SlideShare a Scribd company logo
Computational Motor
Control Summer School
03: State space models
for motor adaptation.
Hirokazu Tanaka
School of Information Science
Japan Institute of Science and Technology
State-space modeling of motor adaptation.
In this lecture, we will learn:
• Motor adaptation paradigms
• Continuous-time state-space models
• Discrete-time state-space models
• Controllability
• Observability
• State-space description for motor adaptation
• Multi-rate models
• Motor memory of errors
• Mirror reversal (non-error based learning)
Motor adaptation paradigms to dynamical perturbations: Force-field adaptation.
Shadmehr & Mussa-Ivaldi (1994) J Neurosci
Baseline (no field) Initial exposures
adaptation catch trials
Motor adaptation paradigms to kinematical perturbations: Visuomotor rotation.
Krakauer et al. (2000) J Neurosc; Krakauer (2009) Progress in Motor Control
Adaptation to prism displacements.
Martin et al. (1996) Brain ;Kitazawa et al. (1995) J Neurosci
Adaptation to prism displacements.
Kitazawa et al. (1995) J Neurosci
1 1n n ne e ke  1
1
1
n
in
i
e e k e


  
Continuous-time state-space models.
F ma mx 
x v
Fv a
m


 
x
v
 
  
 
x
Newton’s equation of dynamics
0 1 0
0 0 1/
x x
F
v v m
      
          
      
x Ax Bu
 x Ax Bu
State-space representation
A x B u
State-space vector
Discrete-time state-space models.
Discrete-time representation
 k k t x x
 
 
 
1 ( 1)k
k k
k k k
k k
k t
t
t
t t
   
  
   
    
x x
x x
x Ax Bu
I A x B u
1
ˆ ˆ
k k k  x Ax Bu  
 
2
2ˆ
ˆ t
t
t t
te t
e
t


  
  
 


 
A
A
A I A
B BB
t
Δt 2Δt 3Δt (k-1)Δt kΔt (k+1)Δt0
k-1 k k+10 1 2 3
time (continuous)
time steps
(discrete)
Deterministic and stochastic state-space models.
1k k k
k k
  


x Ax Bu
z Cx
1
k
kk k
kk
k   

 
w
v
x Ax Bu
z Cx
Deterministic Stochastic
XkXk-1 Xk+1
zk-1 zk zk+1
uk-1 uk uk+1
Linear time-variant and time-invariant state-space models.
1k k k
k k
k k
k
  


x x u
xCz
A B
Time-variant model
1k k k
k k
  


x x u
xCz
A B
Time-invariant model
Throughout these lectures, we will use linear time-invariant (LTI) models
for mathematical simplicity.
State-space models in an explicit component form.
1k k k  x Ax Bu
k kz Cx
1, 1
2, 1
, 1
k
k
N k
x
x
x



1,
2,
,
k
k
N k
x
x
x
11 12 1
21 21
11 1
N
N
a a a
a a
a a
11
21
1
1
L
N NL
b b
b
b b
1
L
u
u
= +
1,
2,
,
k
k
N k
x
x
x
1
M
z
z
11 12 1
1 112
N
MM
c c c
c c c
=
Process equation
Measurement equation
N vector N×N matrix N vector N×L matrix L vector
M vector M×N matrix N vector
Controllability: the ability of driving a system into desired final state.
1k k k  x Ax Bu
, , ,N L N N
k k
N L 
   x u A B
Controllability is the ability of external inputs {uk} to drive a state from any
initial condition to any final condition in a finite time. A state-space model
is controllable if the N×NL controllability matrix has full row rank:
2 1n
   B AB A B A B
Sketch of proof:
0
1 1
2
2 2 1
1
1
0
2
N N N
N N
NN
N
N
N
 
  


 
  
 
 
       
 
 
x Ax Bu
A x ABu Bu
u
u
A x B AB A B
u
Kalman (1963) SIAM J Contr
Observability: determining hidden state from measurements.
k kz Cx
, ,N M N
k
M
k

  x z C
Observability is the ability to determine a (latent) state from a sequence
of measurements {zk}. A state space model is called observable if the
MN×N observability has full rank N:
Kalman (1963) SIAM J Contr
1N 
 
 
 
 



 
C
CA
C A
State-space models for dynamic (force-field) motor adaptation.
Thoroughman & Shadmehr (2000) Nature; Donchin et al. (2003) J Neurosci
1n n n
n n n
  
 
x Ax Bu
z Cx Du
State-space models for dynamic (force-field) motor adaptation.
Thoroughman & Shadmehr (2000) Nature; Donchin et al. (2003) J Neurosci
1n n n
n n n
  
 
x Ax Bu
z Cx Du
State-space models for kinematic (visual rotation) motor adaptation.
Tanaka et al. (2006) J Neurophysiol
T
1k k k k
k k k
z
z
   

x Ax BH
H x
Trial-by-trial generalization width reflects directional tuning width.
   
 
 
 
1
1i i N
i
N
g
g
g

 

 
 
   
  
r r r r Rg
 T
k k k  rR g
         1 1 1
T
k k k k k k k k        R R g R g gr g
Suppose that, for target direction θ, the motor output is a weighted sum of
population activity {gi(θ)} multiplied with preferred directions {ri}:
A gradient descent learning rule specifies the change of preferred directions
according to the movement error Δrk and the population activity {g(θk)} :
This change affects the motor output at the next trial as:
Two-rate model of motor adaptation: fast and slow learners.
Smith et al. (2006) PLoS Biol
1n n nu  x Ax B
 
 
 
 
 
 
 
 
f ff f
1
s ss s
1
0
0
n n
n
n n
x xa b
u
x xa b


      
       
      
      
n nz  Cx
 
 
 
   
f
f s1
1 1s
1
1 1 n
n n n
n
x
z x x
x

 

 
   
 
 
       f s s f
,a a b b 
There are two learners in the brain; the fast learner (x(f)) learns
quickly but forgets quickly, while slow learner (x(s)) learns slowly
but maintains its memory longer.
Motor output is a sum of the fast
and slow learners.
State vector consists of fast
(x(f)) and slow learners (x(s)).
The model explains savings, spontaneous recovery.
Smith et al. (2006) PLoS Biol
Savings Spontaneous recovery
The prediction of spontaneous recovery is confirmed in humans.
Smith et al. (2006) PLoS Biol
The slow process contributes to motor memory consolidation.
Joiner & Smith (2008) J Neurophysiol
The slow process, but not the fast process, contributes to motor memory consolidation.
Explicit (strategic) and implicit (error-based) learning.
Mazzoni & Krakauer (2006) J Neurosci
Strategy (aiming the adjacent target) cancels the “error” without
any adaptation!
Explicit (strategic) and implicit (error-based) learning.
Mazzoni & Krakauer (2006) J Neurosci
Explicit (strategic) and implicit (error-based) learning.
Mazzoni & Krakauer (2006) J Neurosci
What is “motor error?”: Aiming error and target error.
Taylor & Ivry (2011) PLoS Comp Biol; Taylor & Ivry (2014) Prog Brain Res
State-space model for strategic and error-based learning.
Taylor & Ivry (2011) PLoS Comp Biol; Taylor & Ivry (2014) Prog Brain Res
yn: target direction
rn: rotation angle
xn: adaptation variable
sn: strategy variable
yn
sn
sn-rn+xn
 aiming
n n n nn n ne s s r x r x    
     target
n n n n n n nn ne y s r x y sx r     
aiming
netarget
ne
State-space model for strategic and error-based learning.
Taylor & Ivry (2011) PLoS Comp Biol; Taylor & Ivry (2014) Prog Brain Res
yn
sn
sn-rn+xn
 aiming
n n n nn n ne s s r x r x    
     target
n n n n n n nn ne y s r x y sx r     
aiming
netarget
ne
aiming
targ
1
e
1
t
n n n
nn n
x ax be
s cs de


 
 
a=0.99, b=0.015,
c=0.999, d=0.022
Steepest descent learning rule for optimization.
Lecture 6, in Neural Networks for Machine Learning, Geoff Hinton
E
( 1) ( )n n E
 
 

w w
w
optimum
E
w
E
w
Descent learning rule:
RPROP: Adjustment of learning rate.
E
w
gradient
learning rate
     
1  1 
Motor memory of experienced errors.
Herzfeld et al. (2014) Science
( ) ( ) ( )
( 1) ( ) ( ) ( )
ˆ
ˆ ˆ
n n n
n n n n
e y y
x ax e
  

 
( )
( )
( )
( )
( )
: perturbation
ˆ : estimated perturbation ("belief")
: sensory consequence
ˆ : predicted sensory consequence
: control signal
n
n
n
n
n
x
x
y
y
u
State-space model: memory of environments
Population-coding model: memory of errors
 ( ) ( )n n
i i
i
w g e    
 
2
2
exp
2
i
i
e e
g e

 
  
 
 
 
 
   
( 1)
( 1) ( 1) ( 1) ( )
T ( 1) ( 1)
sgn
n
n n n n
n n
e
e e
e e


  
 
 
g
w w
g g error
activity
w1 w2 w3 wn
η
Motor memory of experienced errors.
Herzfeld et al. (2014) Science
Displacement and left-right reversal: Why so different?
Martin et al. (1996) Brain; Sekiyama et al. (2000) Nature
Displacement prism
… takes only few dozen trials. … takes a few weeks.
Left-right reversed prism
Day 3
Day 34
Mirror reversal: a distinct form of motor adaptation?
Taglen et al. (2014) J Neurosci; Lilicrap et al. (2013) Exp Brain Res
Movement number Movement number
Absoluteerror
Absoluteerror
Visual rotation Mirror reversal
Summary
• A state-space model consists of a process equation
(temporal transition) and an observation equation
(measurement).
• Humans are flexible to a novel environment, known as
motor adaptation, such as perturbations of force fields
and visual transformation.
• State-space modeling has been very successful in
describing trial-by-trial adaptation processes in humans.
References
• Thoroughman, K. A., & Shadmehr, R. (2000). Learning of action through adaptive combination of motor primitives. Nature,
407(6805), 742-747.
• Donchin, O., Francis, J. T., & Shadmehr, R. (2003). Quantifying generalization from trial-by-trial behavior of adaptive systems
that learn with basis functions: theory and experiments in human motor control. The Journal of Neuroscience, 23(27),
9032-9045.
• Tanaka, H., Sejnowski, T. J., & Krakauer, J. W. (2009). Adaptation to visuomotor rotation through interaction between
posterior parietal and motor cortical areas. Journal of Neurophysiology, 102(5), 2921-2932.
• Smith, M. A., Ghazizadeh, A., & Shadmehr, R. (2006). Interacting adaptive processes with different timescales underlie
short-term motor learning. PLoS Biol, 4(6), e179.
• Joiner, W. M., & Smith, M. A. (2008). Long-term retention explained by a model of short-term learning in the adaptive
control of reaching. Journal of Neurophysiology, 100(5), 2948-2955.
• Inoue, M., Uchimura, M., Karibe, A., O'Shea, J., Rossetti, Y., & Kitazawa, S. (2015). Three timescales in prism adaptation.
Journal of Neurophysiology, 113(1), 328-338.
• Mazzoni, P., & Krakauer, J. W. (2006). An implicit plan overrides an explicit strategy during visuomotor adaptation. The
Journal of Neuroscience, 26(14), 3642-3645.
• Taylor, J. A., & Ivry, R. B. (2011). Flexible cognitive strategies during motor learning. PLoS Comput Biol, 7(3), e1001096-
e1001096.
• Taylor, J. A., & Ivry, R. B. (2014). Cerebellar and prefrontal cortex contributions to adaptation, strategies, and reinforcement
learning. Progress in Brain Research, 210, 217.
• Taylor, J. A., Krakauer, J. W., & Ivry, R. B. (2014). Explicit and implicit contributions to learning in a sensorimotor adaptation
task. The Journal of Neuroscience, 34(8), 3023-3032.
• Telgen, S., Parvin, D., & Diedrichsen, J. (2014). Telgen, S., Parvin, D., & Diedrichsen, J. (2014). Mirror reversal and visual
rotation are learned and consolidated via separate mechanisms: Recalibrating or learning de novo?. The Journal of
Neuroscience, 34(41), 13768-13779.?. The Journal of Neuroscience, 34(41), 13768-13779.
• Lillicrap, T. P., Moreno-Briseño, P., Diaz, R., Tweed, D. B., Troje, N. F., & Fernandez-Ruiz, J. (2013). Adapting to inversion of
the visual field: a new twist on an old problem. Experimental Brain Research, 228(3), 327-339.
• Ostry, D. J., Darainy, M., Mattar, A. A., Wong, J., & Gribble, P. L. (2010). Somatosensory plasticity and motor learning. The
Journal of Neuroscience, 30(15), 5384-5393.
Exercise
• Simulate the state-space model proposed by Taylor and
Ivry.
• Mirror reversal is different from most adaptation
paradigms in that learning from error worsens the
performance. Can we consider a state-space model for
mirror reversal?

More Related Content

PDF
Computational Motor Control: Optimal Estimation in Noisy World (JAIST summer ...
PDF
Use of data science in recommendation system
PDF
PPT s08-machine vision-s2
PPTX
Collaborative Filtering - MF, NCF, NGCF
PPTX
Natural Language Processing using Artificial Intelligence
DOCX
deep learning applications in medical image analysis brain tumor
PDF
Introduction to Natural Language Processing (NLP)
Computational Motor Control: Optimal Estimation in Noisy World (JAIST summer ...
Use of data science in recommendation system
PPT s08-machine vision-s2
Collaborative Filtering - MF, NCF, NGCF
Natural Language Processing using Artificial Intelligence
deep learning applications in medical image analysis brain tumor
Introduction to Natural Language Processing (NLP)

What's hot (20)

PDF
Counterfactual Learning for Recommendation
PDF
Causality without headaches
PPTX
Feature scaling
PPTX
Bat algorithm explained. slides ppt pptx
PPT
Genetic algorithm
PPTX
Data Con LA 2022 - Transformers for NLP
PPTX
Application of-image-segmentation-in-brain-tumor-detection
PPTX
Pumping Lemma
PPTX
Question Answering System using machine learning approach
PDF
DataEngConf: Feature Extraction: Modern Questions and Challenges at Google
PDF
Conversational AI with Transformer Models
PPTX
memetic algorithm
PDF
Aspect Based Sentiment Analysis
PDF
Convolutional Neural Networks and Natural Language Processing
PDF
Smart Data Slides: Machine Learning - Case Studies
PDF
A study of Machine Learning approach for Predictive Maintenance in Industry 4.0
PPTX
Evolutionary Algorithms
PPTX
Dimension Reduction Introduction & PCA.pptx
PPTX
NLP Project Presentation
PPT
Machine learning by Dr. Vivek Vijay and Dr. Sandeep Yadav
Counterfactual Learning for Recommendation
Causality without headaches
Feature scaling
Bat algorithm explained. slides ppt pptx
Genetic algorithm
Data Con LA 2022 - Transformers for NLP
Application of-image-segmentation-in-brain-tumor-detection
Pumping Lemma
Question Answering System using machine learning approach
DataEngConf: Feature Extraction: Modern Questions and Challenges at Google
Conversational AI with Transformer Models
memetic algorithm
Aspect Based Sentiment Analysis
Convolutional Neural Networks and Natural Language Processing
Smart Data Slides: Machine Learning - Case Studies
A study of Machine Learning approach for Predictive Maintenance in Industry 4.0
Evolutionary Algorithms
Dimension Reduction Introduction & PCA.pptx
NLP Project Presentation
Machine learning by Dr. Vivek Vijay and Dr. Sandeep Yadav
Ad

Viewers also liked (20)

PDF
Computational Motor Control: Optimal Control for Deterministic Systems (JAIST...
PDF
Computational Motor Control: Kinematics & Dynamics (JAIST summer course)
PDF
Computational Motor Control: Reinforcement Learning (JAIST summer course)
PDF
Computational Motor Control: Optimal Control for Stochastic Systems (JAIST su...
PPTX
A Non Linear Model to explain persons with Stroke
PDF
Slow and large: Dynamics in migraine and opportunities to intervene
PDF
Migraine: A dynamics disease
PDF
From epilepsy to migraine to stroke: A unifying framework.
PDF
Reentrant and retracting waves of cortical spreading depression in migraine
PDF
Computational Motor Control: Introduction (JAIST summer course)
PPTX
A Prediction Technique for Chaotic Time Series
PPTX
Differentiation and Linearization
PDF
Gradient Dynamical Systems, Bifurcation Theory, Numerical Methods and Applica...
PDF
Migraine: A dynamical disease
PPT
Recurrence Quantification Analysis : Tutorial & application to eye-movement data
PPT
Wk 6 part 2 non linearites and non linearization april 05
PDF
JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models
PPTX
JAISTサマースクール2016「脳を知るための理論」講義03 Network Dynamics
PDF
JAISTサマースクール2016「脳を知るための理論」講義04 Neural Networks and Neuroscience
PDF
JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules
Computational Motor Control: Optimal Control for Deterministic Systems (JAIST...
Computational Motor Control: Kinematics & Dynamics (JAIST summer course)
Computational Motor Control: Reinforcement Learning (JAIST summer course)
Computational Motor Control: Optimal Control for Stochastic Systems (JAIST su...
A Non Linear Model to explain persons with Stroke
Slow and large: Dynamics in migraine and opportunities to intervene
Migraine: A dynamics disease
From epilepsy to migraine to stroke: A unifying framework.
Reentrant and retracting waves of cortical spreading depression in migraine
Computational Motor Control: Introduction (JAIST summer course)
A Prediction Technique for Chaotic Time Series
Differentiation and Linearization
Gradient Dynamical Systems, Bifurcation Theory, Numerical Methods and Applica...
Migraine: A dynamical disease
Recurrence Quantification Analysis : Tutorial & application to eye-movement data
Wk 6 part 2 non linearites and non linearization april 05
JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models
JAISTサマースクール2016「脳を知るための理論」講義03 Network Dynamics
JAISTサマースクール2016「脳を知るための理論」講義04 Neural Networks and Neuroscience
JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules
Ad

Similar to Computational Motor Control: State Space Models for Motor Adaptation (JAIST summer course) (20)

PPT
bmi SP.ppt
PDF
Ldb Convergenze Parallele_De barros_01
PDF
Manish Kurse PhD research slides
PDF
PR12-225 Discovering Physical Concepts With Neural Networks
PDF
SindyAutoEncoder: Interpretable Latent Dynamics via Sparse Identification
PPTX
Introduction to fMRI
PPT
EC Presentation _ ID_ 201-15-14294
PDF
Straus r7-Software Dynamics Analysis
PDF
Technical
PDF
A03401001005
PPTX
Sampling based motion planning method and shallow survey
PPTX
Deep learning-for-pose-estimation-wyang-defense
PPT
Theories and Applications of Spatial-Temporal Data Mining and Knowledge Disco...
PDF
Limamali
PDF
ANALYSIS OF A CHAOTIC SPIKING NEURAL MODEL : THE NDS NEURON
PDF
Detection of jargon words in a text using semi supervised learning
PDF
ANALYSIS OF A CHAOTIC SPIKING NEURAL MODEL : THE NDS NEURON
PDF
Analysis of a chaotic spiking neural model the nds neuron
PPTX
Analysis of large scale spiking networks dynamics with spatio-temporal constr...
PDF
Lecture 4 neural networks
bmi SP.ppt
Ldb Convergenze Parallele_De barros_01
Manish Kurse PhD research slides
PR12-225 Discovering Physical Concepts With Neural Networks
SindyAutoEncoder: Interpretable Latent Dynamics via Sparse Identification
Introduction to fMRI
EC Presentation _ ID_ 201-15-14294
Straus r7-Software Dynamics Analysis
Technical
A03401001005
Sampling based motion planning method and shallow survey
Deep learning-for-pose-estimation-wyang-defense
Theories and Applications of Spatial-Temporal Data Mining and Knowledge Disco...
Limamali
ANALYSIS OF A CHAOTIC SPIKING NEURAL MODEL : THE NDS NEURON
Detection of jargon words in a text using semi supervised learning
ANALYSIS OF A CHAOTIC SPIKING NEURAL MODEL : THE NDS NEURON
Analysis of a chaotic spiking neural model the nds neuron
Analysis of large scale spiking networks dynamics with spatio-temporal constr...
Lecture 4 neural networks

More from hirokazutanaka (9)

PDF
東京都市大学 データ解析入門 10 ニューラルネットワークと深層学習 1
PDF
東京都市大学 データ解析入門 9 クラスタリングと分類分析 2
PDF
東京都市大学 データ解析入門 8 クラスタリングと分類分析 1
PDF
東京都市大学 データ解析入門 7 回帰分析とモデル選択 2
PDF
東京都市大学 データ解析入門 6 回帰分析とモデル選択 1
PDF
東京都市大学 データ解析入門 5 スパース性と圧縮センシング 2
PDF
東京都市大学 データ解析入門 4 スパース性と圧縮センシング1
PDF
東京都市大学 データ解析入門 3 行列分解 2
PDF
東京都市大学 データ解析入門 2 行列分解 1
東京都市大学 データ解析入門 10 ニューラルネットワークと深層学習 1
東京都市大学 データ解析入門 9 クラスタリングと分類分析 2
東京都市大学 データ解析入門 8 クラスタリングと分類分析 1
東京都市大学 データ解析入門 7 回帰分析とモデル選択 2
東京都市大学 データ解析入門 6 回帰分析とモデル選択 1
東京都市大学 データ解析入門 5 スパース性と圧縮センシング 2
東京都市大学 データ解析入門 4 スパース性と圧縮センシング1
東京都市大学 データ解析入門 3 行列分解 2
東京都市大学 データ解析入門 2 行列分解 1

Recently uploaded (20)

PPTX
Microbes in human welfare class 12 .pptx
PPTX
endocrine - management of adrenal incidentaloma.pptx
PPT
1. INTRODUCTION TO EPIDEMIOLOGY.pptx for community medicine
PPTX
INTRODUCTION TO PAEDIATRICS AND PAEDIATRIC HISTORY TAKING-1.pptx
PDF
BET Eukaryotic signal Transduction BET Eukaryotic signal Transduction.pdf
PPTX
Understanding the Circulatory System……..
PPTX
Hypertension_Training_materials_English_2024[1] (1).pptx
PPTX
Seminar Hypertension and Kidney diseases.pptx
PDF
Looking into the jet cone of the neutrino-associated very high-energy blazar ...
PDF
Placing the Near-Earth Object Impact Probability in Context
PPTX
A powerpoint on colorectal cancer with brief background
PPTX
GREEN FIELDS SCHOOL PPT ON HOLIDAY HOMEWORK
PPT
Animal tissues, epithelial, muscle, connective, nervous tissue
PDF
Worlds Next Door: A Candidate Giant Planet Imaged in the Habitable Zone of ↵ ...
PPT
veterinary parasitology ````````````.ppt
PPTX
BIOMOLECULES PPT........................
PDF
CHAPTER 2 The Chemical Basis of Life Lecture Outline.pdf
PPT
Mutation in dna of bacteria and repairss
PDF
Worlds Next Door: A Candidate Giant Planet Imaged in the Habitable Zone of ↵ ...
PPTX
Substance Disorders- part different drugs change body
Microbes in human welfare class 12 .pptx
endocrine - management of adrenal incidentaloma.pptx
1. INTRODUCTION TO EPIDEMIOLOGY.pptx for community medicine
INTRODUCTION TO PAEDIATRICS AND PAEDIATRIC HISTORY TAKING-1.pptx
BET Eukaryotic signal Transduction BET Eukaryotic signal Transduction.pdf
Understanding the Circulatory System……..
Hypertension_Training_materials_English_2024[1] (1).pptx
Seminar Hypertension and Kidney diseases.pptx
Looking into the jet cone of the neutrino-associated very high-energy blazar ...
Placing the Near-Earth Object Impact Probability in Context
A powerpoint on colorectal cancer with brief background
GREEN FIELDS SCHOOL PPT ON HOLIDAY HOMEWORK
Animal tissues, epithelial, muscle, connective, nervous tissue
Worlds Next Door: A Candidate Giant Planet Imaged in the Habitable Zone of ↵ ...
veterinary parasitology ````````````.ppt
BIOMOLECULES PPT........................
CHAPTER 2 The Chemical Basis of Life Lecture Outline.pdf
Mutation in dna of bacteria and repairss
Worlds Next Door: A Candidate Giant Planet Imaged in the Habitable Zone of ↵ ...
Substance Disorders- part different drugs change body

Computational Motor Control: State Space Models for Motor Adaptation (JAIST summer course)

  • 1. Computational Motor Control Summer School 03: State space models for motor adaptation. Hirokazu Tanaka School of Information Science Japan Institute of Science and Technology
  • 2. State-space modeling of motor adaptation. In this lecture, we will learn: • Motor adaptation paradigms • Continuous-time state-space models • Discrete-time state-space models • Controllability • Observability • State-space description for motor adaptation • Multi-rate models • Motor memory of errors • Mirror reversal (non-error based learning)
  • 3. Motor adaptation paradigms to dynamical perturbations: Force-field adaptation. Shadmehr & Mussa-Ivaldi (1994) J Neurosci Baseline (no field) Initial exposures adaptation catch trials
  • 4. Motor adaptation paradigms to kinematical perturbations: Visuomotor rotation. Krakauer et al. (2000) J Neurosc; Krakauer (2009) Progress in Motor Control
  • 5. Adaptation to prism displacements. Martin et al. (1996) Brain ;Kitazawa et al. (1995) J Neurosci
  • 6. Adaptation to prism displacements. Kitazawa et al. (1995) J Neurosci 1 1n n ne e ke  1 1 1 n in i e e k e     
  • 7. Continuous-time state-space models. F ma mx  x v Fv a m     x v        x Newton’s equation of dynamics 0 1 0 0 0 1/ x x F v v m                          x Ax Bu  x Ax Bu State-space representation A x B u State-space vector
  • 8. Discrete-time state-space models. Discrete-time representation  k k t x x       1 ( 1)k k k k k k k k k t t t t t                 x x x x x Ax Bu I A x B u 1 ˆ ˆ k k k  x Ax Bu     2 2ˆ ˆ t t t t te t e t               A A A I A B BB t Δt 2Δt 3Δt (k-1)Δt kΔt (k+1)Δt0 k-1 k k+10 1 2 3 time (continuous) time steps (discrete)
  • 9. Deterministic and stochastic state-space models. 1k k k k k      x Ax Bu z Cx 1 k kk k kk k       w v x Ax Bu z Cx Deterministic Stochastic XkXk-1 Xk+1 zk-1 zk zk+1 uk-1 uk uk+1
  • 10. Linear time-variant and time-invariant state-space models. 1k k k k k k k k      x x u xCz A B Time-variant model 1k k k k k      x x u xCz A B Time-invariant model Throughout these lectures, we will use linear time-invariant (LTI) models for mathematical simplicity.
  • 11. State-space models in an explicit component form. 1k k k  x Ax Bu k kz Cx 1, 1 2, 1 , 1 k k N k x x x    1, 2, , k k N k x x x 11 12 1 21 21 11 1 N N a a a a a a a 11 21 1 1 L N NL b b b b b 1 L u u = + 1, 2, , k k N k x x x 1 M z z 11 12 1 1 112 N MM c c c c c c = Process equation Measurement equation N vector N×N matrix N vector N×L matrix L vector M vector M×N matrix N vector
  • 12. Controllability: the ability of driving a system into desired final state. 1k k k  x Ax Bu , , ,N L N N k k N L     x u A B Controllability is the ability of external inputs {uk} to drive a state from any initial condition to any final condition in a finite time. A state-space model is controllable if the N×NL controllability matrix has full row rank: 2 1n    B AB A B A B Sketch of proof: 0 1 1 2 2 2 1 1 1 0 2 N N N N N NN N N N                             x Ax Bu A x ABu Bu u u A x B AB A B u Kalman (1963) SIAM J Contr
  • 13. Observability: determining hidden state from measurements. k kz Cx , ,N M N k M k    x z C Observability is the ability to determine a (latent) state from a sequence of measurements {zk}. A state space model is called observable if the MN×N observability has full rank N: Kalman (1963) SIAM J Contr 1N               C CA C A
  • 14. State-space models for dynamic (force-field) motor adaptation. Thoroughman & Shadmehr (2000) Nature; Donchin et al. (2003) J Neurosci 1n n n n n n      x Ax Bu z Cx Du
  • 15. State-space models for dynamic (force-field) motor adaptation. Thoroughman & Shadmehr (2000) Nature; Donchin et al. (2003) J Neurosci 1n n n n n n      x Ax Bu z Cx Du
  • 16. State-space models for kinematic (visual rotation) motor adaptation. Tanaka et al. (2006) J Neurophysiol T 1k k k k k k k z z      x Ax BH H x
  • 17. Trial-by-trial generalization width reflects directional tuning width.           1 1i i N i N g g g                r r r r Rg  T k k k  rR g          1 1 1 T k k k k k k k k        R R g R g gr g Suppose that, for target direction θ, the motor output is a weighted sum of population activity {gi(θ)} multiplied with preferred directions {ri}: A gradient descent learning rule specifies the change of preferred directions according to the movement error Δrk and the population activity {g(θk)} : This change affects the motor output at the next trial as:
  • 18. Two-rate model of motor adaptation: fast and slow learners. Smith et al. (2006) PLoS Biol 1n n nu  x Ax B                 f ff f 1 s ss s 1 0 0 n n n n n x xa b u x xa b                                n nz  Cx           f f s1 1 1s 1 1 1 n n n n n x z x x x                      f s s f ,a a b b  There are two learners in the brain; the fast learner (x(f)) learns quickly but forgets quickly, while slow learner (x(s)) learns slowly but maintains its memory longer. Motor output is a sum of the fast and slow learners. State vector consists of fast (x(f)) and slow learners (x(s)).
  • 19. The model explains savings, spontaneous recovery. Smith et al. (2006) PLoS Biol Savings Spontaneous recovery
  • 20. The prediction of spontaneous recovery is confirmed in humans. Smith et al. (2006) PLoS Biol
  • 21. The slow process contributes to motor memory consolidation. Joiner & Smith (2008) J Neurophysiol The slow process, but not the fast process, contributes to motor memory consolidation.
  • 22. Explicit (strategic) and implicit (error-based) learning. Mazzoni & Krakauer (2006) J Neurosci Strategy (aiming the adjacent target) cancels the “error” without any adaptation!
  • 23. Explicit (strategic) and implicit (error-based) learning. Mazzoni & Krakauer (2006) J Neurosci
  • 24. Explicit (strategic) and implicit (error-based) learning. Mazzoni & Krakauer (2006) J Neurosci
  • 25. What is “motor error?”: Aiming error and target error. Taylor & Ivry (2011) PLoS Comp Biol; Taylor & Ivry (2014) Prog Brain Res
  • 26. State-space model for strategic and error-based learning. Taylor & Ivry (2011) PLoS Comp Biol; Taylor & Ivry (2014) Prog Brain Res yn: target direction rn: rotation angle xn: adaptation variable sn: strategy variable yn sn sn-rn+xn  aiming n n n nn n ne s s r x r x          target n n n n n n nn ne y s r x y sx r      aiming netarget ne
  • 27. State-space model for strategic and error-based learning. Taylor & Ivry (2011) PLoS Comp Biol; Taylor & Ivry (2014) Prog Brain Res yn sn sn-rn+xn  aiming n n n nn n ne s s r x r x          target n n n n n n nn ne y s r x y sx r      aiming netarget ne aiming targ 1 e 1 t n n n nn n x ax be s cs de       a=0.99, b=0.015, c=0.999, d=0.022
  • 28. Steepest descent learning rule for optimization. Lecture 6, in Neural Networks for Machine Learning, Geoff Hinton E ( 1) ( )n n E      w w w optimum E w E w Descent learning rule: RPROP: Adjustment of learning rate. E w gradient learning rate       1  1 
  • 29. Motor memory of experienced errors. Herzfeld et al. (2014) Science ( ) ( ) ( ) ( 1) ( ) ( ) ( ) ˆ ˆ ˆ n n n n n n n e y y x ax e       ( ) ( ) ( ) ( ) ( ) : perturbation ˆ : estimated perturbation ("belief") : sensory consequence ˆ : predicted sensory consequence : control signal n n n n n x x y y u State-space model: memory of environments Population-coding model: memory of errors  ( ) ( )n n i i i w g e       2 2 exp 2 i i e e g e                   ( 1) ( 1) ( 1) ( 1) ( ) T ( 1) ( 1) sgn n n n n n n n e e e e e          g w w g g error activity w1 w2 w3 wn η
  • 30. Motor memory of experienced errors. Herzfeld et al. (2014) Science
  • 31. Displacement and left-right reversal: Why so different? Martin et al. (1996) Brain; Sekiyama et al. (2000) Nature Displacement prism … takes only few dozen trials. … takes a few weeks. Left-right reversed prism Day 3 Day 34
  • 32. Mirror reversal: a distinct form of motor adaptation? Taglen et al. (2014) J Neurosci; Lilicrap et al. (2013) Exp Brain Res Movement number Movement number Absoluteerror Absoluteerror Visual rotation Mirror reversal
  • 33. Summary • A state-space model consists of a process equation (temporal transition) and an observation equation (measurement). • Humans are flexible to a novel environment, known as motor adaptation, such as perturbations of force fields and visual transformation. • State-space modeling has been very successful in describing trial-by-trial adaptation processes in humans.
  • 34. References • Thoroughman, K. A., & Shadmehr, R. (2000). Learning of action through adaptive combination of motor primitives. Nature, 407(6805), 742-747. • Donchin, O., Francis, J. T., & Shadmehr, R. (2003). Quantifying generalization from trial-by-trial behavior of adaptive systems that learn with basis functions: theory and experiments in human motor control. The Journal of Neuroscience, 23(27), 9032-9045. • Tanaka, H., Sejnowski, T. J., & Krakauer, J. W. (2009). Adaptation to visuomotor rotation through interaction between posterior parietal and motor cortical areas. Journal of Neurophysiology, 102(5), 2921-2932. • Smith, M. A., Ghazizadeh, A., & Shadmehr, R. (2006). Interacting adaptive processes with different timescales underlie short-term motor learning. PLoS Biol, 4(6), e179. • Joiner, W. M., & Smith, M. A. (2008). Long-term retention explained by a model of short-term learning in the adaptive control of reaching. Journal of Neurophysiology, 100(5), 2948-2955. • Inoue, M., Uchimura, M., Karibe, A., O'Shea, J., Rossetti, Y., & Kitazawa, S. (2015). Three timescales in prism adaptation. Journal of Neurophysiology, 113(1), 328-338. • Mazzoni, P., & Krakauer, J. W. (2006). An implicit plan overrides an explicit strategy during visuomotor adaptation. The Journal of Neuroscience, 26(14), 3642-3645. • Taylor, J. A., & Ivry, R. B. (2011). Flexible cognitive strategies during motor learning. PLoS Comput Biol, 7(3), e1001096- e1001096. • Taylor, J. A., & Ivry, R. B. (2014). Cerebellar and prefrontal cortex contributions to adaptation, strategies, and reinforcement learning. Progress in Brain Research, 210, 217. • Taylor, J. A., Krakauer, J. W., & Ivry, R. B. (2014). Explicit and implicit contributions to learning in a sensorimotor adaptation task. The Journal of Neuroscience, 34(8), 3023-3032. • Telgen, S., Parvin, D., & Diedrichsen, J. (2014). Telgen, S., Parvin, D., & Diedrichsen, J. (2014). Mirror reversal and visual rotation are learned and consolidated via separate mechanisms: Recalibrating or learning de novo?. The Journal of Neuroscience, 34(41), 13768-13779.?. The Journal of Neuroscience, 34(41), 13768-13779. • Lillicrap, T. P., Moreno-Briseño, P., Diaz, R., Tweed, D. B., Troje, N. F., & Fernandez-Ruiz, J. (2013). Adapting to inversion of the visual field: a new twist on an old problem. Experimental Brain Research, 228(3), 327-339. • Ostry, D. J., Darainy, M., Mattar, A. A., Wong, J., & Gribble, P. L. (2010). Somatosensory plasticity and motor learning. The Journal of Neuroscience, 30(15), 5384-5393.
  • 35. Exercise • Simulate the state-space model proposed by Taylor and Ivry. • Mirror reversal is different from most adaptation paradigms in that learning from error worsens the performance. Can we consider a state-space model for mirror reversal?