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308
__________________________________________________________________________________________
Volume: 02 Issue: 11 | Nov-2013, Available @ http://www.ijret.org 423
Rearranging the above equation
 
 
 
 
 
 
2 22 2 2
v
22 2
2
2
C R r P 4 d
log
64 k t 3 dt
2r Rd P
P log
dt 8
1 PR
4
4 d
log
3 dt
1 P d P
log
4 dt t

 
 

 
 


 

  
                       
          
 
  
     
                      


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Substituting the condition at the boundary, that is at wall r=R,
the above equation simplifies into
   
 
 
 
222
2
2
r R
R4 d d P
log P log
3 dt dt 8
1 P
4
R
4 d
log
3 dt
1 P d P
log
4 dt t
  
 
 


 

  

                
  
   
      
       
                          
   
 
   
 
222
2
2
2
R4 d d P
log P log
3 dt dt 8
P d P 4 d P
log log
dt t 3 dt
R
1 P P d P
log
4 dt t
                  
            
         
              
                       




 
  
 

 
    

   
r R




Rearranging the above equation
 
   
   
 
22
3 2
2
3 22 2
R P P d P
log
4 dt t
4 P d 4 d P
log log
3 dt 3 dt t
P d d P
P log P log
dt dt t
R P d R P P
log
8 dt 8 t
        
     
        
      
      
       
    
    
     

       
     
       

   
 
 
 
 
 

    
 
2
4 d P
log
3 dt
 
 
 
 
 
 
 
  
  
  
 
            


  
 
 
   
 
22
3 22 2
3 2
2
R P P d P
log
4 dt t
R P d R P P
log
8 dt 8 t
4 P d 4 d P
log log
3 dt 3 dt t
P d
P log P
dt
         
      
         
 
          
                  
      
      
       
  
   
  

   

    
 
 
 


 
 
2
d P
log
dt t
4 d P
log
3 dt
 
 
 
 
   
    
 
    
        




  
 
 
   
 
3 2
2
3 2
3 2
1 P d 1 P P
log
4 dt 4 t
R
1 P d 1 P P
log
8 dt 8 t
4 P d 4 d P
log log
3 dt 3 dt t
P d
P log
dt
          
       
          
 
          
                  
      
      
       
  
   
  

    

    
 
 
 


 
 
2
2
d P
P log
dt t
4 d P
log
3 dt
 
 
 
 
        
 
    
        




  
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308
__________________________________________________________________________________________
Volume: 02 Issue: 11 | Nov-2013, Available @ http://www.ijret.org 424
 
   
   
 
3 2
2
3 2
2
2
3 P d 3 P P
R log
8 dt 8 t
4 P d 4 d P
log log
3 dt 3 dt t
P d d P
P log P log
dt dt t
4 d P
log
3 dt
          
                  
       
      
       

               
   
   
   

    
 
 
 
 
 


  






 
 
  

   
   
 
 
3 2
2
2
2
2
4 P d 4 d P
log log
3 dt 3 dt t
P d d P
P log P log
dt dt t
4 d P
log
3 dt
R
3 P P d P
log
8 dt t
       
      
        
 
               
 
    
        
        
     
        
 
 
 
 
 


  

   
 
 
 
(33)
From Tait Equation we know that,
 
 
  
 
  
3 4 4 5 4
4
3 4 5 4
3 4 5
2
1 2 2 5 3 4 5
3
dT dP
b b exp b b b T
dT dt dt0.0894b 0.0894
dt b exp b b b T P
1 0.0894ln b 0.0894b b Tb dT
b b T b b dt0.0894ln b exp b T b Pd
log
dt 1 0.0894ln b 0.08
  
    
  
    
  
 
     
   
            
 

 
  
4 5
3 4 5
94b b T
0.0894ln b exp b T b P
 
 
       
(34)
3.2 Weissenberg-Rabinowitsch Correction
Since thermoplastic melt is non-Newtonian type, herein
inequality is implicit inabove Newtonian constitutive relations,
reasoning wallshear rate differencefor non-Newtonian
constitutive relations. Further to equate true non-newtonian
viscosity is obtained from Weissenberg-Rabinowitsch
correction [11]. Accordingly correct shear rate at the wall for a
non-Newtonian thermoplastic could now be calculated from
below equation,
a
R a
R
dln1
3
4 dln
  
   
   

 

 

(35)
The term in square brackets is the Weissenberg-Rabinowitsch
(WR) correction, by correcting apparent shear rate to true
shear rate, viscosity becomes obvious as it is the ratio of shear
stress at the wall to true shear rate at the wall of the capillary.
R
R





(36)
Accordingly viscosity for axisymmetric flow in terms of wall
shear stress and apparent shear rate is
1
R
a
3n 1
4n

 
  
 



(37)
Where n= power law index/shear thinning index R
a
dln
n
dln




For n=1 the true and apparent viscosity values are identical.
For shear-thinning (Pseudo- plastic) n<1, this means that for
aqueous thermoplastic melts, true shear rate would always be
greater than apparent shear rate [12]. Thus Eqn (37) would
now be,
0
4n
3n 1
 
  
 
  (38)
Where 0 = Apparent viscosity
Thus adopting Weissenberg-Rabinowitsch correction in
equation (33) the non-Newtonian behaviour of polymer melt is
accommodated.
4. MATHEMATICAL VALIDATION OF THE
RUNNER EQUATION USING DIMENSIONAL
ANALYSIS
Dimension of all physical parameters being a unique
combination of basic constituting physicalquantification can
be expressed in terms of the fundamental dimensions (or base
dimensions) M, L, and T – also these form 3-dimensional
vector space.Itmandates strategic relevance to choice of data
and isadoptedherein to deduce the credibility of
derivedequations and thereon computations. Its most basic
benefit beinghomogeneity i.e., only commensurable equations
could be substantiated by havingidentical dimensions on either
sides. Accordingly dimensional analysis (also referred as Unit
Factor Method) is adapted to characterising Eqn. (33),
1 3 1
3
kg
M L T k
m
 
   
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308
__________________________________________________________________________________________
Volume: 02 Issue: 11 | Nov-2013, Available @ http://www.ijret.org 425
1 1 2
2 2
N kg
P M L T
m m s
 
  

3 3
1 3 1 3 1
1 2
m m
b M L b M L
kg kg k
  
   

1 1 2
3 2 2
N kg
b M L T
m m s
 
  

1 1 1
4 5
1
b b k dt s T
k
 
     
  1 1 1 1 1
2
d N s kg
log T , m L and M L T
dt m sm
    
     

2 2 2
Consider L.H.S R m L 
2 2
3 2
2 2
2 2 2
2
2
3
Consider R.H.S
kg kg
kg 1 kg 1 1m s m s
m s m m s s ms s
kg kg
kg 1 kg 1 1m s m s
m s s mm s s m s
kgkg
1m s m s
kg m s m
m
kg
m s m s
kg
   
             
       
   
   
             
       
   
  
       
      
 
2
2
2 2 2 2
kg 1 kg 1
m s sm s m s
  
           
         
2 2 2 2
3 6 3 6 3 6 3 6
2
3 6
2
5 6
Upon simplifying
kg kg kg kg
m s m s m s m s
kg
m s
kg
m s
       
          
          
 
 
 
 
 
 
2
3 6
2 2
2
5 6
kg
m s m L
kg
m s
  

Since LHS = RHS, Runner equation has been verified
dimensionally.
CONCLUSIONS
This manuscript features a step by step derivation towards a
computational model for determining runner dimension of a
plastic injection mould. On the basis of governing equations,
Weissenberg-Rabinowitsch correction for non-Newtonian
nature of thermoplastic melt Eqn. (33) was derived as a
function of thermoplastic melt properties such as viscosity and
density, injection moulding machinespecificationssuch as
maximum injection pressure and nozzle tip temperature as
well as temporal parameter that feature the mould impression
in totality owing to processing dynamics. Ultimately we
believe Eqn. (33)computational model would offer a definite
value of runner dimension that might still diverge from perfect
or ideal design owing to computational rigour.
REFERENCES
[1] M. Lakkanna, Y. Nagamalappa and Nagaraja R (6 Nov
2013) "Implementation of Conservation principles for
Runner conduit in Plastic Injection Mould
Design"International Journal of Engineering Research
and Technology, vol. 2, no. 11, pp. 88-99
[2] Z. Tadmor and C. G. Gogos (2006)Principles of
Polymer Processing, 2nd
ed., New Jersey: WILEY
[3] E. Mitsoulis(2010)“Computational Polymer
Processing”, Modelling and simulation in polymers, A.
I. Purushotham,D.Gujrati, Ed., Wiley-VCH Verlag
GmbH & Co. KGaA, Weinheim, Germany.
doi: 10.1002/9783527630257.ch4
[4] R. Patani, I. Coccorullo, V. Speranza and G.
Titomanlio(12 September 2005)“Modelling of
morphology evolution in the injection moulding process
of thermoplastic polymers”, Progress in Polymer
Science, pp. 1185-1222
[5] M. Lakkanna, R. Kadoli and Mohan Kumar G C
(2013)"Governing Equations to Inject Thermoplastic
Melt Through Runner conduit in a plastic injection
mould", Proceedings of National Conference on
Innovations in Mechanical Engineering, Madanapalle
[6] T AOsswald and J. P. Hernandez-Ortiz (2006), Polymer
processing modelling and simulation, Hanser
Publishers. Germany
[7] Mahmood, S. Parveen, A. Ara and N. Khan(15 January
2009) “Exact analytic solutions for the unsteady flow of
a non-Newtonian fluid between two cylinders with
fractional derivative model” Communications in
Nonlinear Science and Numerical Simulation pp. 3309-
3319
[8] L. l. Grange, G. Greyvenstein, W de Kock and J. Meyer
(1993), “A numerical model for solving polymer melt
flow”, R&D Journal, Vol. 9, Issue 2, pp. 12-17
[9] S. Kumar and S. Kumar (8 March 2009)“A
Mathematical Model for Newtonian and Non-
Newtonian Flow” Indian Journal of Biomechanics, pp.
191-195
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308
__________________________________________________________________________________________
Volume: 02 Issue: 11 | Nov-2013, Available @ http://www.ijret.org 426
[10] F. Pinho and J. Whitelaw (May 1990)“Flow of Non-
Newtonian fluids through pipe” Journal of Non-
Newtonian Fluid Mechanics, Vol 25, pp. 129-144
[11] P C Beaupre (2002)“A Comparison of the axisymmetric
& planar elongation viscosities of a polymer” , MSc
Mech. Engg. Thesis, Michigan Technological
University, USA
[12] N. Martins (2009), “Rheological investigation of iron
based feedstock for the metal injection moulding
process,” Dubendorf, Switzerland
BIOGRAPHIES
Muralidhar Lakkanna B.E(Mech)'96,
Post-Dipl-Tool Design'99, M.Mktg
Mngt'03, M.Tech(Tool Engg)'04, M.Phil
(ToolroomMngt)'05, PG-SQC'09 Since 16
years actively engaged in tool, die and
mould manufacturing has designed,
developed & commissioned more than
5000 high value tooling projects. Research
interests are high performance tools, dies & moulds, plastic
injection mould design, plastic injection mould mechanics,
computational plastic injection dynamics, etc., Currently
National Tool, Die & Mould Making Consultant, Regd at
Ministry of MSME, Government of India and Tool, Die &
Mould Technology Innovation & Management (TIMEIS)
Expert, Regd at Department of Science & Technology,
Government of India
lmurali_research@yahoo.com
Yashwanth Nagamallappa B.E (Mech)
’11 Presently studying M.Tech in Tool
Engineering at Government Toolroom&
Training Centre, Bangalore Possess
research interests in injection mould
design arena
yash.spy@gmail.com
R Nagaraja B.E (Mech)’88,M.Tech(Tool
Engg)’92 Since 21 years training at PG
level in tool design arena like plastic
moulds, advance moulding techniques,
press tools, component materials, die
casting, jigs & fixtures, etc. Currently in-
charge principal for PG&PD studies at
GT&TC, Government of Karnataka, Bangalore
r.nagaraja@yahoo.com
NOMENCLATURE:
m Mass Kg
V Volume 3
m
P Pressure 2
Kgf / m
T Temperature K
wT Wall Temperature K
K Thermal conductivity W/m
A Cross-section area 2
m
R Runner radius m
U

Linear velocity m / s
rU

Velocity in radial direction m / s
U


Velocity in tangential direction m / s
U


Velocity in arbitrary direction m / s
a Acceleration 2
m / s
M

Linear momentum Kg m / s
H

Angular momentum Kg m / s
I Moment of inertia 2
Kg m
e Specific total energy KJ / Kg
ˆu Specific internal energy KJ / Kg
T Resultant torque N m
M Resultant moment N m
F Resultant force 2
N / m
rF Force acting in radial direction 2
N / m
F
Force acting in tangential
direction
2
N / m
F
Force acting in arbitrary
direction
2
N / m
Q Rate of heat transfer KW
q Rate of heat transfer per unit
mass
KW
vW Rate of work done by viscous
forces
KW
pW Rate of work done by pressure
forces
KW
dS Entropy change KJ / Kg
vC Specific heat at constant
volume
KJ / KgK
pC Specific heat at constant
pressure
KJ / KgK
n

Unit normal vector
r

Position vector
n Shear thinning index
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308
__________________________________________________________________________________________
Volume: 02 Issue: 11 | Nov-2013, Available @ http://www.ijret.org 427
GREEK SYMBOLS
 Density 3
Kg / m
 Specific volume 3
m / Kg

 Angular Velocity m / s
 Angular acceleration 2
m / s
R
 True shear rate 1/ s
a
 Apparent shear rate 1/ s
 Surface force 2
N / m
 Shear stress 2
N / m
 True Viscosity 2
N s / m
0 Apparent viscosity 2
N s / m
 Viscous dissipation function

More Related Content

PDF
Computational model to design circular runner
PDF
A study on mhd boundary layer flow over a nonlinear stretching sheet using im...
PDF
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
PDF
Effect of viscous dissipation on mhd flow and heat transfer of a non newtonia...
PDF
A study on mhd boundary layer flow over a nonlinear
PDF
MATH3031_Project 130515
PDF
Numerical simulation of marangoni driven boundary layer flow over a flat plat...
PDF
30120140505004
Computational model to design circular runner
A study on mhd boundary layer flow over a nonlinear stretching sheet using im...
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
Effect of viscous dissipation on mhd flow and heat transfer of a non newtonia...
A study on mhd boundary layer flow over a nonlinear
MATH3031_Project 130515
Numerical simulation of marangoni driven boundary layer flow over a flat plat...
30120140505004

What's hot (20)

PDF
Mathematical Modeling of Quasi Static Thermoelastic Transient behavior of thi...
PDF
Hh3312761282
PDF
Non-Linear Water Wave Equation Time Series Formulated Using Velocity Equation...
PDF
Numerical study of natural convection in an enclosed
PDF
Modeling of manufacturing of a field effect transistor to determine condition...
PDF
H - FUNCTION AND GENERAL CLASS OF POLYNOMIAL AND HEAT CONDUCTION IN A ROD.
PDF
1 viscoelastic foundation on soil under vertical load
PDF
Effect of Michell’s Function in Stress Analysis Due to Axisymmetric Heat Supp...
PDF
On 1 d fractional supersymmetric theory
PDF
Buckling of a carbon nanotube embedded in elastic medium via nonlocal elastic...
PDF
Integral solutions of the ternary cubic equation
PDF
Artificial neural network ann prediction of one-dimensional consolidation
PPT
Finite Element Analysis - UNIT-2
PDF
Nonlinear Viscoelastic Analysis of Laminated Composite Plates – A Multi Scale...
PDF
Auto Regressive Process (1) with Change Point: Bayesian Approch
PDF
I023083088
PDF
PART I.3 - Physical Mathematics
PDF
On the Choice of Compressor Pressure in the Process of Pneumatic Transport to...
PDF
PART I.2 - Physical Mathematics
PDF
On the solution of incompressible fluid flow equations
Mathematical Modeling of Quasi Static Thermoelastic Transient behavior of thi...
Hh3312761282
Non-Linear Water Wave Equation Time Series Formulated Using Velocity Equation...
Numerical study of natural convection in an enclosed
Modeling of manufacturing of a field effect transistor to determine condition...
H - FUNCTION AND GENERAL CLASS OF POLYNOMIAL AND HEAT CONDUCTION IN A ROD.
1 viscoelastic foundation on soil under vertical load
Effect of Michell’s Function in Stress Analysis Due to Axisymmetric Heat Supp...
On 1 d fractional supersymmetric theory
Buckling of a carbon nanotube embedded in elastic medium via nonlocal elastic...
Integral solutions of the ternary cubic equation
Artificial neural network ann prediction of one-dimensional consolidation
Finite Element Analysis - UNIT-2
Nonlinear Viscoelastic Analysis of Laminated Composite Plates – A Multi Scale...
Auto Regressive Process (1) with Change Point: Bayesian Approch
I023083088
PART I.3 - Physical Mathematics
On the Choice of Compressor Pressure in the Process of Pneumatic Transport to...
PART I.2 - Physical Mathematics
On the solution of incompressible fluid flow equations
Ad

Viewers also liked (19)

PDF
An efficient approach to query reformulation in web search
PDF
Trust management in p2 p systems
PDF
Scene text recognition in mobile applications by character descriptor and str...
PDF
Position characterization of electro pneumatic closed loop control valve
PDF
Wireless lan intrusion detection by using statistical timing approach
PDF
Selection of optimal air pollution control strategies
PDF
Enhancement of power quality in a
PDF
Study and comparison of emission characteristics of n butanol diesel blend i...
PDF
Evaluation on different approaches of cyclic association rules
PDF
The measurement model for outsourcing worker performance by middle and big cl...
PDF
Measurement and model validation of specific heat of xanthan gum using joules...
PDF
Design and analysis of different digital communication systems and determinat...
PDF
A low cost short range wireless embedded system for multiple parameter control
PDF
A comprehensive survey on security issues in cloud computing and data privacy...
PDF
Causes of delay in indian transportation infrastructure projects
PDF
Bounds on inverse domination in squares of graphs
PDF
Effects of filtering on ber performance of an ofdm system
PDF
Performance analysis of new proposed window for the improvement of snr &amp; ...
PDF
Co axial fed microstrip rectangular patch antenna design for bluetooth applic...
An efficient approach to query reformulation in web search
Trust management in p2 p systems
Scene text recognition in mobile applications by character descriptor and str...
Position characterization of electro pneumatic closed loop control valve
Wireless lan intrusion detection by using statistical timing approach
Selection of optimal air pollution control strategies
Enhancement of power quality in a
Study and comparison of emission characteristics of n butanol diesel blend i...
Evaluation on different approaches of cyclic association rules
The measurement model for outsourcing worker performance by middle and big cl...
Measurement and model validation of specific heat of xanthan gum using joules...
Design and analysis of different digital communication systems and determinat...
A low cost short range wireless embedded system for multiple parameter control
A comprehensive survey on security issues in cloud computing and data privacy...
Causes of delay in indian transportation infrastructure projects
Bounds on inverse domination in squares of graphs
Effects of filtering on ber performance of an ofdm system
Performance analysis of new proposed window for the improvement of snr &amp; ...
Co axial fed microstrip rectangular patch antenna design for bluetooth applic...
Ad

Similar to Computational model to design circular runner conduit for plastic injection mould (20)

PDF
Fluid motion in the posterior chamber of the eye
PDF
Answers to Problems in Convective Heat and Mass Transfer, 2nd Edition by Ghia...
PPT
A 1 D Breakup Model For
PDF
Ol2423602367
PDF
Huttunen saara
PDF
Comparision of flow analysis through a different geometry of flowmeters using...
PDF
Formula Book [Physics+chemistry+Maths].pdf
PDF
General Solution of Equations of Motion of Axisymmetric Problem of Micro-Isot...
PDF
fluid_mechanics_notes.pdf
PDF
Finite Element Solution On Effects Of Viscous Dissipation & Diffusion Thermo ...
PDF
Basiceqs3
PDF
Internship Report: Interaction of two particles in a pipe flow
PDF
Simulation of Magnetically Confined Plasma for Etch Applications
PDF
Fox And Mcdonald's Introduction To Fluid Mechanics 8th Edition Pritchard Solu...
PDF
Budynas sm ch01
PDF
H c verma part 1 solution
PDF
Solutions Manual for Foundations Of MEMS 2nd Edition by Chang Liu
PDF
JEE MAIN QUESTION PAPER -12.04.2014
PDF
International Journal of Computational Engineering Research(IJCER)
Fluid motion in the posterior chamber of the eye
Answers to Problems in Convective Heat and Mass Transfer, 2nd Edition by Ghia...
A 1 D Breakup Model For
Ol2423602367
Huttunen saara
Comparision of flow analysis through a different geometry of flowmeters using...
Formula Book [Physics+chemistry+Maths].pdf
General Solution of Equations of Motion of Axisymmetric Problem of Micro-Isot...
fluid_mechanics_notes.pdf
Finite Element Solution On Effects Of Viscous Dissipation & Diffusion Thermo ...
Basiceqs3
Internship Report: Interaction of two particles in a pipe flow
Simulation of Magnetically Confined Plasma for Etch Applications
Fox And Mcdonald's Introduction To Fluid Mechanics 8th Edition Pritchard Solu...
Budynas sm ch01
H c verma part 1 solution
Solutions Manual for Foundations Of MEMS 2nd Edition by Chang Liu
JEE MAIN QUESTION PAPER -12.04.2014
International Journal of Computational Engineering Research(IJCER)

More from eSAT Journals (20)

PDF
Mechanical properties of hybrid fiber reinforced concrete for pavements
PDF
Material management in construction – a case study
PDF
Managing drought short term strategies in semi arid regions a case study
PDF
Life cycle cost analysis of overlay for an urban road in bangalore
PDF
Laboratory studies of dense bituminous mixes ii with reclaimed asphalt materials
PDF
Laboratory investigation of expansive soil stabilized with natural inorganic ...
PDF
Influence of reinforcement on the behavior of hollow concrete block masonry p...
PDF
Influence of compaction energy on soil stabilized with chemical stabilizer
PDF
Geographical information system (gis) for water resources management
PDF
Forest type mapping of bidar forest division, karnataka using geoinformatics ...
PDF
Factors influencing compressive strength of geopolymer concrete
PDF
Experimental investigation on circular hollow steel columns in filled with li...
PDF
Experimental behavior of circular hsscfrc filled steel tubular columns under ...
PDF
Evaluation of punching shear in flat slabs
PDF
Evaluation of performance of intake tower dam for recent earthquake in india
PDF
Evaluation of operational efficiency of urban road network using travel time ...
PDF
Estimation of surface runoff in nallur amanikere watershed using scs cn method
PDF
Estimation of morphometric parameters and runoff using rs &amp; gis techniques
PDF
Effect of variation of plastic hinge length on the results of non linear anal...
PDF
Effect of use of recycled materials on indirect tensile strength of asphalt c...
Mechanical properties of hybrid fiber reinforced concrete for pavements
Material management in construction – a case study
Managing drought short term strategies in semi arid regions a case study
Life cycle cost analysis of overlay for an urban road in bangalore
Laboratory studies of dense bituminous mixes ii with reclaimed asphalt materials
Laboratory investigation of expansive soil stabilized with natural inorganic ...
Influence of reinforcement on the behavior of hollow concrete block masonry p...
Influence of compaction energy on soil stabilized with chemical stabilizer
Geographical information system (gis) for water resources management
Forest type mapping of bidar forest division, karnataka using geoinformatics ...
Factors influencing compressive strength of geopolymer concrete
Experimental investigation on circular hollow steel columns in filled with li...
Experimental behavior of circular hsscfrc filled steel tubular columns under ...
Evaluation of punching shear in flat slabs
Evaluation of performance of intake tower dam for recent earthquake in india
Evaluation of operational efficiency of urban road network using travel time ...
Estimation of surface runoff in nallur amanikere watershed using scs cn method
Estimation of morphometric parameters and runoff using rs &amp; gis techniques
Effect of variation of plastic hinge length on the results of non linear anal...
Effect of use of recycled materials on indirect tensile strength of asphalt c...

Recently uploaded (20)

PPT
Project quality management in manufacturing
PDF
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PPTX
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PPTX
Geodesy 1.pptx...............................................
PDF
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
PDF
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
PPTX
bas. eng. economics group 4 presentation 1.pptx
PDF
Well-logging-methods_new................
PDF
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
PPTX
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
PPTX
UNIT 4 Total Quality Management .pptx
PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
PPTX
UNIT-1 - COAL BASED THERMAL POWER PLANTS
PDF
composite construction of structures.pdf
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PDF
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
Project quality management in manufacturing
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
Geodesy 1.pptx...............................................
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
bas. eng. economics group 4 presentation 1.pptx
Well-logging-methods_new................
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
UNIT 4 Total Quality Management .pptx
Automation-in-Manufacturing-Chapter-Introduction.pdf
UNIT-1 - COAL BASED THERMAL POWER PLANTS
composite construction of structures.pdf
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...

Computational model to design circular runner conduit for plastic injection mould

  • 1. IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 __________________________________________________________________________________________ Volume: 02 Issue: 11 | Nov-2013, Available @ http://www.ijret.org 418 COMPUTATIONAL MODEL TO DESIGN CIRCULAR RUNNER CONDUIT FOR PLASTIC INJECTION MOULD Muralidhar Lakkanna*, Yashwanth Nagamallappa, R Nagaraja PG & PD Studies, Government Tool room & Training Centre, Bangalore, Karnataka, India * Corresponding author Tel +91 8105899334, Email: lmurali_research@yahoo.com Abstract Analytical solution quest for viscoelastic shear thinning fluid flow through circular conduit is a matter of great prominence as it directly evolvesmost efficient criteria to investigate various responses of independent parameters. Envisaging this facet present endeavour attempts to develop a computational model for designing runner conduit lateral dimension in a plastic injection mould through which thermoplastic melt gets injected. At outset injection phenomenon is represented by governing equations on the basis of mass, momentum and energy conservation principles [1]. Embracing Hagen Poiseuille flow problem analogous to runner conduit injection the manuscript uniquely imposes runner conduit inlet and outlet boundary conditions along with relative to appropriate assumptions; governing equations evolve a computation model as criteria for designing. To overwhelm Non-Newtonian’s abstruse Weissenberg-Rabinowitsch correction factor has been adopted byaccommodating thermoplastic melt behaviour towards the final stage of derivation. The resulting final computational model is believed to express runner conduit dimensions as a function of available type of injection moulding machine specifications, characteristics of thermoplastic melt and required features of component being moulded. Later the equation so obtained has been verified by using dimensional analysis method. Keywords: Computational modelling, Runner conduit design, Plastic injection mould, Hagen-Poiseuille flow ---------------------------------------------------------------------***--------------------------------------------------------------------- 1. INTRODUCTION Mathematical models for polymer processingisby and large deterministic (as are the processes)typically transport based unsteady (cyclic process) and distributed parameter. Particularly complex thermoplastic melt injection mould system was broken into clearly defined subsystems for modelling. Runner dimension plays a vital role in the idealization of an injection mould and hence deriving a computational model to determine runner dimension was of immense need. There have been a fairly large number of Newtonian apprehensions for which a closed form analytical solution are prevailing. However, for non-Newtonian apprehension fluids such as thermoplastic melts exact solutions are rare. In general, non-Newtonian melt injection behaviours are more complicated and subtle compared to Newtonian fluid circumstances[2].Developing a model for complex process like thermoplastic melt (which is non- Newtonian highly viscoelastic, shinning type fluid) injection through runner conduit (circular conduit) requires a clear objective definition. Hereto the sole objective of this derivation is to obtain a runner diameter design criteria as a function of injection moulding machine specifications used for the purpose of injection, type of thermoplastic melt being injected and features of the component being moulded as known parameters. The physical process of thermoplastic melt injection through runner conduit in a typical plastic injection mould is represented by a set of expressions, which insights adept acquaintance of in-situ physical phenomena that occurs within actualprocessing[3]. Mathematical modelling involves assembling sets of various mathematical equations, which originates from engineering fundamentals, such as the material, energy and momentum balance equations [4]. Herein representative mathematical equations attempts to computationally model the interrelations that govern actual processing situate[5]. More complex the mathematical model, the more accurately it mimics the actual process [6]. Towards obtaining an analytical solution we must first simplify the balance equations, although the resulting equations are fundamental, rigorous,nonlinear, collective, complex and difficult to solve [2]. Therefore, the resulting equations are sufficiently simplified by considering appropriate assumptions that correspond to those the actual processing interrelations between variables and parameters. These assumptions are geometric simplifications, initial conditions and physical assumptions, such as isothermal systems, isotropic materials as well as material models, such as Newtonian, elastic, visco- elastic, shear thinning, or others [6]. Finally boundary conditions like velocity and temperature profiles are applied to simplifying the resulting equations completely [7]. Further meticulous rearranging of the functions leads us to a complete computational model that enables design engineers to
  • 2. IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 __________________________________________________________________________________________ Volume: 02 Issue: 11 | Nov-2013, Available @ http://www.ijret.org 419 confidently design superior moulds at bonus costs thus idealizing the process from mould design perspective [8]. 2. GOVERNING EQUATIONS The phenomenon ofactual melt injection through the runner conduit is represented by governing equations that discriminately appreciate compressibility, unsteadiness and non-Newtonian factors. Hence are highly rigorous, nonlinear, comprehensive, complex and difficult to solve. Few explicit assumptions are made herein are: (a) Thermoplastic viscosity remain consistent (b)Body forces are neglected when compared to that of viscous forces (c) Thermoplastic melt thermal conductivity is considered constant. 2.1 Equation of Continuity (Mass Balance)  rr ( U )U ( U )U 1 0 t r r r                 (1)  . U 0 t        (2) Substituting  . U .U .U          , in equation (2), .U .U 0 t            (3) d .U 0 dt       d log .U 0 dt     d log .U dt      (4) 2.2 Equations of Motion 2 r r r r r rrrr U UU U U U U U t r r r ( )( )(r )P 1 1 r r r r r                                          (5) r r 2 r r r 2 U U U U U U U U U t r r r ( )(r ) ( )1 P 1 1 r r r rr                                                     (6) r r U U U UU U U t r r (r ) ( ) ( )P 1 1 r r r                                               (7) The Newtonian constitutive relations are  r rr U 2 2 .U r 3            (8)  rU U1 2 2 .U r r 3                  (9)   U 2 2 .U 3              (10) r r r U U1 r r r r                    (11) r r r U U r                 (12) UU 1 r                  (13)  r UU1 1 .U rU r r r             (14) Substituting Newtonian constitutive relation Eqn. (8) to (14) in equations of motion Eqn. (5) to (7) we get, 2 r r r r r r r r r r U U U U U U U U t r r r P U 2 2 U 1 U U 2 .U r r r 3 r r r r U1 1 U U U U r r r r r                                                                                            (15)
  • 3. IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 __________________________________________________________________________________________ Volume: 02 Issue: 11 | Nov-2013, Available @ http://www.ijret.org 420 r r r r U U U U U U U U U t r r r 1 P 1 2 U U 2 2 .U r r r r 3 2 1 U U U 1 U U U r r r r r r r r U1 U r                                                                                                           (16) r r r U U U UU U U t r r U UP 2 U 2 .U 3 r r U U1 1 U U r r r r                                                                                                       (17) 2.3 Energy Balance Equation     ˆdu P .U . k T : U dt             (18) From thermodynamic relation we have, v v ˆdu ˆC , du C dT dT    Hence Eqn. (18) simplifies as    v dT C P .U . k T : U dt            (19)     v 2 222 r r 22 r 2 2 r dT 1 T 1 T T C P .U kr k k dt r r r r UUU U1 r r r UU U UU1 1 1 1 2 2 r r r 2 r UU1 1 .U 2 r 3                                                                                                                         (20) Equation of Entropy   dS T . k T : U dt          (21) We can apprehend from Eqn. (19) and (21) that entropy is already present quantitatively in energy equation Eqn. (19) itself. 3. SOLUTION FOR GOVERNING EQUATIONS Geometrical conditions a) Analogous to pipe flow transverse velocity components could be considered almost zero (geometrical constraint) i.e., rU U 0  , accordingly transverse pressure gradience would also be zero. Hence P P 0 r       b) Since runner cross section is axis-symmetric profile, tangential gradience could be considered zero i.e., 0    c) Only lateral gradience of temperature is considered because radial gradience far exceeds than other two directionsi.e., T T T 0, 0 r           Upon substituting above (a) to (c), governing equations reduce to,   Ud log dt        (22) U U U UP 4 U r t 3 r r r                                              (23) 2 2 v U U UT 1 T 4 3 C P kr t r r r 3 4 r                                        (24) Substituting Eqn. (22) in Eqn. (23) and Eqn. (24) we get     U d U log t dt UP 4 d log r 3 dt r r r                                    (25)     v 22 T d C P log t dt U1 T 4 d 3 kr log r r r 3 dt 4 r                                   (26) 3.1 Hagen-Poiscuille Velocity Profile Thermoplastic melt transportation studies are critical fordesigninglateral dimension of runner conduits as well as
  • 4. IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 __________________________________________________________________________________________ Volume: 02 Issue: 11 | Nov-2013, Available @ http://www.ijret.org 421 injectionbehaviours [9]. Cognising axial velocity of non- Newtonian, shear thinning thermoplastic melt injection can conversely enable conduit dimension determination, because Axial velocity component is a function of conduit radius through which melt is being injected [10]. Since thermoplastic melt injection through circular runner conduit occurs at creep level Reynolds number, the flow is fully developed and laminar. Hence well-established incompressible laminar flow Hagen-Poiscuille velocity profile can be considered analogous to represent velocity for thermoplastic melt injection through circular conduits. Parabolic velocity profile through circular conduits varies from core to wall in such a way that core velocity would be maximum while almost zero at the rigid stationary wall. Accordingly velocity profile would be,  2 21 P U R r 4         (27) Although Eqn. (27) neglects compressibility factor, herein we retain it right from equation of continuity to appreciate actual expandability and compressibility phenomenon through each cycle typically involved in injection moulding. Substituting Eqn. (27) in Eqn. (25) we get,           2 2 2 2 2 2 1 P 1 P d R r R r log t 4 4 dt P 4 d 1 P log r R r 3 dt r r r 4                                                                       2 2 2 2 R r R rP P d log 4 t 4 dt P 4 d P log 3 dt                                                     2 2 4 d log 3 dt R r 1 P d P log 4 dt t                                            2 2 4 d log 3 dt r R 1 P d P log 4 dt t                                            2 2 4 d log 3 dt r R 1 P d P log 4 dt t                                       (28) Similarly substitute Eqn.(27) in Eqn.(26) we get,       v 22 2 2 T d 1 T C P log kr t dt r r r 4 d 3 1 P log R r 3 dt 4 r 4                                              2 v 22 T d 1 T 4 d C P log kr log t dt r r r 3 dt r P 4                                    2 v 2 2 4 d d 1 T T log P log kr C 3 dt dt r r r t r 1 P 4                                     (29) Now consideringHagen-Poiscuille temperature profiles for thermoplastic melt injection through circular conduit   2 max w maxT T U 4k    (30) Eqn. 30featuresmaximum temperature at conduit core with an almost constant streaming gradience, while in actual injection consequent to concurrent cooling melt temperature reduces non-linearly, despite cooling melt streams keep moving ahead. Hence temperature profile is appropriately modified as,   2 wT T U 4k    (30a) Where  2 21 P U R r 4       wT = wall temperature Substituting Eqn. (27) in Eqn. (30a) we get,   2 2 2 w 1 P T R r T 4k 4            
  • 5. IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 __________________________________________________________________________________________ Volume: 02 Issue: 11 | Nov-2013, Available @ http://www.ijret.org 422   2 22 2 w2 1 P T R r T 4k 16                2 22 2 w R r P T T 64 k          (31) Now substituting Eqn. (31) in Eqn. (29), we get         2 22 22 w 2 22 2 v w 2 2 R r4 d 1 P log kr T 3 dt r r r 64 k R rd P P log C T dt t 64 k r 1 P 4                                                                 As wall temperature variation throughout the cycle is very nominal, it can be considered to be almost constant. Thus applying the condition, equation reduces to,          22 22 2 2 22 2 v 2 2 4 d 1 r P log R r 3 dt r r 64 r C R rd P P log dt 64 k t r 1 P 4                                                                  22 2 2 2 22 2 v 2 2 4 d 1 r P log 2 R r 2r 3 dt r r 64 C R rd P P log dt 64 k t r 1 P 4                                                                24 2 22 2 22 2 v 2 2 r R r4 d 1 P log 3 dt r r 16 C R rd P P log dt 64 k t r 1 P 4                                                              23 22 2 22 2 v 2 2 4r 2R r4 d 1 P d log P log 3 dt r 16 dt C R r P 64 k t r 1 P 4                                                        2 22 2 2 v 22 2 2 2 C R r P 4 d log 64 k t 3 dt 2r Rd P P log dt 8 r 1 P 4                                                 (32) Thus equating Eqn. (28) and (32) we get,             2 2 22 2 2 v 22 2 2 4 d log 3 dt R 1 P d P log 4 dt t C R r P 4 d log 64 k t 3 dt 2r Rd P P log dt 8 1 P 4                                                                                      
  • 6. IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 __________________________________________________________________________________________ Volume: 02 Issue: 11 | Nov-2013, Available @ http://www.ijret.org 423 Rearranging the above equation             2 22 2 2 v 22 2 2 2 C R r P 4 d log 64 k t 3 dt 2r Rd P P log dt 8 1 PR 4 4 d log 3 dt 1 P d P log 4 dt t                                                                                                                         Substituting the condition at the boundary, that is at wall r=R, the above equation simplifies into           222 2 2 r R R4 d d P log P log 3 dt dt 8 1 P 4 R 4 d log 3 dt 1 P d P log 4 dt t                                                                                               222 2 2 2 R4 d d P log P log 3 dt dt 8 P d P 4 d P log log dt t 3 dt R 1 P P d P log 4 dt t                                                                                                          r R     Rearranging the above equation             22 3 2 2 3 22 2 R P P d P log 4 dt t 4 P d 4 d P log log 3 dt 3 dt t P d d P P log P log dt dt t R P d R P P log 8 dt 8 t                                                                                                             2 4 d P log 3 dt                                                      22 3 22 2 3 2 2 R P P d P log 4 dt t R P d R P P log 8 dt 8 t 4 P d 4 d P log log 3 dt 3 dt t P d P log P dt                                                                                                                   2 d P log dt t 4 d P log 3 dt                                                   3 2 2 3 2 3 2 1 P d 1 P P log 4 dt 4 t R 1 P d 1 P P log 8 dt 8 t 4 P d 4 d P log log 3 dt 3 dt t P d P log dt                                                                                                                       2 2 d P P log dt t 4 d P log 3 dt                                        
  • 7. IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 __________________________________________________________________________________________ Volume: 02 Issue: 11 | Nov-2013, Available @ http://www.ijret.org 424             3 2 2 3 2 2 2 3 P d 3 P P R log 8 dt 8 t 4 P d 4 d P log log 3 dt 3 dt t P d d P P log P log dt dt t 4 d P log 3 dt                                                                                                                                  3 2 2 2 2 2 4 P d 4 d P log log 3 dt 3 dt t P d d P P log P log dt dt t 4 d P log 3 dt R 3 P P d P log 8 dt t                                                                                                             (33) From Tait Equation we know that,             3 4 4 5 4 4 3 4 5 4 3 4 5 2 1 2 2 5 3 4 5 3 dT dP b b exp b b b T dT dt dt0.0894b 0.0894 dt b exp b b b T P 1 0.0894ln b 0.0894b b Tb dT b b T b b dt0.0894ln b exp b T b Pd log dt 1 0.0894ln b 0.08                                                     4 5 3 4 5 94b b T 0.0894ln b exp b T b P             (34) 3.2 Weissenberg-Rabinowitsch Correction Since thermoplastic melt is non-Newtonian type, herein inequality is implicit inabove Newtonian constitutive relations, reasoning wallshear rate differencefor non-Newtonian constitutive relations. Further to equate true non-newtonian viscosity is obtained from Weissenberg-Rabinowitsch correction [11]. Accordingly correct shear rate at the wall for a non-Newtonian thermoplastic could now be calculated from below equation, a R a R dln1 3 4 dln                   (35) The term in square brackets is the Weissenberg-Rabinowitsch (WR) correction, by correcting apparent shear rate to true shear rate, viscosity becomes obvious as it is the ratio of shear stress at the wall to true shear rate at the wall of the capillary. R R      (36) Accordingly viscosity for axisymmetric flow in terms of wall shear stress and apparent shear rate is 1 R a 3n 1 4n            (37) Where n= power law index/shear thinning index R a dln n dln     For n=1 the true and apparent viscosity values are identical. For shear-thinning (Pseudo- plastic) n<1, this means that for aqueous thermoplastic melts, true shear rate would always be greater than apparent shear rate [12]. Thus Eqn (37) would now be, 0 4n 3n 1          (38) Where 0 = Apparent viscosity Thus adopting Weissenberg-Rabinowitsch correction in equation (33) the non-Newtonian behaviour of polymer melt is accommodated. 4. MATHEMATICAL VALIDATION OF THE RUNNER EQUATION USING DIMENSIONAL ANALYSIS Dimension of all physical parameters being a unique combination of basic constituting physicalquantification can be expressed in terms of the fundamental dimensions (or base dimensions) M, L, and T – also these form 3-dimensional vector space.Itmandates strategic relevance to choice of data and isadoptedherein to deduce the credibility of derivedequations and thereon computations. Its most basic benefit beinghomogeneity i.e., only commensurable equations could be substantiated by havingidentical dimensions on either sides. Accordingly dimensional analysis (also referred as Unit Factor Method) is adapted to characterising Eqn. (33), 1 3 1 3 kg M L T k m      
  • 8. IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 __________________________________________________________________________________________ Volume: 02 Issue: 11 | Nov-2013, Available @ http://www.ijret.org 425 1 1 2 2 2 N kg P M L T m m s       3 3 1 3 1 3 1 1 2 m m b M L b M L kg kg k         1 1 2 3 2 2 N kg b M L T m m s       1 1 1 4 5 1 b b k dt s T k           1 1 1 1 1 2 d N s kg log T , m L and M L T dt m sm             2 2 2 Consider L.H.S R m L  2 2 3 2 2 2 2 2 2 2 2 3 Consider R.H.S kg kg kg 1 kg 1 1m s m s m s m m s s ms s kg kg kg 1 kg 1 1m s m s m s s mm s s m s kgkg 1m s m s kg m s m m kg m s m s kg                                                                                 2 2 2 2 2 2 kg 1 kg 1 m s sm s m s                          2 2 2 2 3 6 3 6 3 6 3 6 2 3 6 2 5 6 Upon simplifying kg kg kg kg m s m s m s m s kg m s kg m s                                           2 3 6 2 2 2 5 6 kg m s m L kg m s     Since LHS = RHS, Runner equation has been verified dimensionally. CONCLUSIONS This manuscript features a step by step derivation towards a computational model for determining runner dimension of a plastic injection mould. On the basis of governing equations, Weissenberg-Rabinowitsch correction for non-Newtonian nature of thermoplastic melt Eqn. (33) was derived as a function of thermoplastic melt properties such as viscosity and density, injection moulding machinespecificationssuch as maximum injection pressure and nozzle tip temperature as well as temporal parameter that feature the mould impression in totality owing to processing dynamics. Ultimately we believe Eqn. (33)computational model would offer a definite value of runner dimension that might still diverge from perfect or ideal design owing to computational rigour. REFERENCES [1] M. Lakkanna, Y. Nagamalappa and Nagaraja R (6 Nov 2013) "Implementation of Conservation principles for Runner conduit in Plastic Injection Mould Design"International Journal of Engineering Research and Technology, vol. 2, no. 11, pp. 88-99 [2] Z. Tadmor and C. G. Gogos (2006)Principles of Polymer Processing, 2nd ed., New Jersey: WILEY [3] E. Mitsoulis(2010)“Computational Polymer Processing”, Modelling and simulation in polymers, A. I. Purushotham,D.Gujrati, Ed., Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. doi: 10.1002/9783527630257.ch4 [4] R. Patani, I. Coccorullo, V. Speranza and G. Titomanlio(12 September 2005)“Modelling of morphology evolution in the injection moulding process of thermoplastic polymers”, Progress in Polymer Science, pp. 1185-1222 [5] M. Lakkanna, R. Kadoli and Mohan Kumar G C (2013)"Governing Equations to Inject Thermoplastic Melt Through Runner conduit in a plastic injection mould", Proceedings of National Conference on Innovations in Mechanical Engineering, Madanapalle [6] T AOsswald and J. P. Hernandez-Ortiz (2006), Polymer processing modelling and simulation, Hanser Publishers. Germany [7] Mahmood, S. Parveen, A. Ara and N. Khan(15 January 2009) “Exact analytic solutions for the unsteady flow of a non-Newtonian fluid between two cylinders with fractional derivative model” Communications in Nonlinear Science and Numerical Simulation pp. 3309- 3319 [8] L. l. Grange, G. Greyvenstein, W de Kock and J. Meyer (1993), “A numerical model for solving polymer melt flow”, R&D Journal, Vol. 9, Issue 2, pp. 12-17 [9] S. Kumar and S. Kumar (8 March 2009)“A Mathematical Model for Newtonian and Non- Newtonian Flow” Indian Journal of Biomechanics, pp. 191-195
  • 9. IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 __________________________________________________________________________________________ Volume: 02 Issue: 11 | Nov-2013, Available @ http://www.ijret.org 426 [10] F. Pinho and J. Whitelaw (May 1990)“Flow of Non- Newtonian fluids through pipe” Journal of Non- Newtonian Fluid Mechanics, Vol 25, pp. 129-144 [11] P C Beaupre (2002)“A Comparison of the axisymmetric & planar elongation viscosities of a polymer” , MSc Mech. Engg. Thesis, Michigan Technological University, USA [12] N. Martins (2009), “Rheological investigation of iron based feedstock for the metal injection moulding process,” Dubendorf, Switzerland BIOGRAPHIES Muralidhar Lakkanna B.E(Mech)'96, Post-Dipl-Tool Design'99, M.Mktg Mngt'03, M.Tech(Tool Engg)'04, M.Phil (ToolroomMngt)'05, PG-SQC'09 Since 16 years actively engaged in tool, die and mould manufacturing has designed, developed & commissioned more than 5000 high value tooling projects. Research interests are high performance tools, dies & moulds, plastic injection mould design, plastic injection mould mechanics, computational plastic injection dynamics, etc., Currently National Tool, Die & Mould Making Consultant, Regd at Ministry of MSME, Government of India and Tool, Die & Mould Technology Innovation & Management (TIMEIS) Expert, Regd at Department of Science & Technology, Government of India lmurali_research@yahoo.com Yashwanth Nagamallappa B.E (Mech) ’11 Presently studying M.Tech in Tool Engineering at Government Toolroom& Training Centre, Bangalore Possess research interests in injection mould design arena yash.spy@gmail.com R Nagaraja B.E (Mech)’88,M.Tech(Tool Engg)’92 Since 21 years training at PG level in tool design arena like plastic moulds, advance moulding techniques, press tools, component materials, die casting, jigs & fixtures, etc. Currently in- charge principal for PG&PD studies at GT&TC, Government of Karnataka, Bangalore r.nagaraja@yahoo.com NOMENCLATURE: m Mass Kg V Volume 3 m P Pressure 2 Kgf / m T Temperature K wT Wall Temperature K K Thermal conductivity W/m A Cross-section area 2 m R Runner radius m U  Linear velocity m / s rU  Velocity in radial direction m / s U   Velocity in tangential direction m / s U   Velocity in arbitrary direction m / s a Acceleration 2 m / s M  Linear momentum Kg m / s H  Angular momentum Kg m / s I Moment of inertia 2 Kg m e Specific total energy KJ / Kg ˆu Specific internal energy KJ / Kg T Resultant torque N m M Resultant moment N m F Resultant force 2 N / m rF Force acting in radial direction 2 N / m F Force acting in tangential direction 2 N / m F Force acting in arbitrary direction 2 N / m Q Rate of heat transfer KW q Rate of heat transfer per unit mass KW vW Rate of work done by viscous forces KW pW Rate of work done by pressure forces KW dS Entropy change KJ / Kg vC Specific heat at constant volume KJ / KgK pC Specific heat at constant pressure KJ / KgK n  Unit normal vector r  Position vector n Shear thinning index
  • 10. IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 __________________________________________________________________________________________ Volume: 02 Issue: 11 | Nov-2013, Available @ http://www.ijret.org 427 GREEK SYMBOLS  Density 3 Kg / m  Specific volume 3 m / Kg   Angular Velocity m / s  Angular acceleration 2 m / s R  True shear rate 1/ s a  Apparent shear rate 1/ s  Surface force 2 N / m  Shear stress 2 N / m  True Viscosity 2 N s / m 0 Apparent viscosity 2 N s / m  Viscous dissipation function