SlideShare a Scribd company logo
Basics of
Computer Vision
Dmitry Ryabokon, github.com/dryabokon
Content
1. CNNs out of box
2. Basic operations
3. Feature extraction
4. Transfer learning
5. Fine Tuning
6. Benchmarking the CNNs
7. Object detection
8. Detection of patterns and anomalies
9. Stereo Vision
10. Reconstruct features back into images
11. Style Transfer
12. GAN
13. Labeling
14. Color detection
15. PyTorch
CNNs out of
box
4
The popular networks
Classification
o LeNet Model
o AlexNet Model
o VGG Model
o ResNet Paper
o YOLO9000 Paper
o DenseNet Paper
Segmentation
o FCN8 Paper
o SegNet Paper
o U-Net Paper
o E-Net Paper
o ResNetFCN Paper
o PSPNet Paper
o Mask RCNN Paper
Detection
o Faster RCNN Paper
o SSD Paper
o YOLOv2 Paper
o R-FCN Paper
CNNs out of box
5
Some datasets available for research
MNIST: 10 classes, ~7000 ex. per class ImageNet: 1000 classes, ~100 ex per class
CNNs out of box
6
Some datasets available for research
The Street View House Numbers
10 classes, ~2000 ex. per class
CIFAR: 10 classes, 6000 ex. per class
100 classes, 600 ex per class
CNNs out of box
7
Some datasets available for research
Olivetti database: 40 classes .. and much more @ kaggle
CNNs out of box
8
26%
16.40%
11.70%
7.30%
6.70%
3.60% 3.10%
0%
5%
10%
15%
20%
25%
30%
2010 2011 2012 2013 2014 2015 2016 2017
AlexNet VGG
GoogLeNet
ResNet
GoogLeNet-v4
XRCE
ImageNet Classification error
ZF
CNNs out of box
9
real-world image text extraction.
compressing and decompressing images
automatic speech recognition
semantic image segmentation
image matching and retrieval
image-to-text
computer vision
discovery of latent 3D keypoints
unsupervised learning
localizing and identifying multiple objects in a single image
3D object reconstruction
image classification
identify the name of a street (in France) from an image
predicting future video frames
https://github.com/keras-team/keras/tree/master/examples
https://github.com/tensorflow/models/tree/master/research
Usage of the neural networks
CNNs out of box
10
CNNs out of box
11
CNNs out of box
import tensorflow_hub as hub
import urllib.request
import cv2
import numpy
import json
import tensorflow as tf
# ----------------------------------------------------------------------------------------------------------------------
URL = 'https://s3.amazonaws.com/deep-learning-models/image-models/imagenet_class_index.json'
data = json.loads(urllib.request.urlopen(URL).read().decode())
class_names = [data['%d'%i][1] for i in range(0,999)]
# ----------------------------------------------------------------------------------------------------------------------
def example_predict():
module = hub.Module("https://tfhub.dev/google/imagenet/resnet_v2_50/classification/1")
img = cv2.imread('data/ex-natural/dog/dog_0000.jpg')
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = cv2.resize(img, (224, 224)).astype(numpy.float32)
img = numpy.array([img]).astype(numpy.float32) / 255.0
sess = tf.Session()
sess.run(tf.global_variables_initializer())
sess.run(tf.tables_initializer())
outputs = module(dict(images=img), signature="image_classification", as_dict=True)
prob = outputs["default"].eval(session=sess)[0]
idx = numpy.argsort(-prob)[0]
print(class_names[idx], prob[idx])
sess.close()
return
# ----------------------------------------------------------------------------------------------------------------------
if __name__ == '__main__':
example_predict()
12
CNNs out of box
13
CNNs out of box
from keras.applications import MobileNet
from keras.applications.xception import Xception
from keras.applications.mobilenet import preprocess_input
import urllib.request
import cv2
import numpy
import json
from keras import backend as K
K.set_image_dim_ordering('tf')
# ----------------------------------------------------------------------------------------------------------------------
URL = 'https://s3.amazonaws.com/deep-learning-models/image-models/imagenet_class_index.json'
data = json.loads(urllib.request.urlopen(URL).read().decode())
class_names = [data['%d'%i][1] for i in range(0,999)]
# ----------------------------------------------------------------------------------------------------------------------
def example_predict():
CNN = MobileNet()
#CNN = Xception()
img = cv2.imread('data/ex-natural/dog/dog_0000.jpg')
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = cv2.resize(img, (224, 224)).astype(numpy.float32)
prob = CNN.predict(preprocess_input(numpy.array([img])))
idx = numpy.argsort(-prob[0])[0]
print(class_names[idx], prob[0, idx])
return
# ----------------------------------------------------------------------------------------------------------------------
if __name__ == '__main__':
example_predict()
Basic
operations
15
Basic operations
Convolution
16
Basic operations
Convolution
=
17
Basic operations
Convolution
=
18
Basic operations
Convolution
=
19
Basic operations
Convolution
=
20
Basic operations
Convolution
=
21
Basic operations
Convolution
=
22
Basic operations
Convolution
=
23
Basic operations
Convolution
=
24
Basic operations
Convolution
=
25
Basic operations
Convolution
=
26
Basic operations
Convolution
=
27
Basic operations
Convolution
=
28
Basic operations
Convolution
=
29
Basic operations
Convolution
=
30
Basic operations
Convolution
=
31
Basic operations
Convolution
=
32
Basic operations
Convolution
33
Basic operations
Convolution
34
Basic operations
De-Convolution
35
Basic operations
Pool: avg
36
Basic operations
Pool: max
37
Basic operations
Flatten
38
Basic operations
Fully Connected
39
Basic operations
Dropout
40
Basic operations
Normalization
layer batch instance group
Feature
extraction
42
Feature extraction
43
Feature extraction
44
Extract the features
45
Feature extraction
46
Feature extraction
47
Feature extraction
48
airplane car cat dog
flower fruit motorbike person
Feature extraction
49
airplane car cat dog
flower fruit motorbike person
Feature extraction
50
AlexNetFeature extraction
51
AlexNetFeature extraction
52
How CNN constructs the features
AlexNet
53
AlexNetFeature extraction
54
AlexNetFeature extraction
55
AlexNetFeature extraction
56
AlexNetFeature extraction
57
AlexNetFeature extraction
58
AlexNetFeature extraction
59
AlexNetFeature extraction
60
MobileNetFeature extraction
61
MobileNetFeature extraction
62
XceptionFeature extraction
63
MobileNetFeature extraction
Transfer
learning
65
Transfer learning
Fine tuning
67
Finetuning
68
Finetuning
69
Finetuning
70
Finetuning
71
Finetuning
72
Finetuning
73
Random before learning After learning
Finetuning
74
Filters after learning
Finetuning
75
Finetuning
76
Finetuning
Benchmarking the
CNNs
78
2ConvlayersBenchmarking the CNNs
79
AlexNetBenchmarking the CNNs
80
InceptionBenchmarking the CNNs
81
MobileNetBenchmarking the CNNs
Reconstruct
features back into
images
83AlexNet
Reconstruct features back into images
84AlexNet
Reconstruct features back into images
85AlexNet
Reconstruct features back into images
86
Features
AlexNet
airplane car cat dog
flower fruit motorbike person
Reconstruct features back into images
87
Reconstructed
AlexNet
airplane car cat dog
flower fruit motorbike person
Reconstruct features back into images
88
Original
airplane car cat dog
flower fruit motorbike person
Reconstruct features back into images
89
Features
FC
airplane car cat dog
flower fruit motorbike person
Reconstruct features back into images
90
Reconstructed
FC
airplane car cat dog
flower fruit motorbike person
Reconstruct features back into images
91MobileNet
Reconstruct features back into images
92MobileNet
Reconstruct features back into images
93Inception
Reconstruct features back into images
94Inception
Reconstruct features back into images
Object
detection
96
Object detection
def demo_cascade():
if USE_CAMERA:
cap = cv2.VideoCapture(0)
else:
cap = []
frame = cv2.imread(filename_in)
while (True):
if USE_CAMERA:
ret, frame = cap.read()
gray_rgb = tools_image.desaturate(frame)
faces = faceCascade.detectMultiScale(frame,scaleFactor=1.1,minNeighbors=5,minSize=(30, 30))
for (x, y, w, h) in faces:
cv2.rectangle(gray_rgb, (x, y), (x + w, y + h), (0, 255, 0), 2)
cv2.imshow('frame', gray_rgb)
key = cv2.waitKey(1)
if key & 0xFF == 27:
break
if (key & 0xFF == 13) or (key & 0xFF == 32):
cv2.imwrite(filename_out, gray_rgb)
if USE_CAMERA:
cap.release()
cv2.destroyAllWindows()
if not USE_CAMERA:
cv2.imwrite(filename_out, gray_rgb)
return
97
Object detection
haarcascade_eye.xml
haarcascade_eye_tree_eyeglasses.xml
haarcascade_frontalcatface.xml
haarcascade_frontalcatface_extended.xml
haarcascade_frontalface_alt.xml
haarcascade_frontalface_alt2.xml
haarcascade_frontalface_alt_tree.xml
haarcascade_frontalface_default.xml
haarcascade_fullbody.xml
haarcascade_lefteye_2splits.xml
haarcascade_licence_plate_rus_16stages.xml
haarcascade_lowerbody.xml
haarcascade_profileface.xml
haarcascade_righteye_2splits.xml
haarcascade_russian_plate_number.xml
haarcascade_smile.xml
haarcascade_upperbody.xml
98
Object detection: Haar cascades
1. Create samples
2. Verify samples
3. Train the cascade
99
Object detection: create samples from single positive
opencv_createsamples -vec pos.vec
-img pos_singleobject.jpg
-bg negneg.txt
-num 100
-bgcolor 0
-bgthresh 0
-w 28 -h 28
-maxxangle 1.1
-maxyangle 1.1
-maxzangle 0.5
-maxidev 40
result vec file
input positive sample file
list of negative samples
100
opencv_createsamples -vec pos.vec
-info pos_multippos.txt
-num 4
-w 28 -h 28
result file
list of pos samples
Object detection: create samples from many positive
101
Object detection: verify vec file
opencv_createsamples -vec pos.vec
-show
102
Object detection: training
opencv_traincascade -data output_folder
-vec ../positive/positives.vex
-bg ../negative/bg_train.txt
-numPos 800
-numNeg 400
-numStages 10
-w 20
-h 20
existing folder
made by opencv_createsamples
list of negative samples
103
Train the Cascades
import cv2
import os
import tools_image
# ---------------------------------------------------------------------------------------------------------------------
path = 'data/ex12_single/'
filename_in = path + 'pos_single/object_to_detect.jpg'
filename_out = 'data/output/detect_result.jpg'
object_detector= cv2.CascadeClassifier(path + 'output_single/cascade.xml')
# ---------------------------------------------------------------------------------------------------------------------
def train_cascade():
os.chdir(path)
os.system('1-create_vec_from_single.bat')#os.system('2-verify_vec_single.bat')
os.system('3-train_from_single.bat')
return
# ---------------------------------------------------------------------------------------------------------------------
if __name__ == '__main__':
#train_cascade()
image = tools_image.desaturate(cv2.imread(filename_in))
objects, rejectLevels, levelWeights = 
object_detector.detectMultiScale3(image, scaleFactor=1.05, minSize=(20, 20), outputRejectLevels=True)
for (x, y, w, h) in objects:cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2)
cv2.imwrite(filename_out,image)
104
Object detection: example of training
Detection of
patterns and
anomalies
106
Detection of patterns and anomalies
Input data:
o Still image of multiple similar objects sampled across the grid-like structure.
Output:
o Pattern – an image that best fits (represents) the sampled instances of the
similar objects
o Markup (labeling) of an image to indicate the positions of the patterns and
outliers as well as their confidence level
Limitations
o Samples on the input image have limited pose variance so their view angle is
similar (e.g. front view only, no side or back view)
107
Detection of patterns and anomalies
Synthetic image: a template is sampled thru the grid
108
Detection of patterns and anomalies
Input image: added some variance : Euclidian translation + gamma correction
109
Detection of patterns and anomalies
Result hitmap: confidence level to match the pattern
pattern
(auto detected)
110
Detection of patterns and anomalies
Result mark-up: positions of the patterns
111
Detection of patterns and anomalies
Real image
112
Detection of patterns and anomalies
Real image
113
Detection of patterns and anomalies
Real image
114
Detection of patterns and anomalies
Real image
115
Detection of patterns and anomalies
Result hitmap: confidence level to match the pattern
pattern
(auto detected)
116
Detection of patterns and anomalies
Result mark-up: positions of the patterns + outlier area
Stereo Vision
118
Stereo vision
119
Stereo vision
120
Stereo vision
121
Stereo vision
def get_disparity_v_01(imgL, imgR, disp_v1, disp_v2, disp_h1, disp_h2):
window_size = 7
left_matcher = cv2.StereoSGBM_create(
minDisparity=disp_h1,
numDisparities=int(0 + (disp_h2 - disp_h1) / 16) * 16,
blockSize=5,
P1=8 * 3 * window_size ** 2,
P2=32 * 3 * window_size ** 2,
disp12MaxDiff=disp_h2,
uniquenessRatio=15,
speckleWindowSize=0,
speckleRange=2,
preFilterCap=63,
mode=cv2.STEREO_SGBM_MODE_SGBM_3WAY
)
right_matcher = cv2.ximgproc.createRightMatcher(left_matcher)
dispr = right_matcher.compute(imgR, imgL)
displ = left_matcher.compute(imgL, imgR)
wls_filter = cv2.ximgproc.createDisparityWLSFilter(matcher_left=left_matcher)
wls_filter.setLambda(80000)
wls_filter.setSigmaColor(1.2)
filteredImg_L = wls_filter.filter(displ, imgL, None, dispr)
wls_filter = cv2.ximgproc.createDisparityWLSFilter(matcher_left=right_matcher)
filteredImg_R = wls_filter.filter(dispr, imgR, None, displ)
122
Stereo vision
123
Stereo vision
def get_disparity_v_02(imgL, imgR, disp_v1, disp_v2, disp_h1, disp_h2):
max = numpy.maximum(math.fabs(disp_h1), math.fabs(disp_h2))
levels = int(1 + (max) / 16) * 16
stereo = cv2.StereoBM_create(numDisparities=levels, blockSize=15)
displ = stereo.compute(imgL, imgR)
dispr = numpy.flip(stereo.compute(numpy.flip(imgR, axis=1), numpy.flip(imgL, axis=1)), axis=1)
return -displ / 16, -dispr / 16
124
Stereo vision
125
Stereo vision
def get_best_matches(image1,image2,disp_v1, disp_v2, disp_h1, disp_h2, window_size=15,step=10):
N = int(image1.shape[0] * image1.shape[1] / step / step)
rand_points = numpy.random.rand(N,2)
rand_points[:, 0] = window_size + (rand_points[:, 0]*(image1.shape[0]-2*window_size))
rand_points[:, 1] = window_size + (rand_points[:, 1]*(image1.shape[1]-2*window_size))
coord1,coord2,quality = [],[],[]
for each in rand_points:
row,col = int(each[0]),int(each[1])
template = tools_image.crop_image(image1,row-window_size,col-window_size,row+window_size,col+window_size)
top,left,bottom,right = row - window_size + disp_v1, col - window_size + disp_h1,row + window_size + disp_v2,col + window_size + disp_h2
field = tools_image.crop_image(image2,top,left,bottom,right)
q = cv2.matchTemplate(field, template, method=cv2.TM_CCOEFF_NORMED)
q = q[1:, 1:]
q = (q + 1) * 128
idx = numpy.argmax(q.flatten())
q_best = numpy.max(q.flatten())
qq=q[int(idx/q.shape[1]), idx % q.shape[1]]
if q_best>0:
dr = int(idx/q.shape[1])+disp_v1
dc = idx % q.shape[1]+disp_h1
if col + dc>=0 and col + dc<image1.shape[1] and row + dr>=0 and row + dr<image1.shape[0]:
coord1.append([col ,row ])
coord2.append([col+ dc, row+dr])
quality.append(q_best)
return numpy.array(coord1), numpy.array(coord2),numpy.array(quality)
Labeling M Schlesinger
D Schlesinger
Flach Hlavác
127
T
T
set of objects
object
Kkt  label for object t
KTk :
set of labels
labeling
T
K all possible labelings
  Ttt   neighbor of t
 tttt kkg , weight of an edge
K
t
Labeling
Definitions
128
 
 tttt
tt
TtKk
kkgk T 


 ,&*

Find the valid labeling
   1,0,  tttt kkg
Labeling
The (OR, AND) problem
129
Find a labeling with maximal sum
 
 






tt
Tt
tttt
Kk
kkgk
T

,maxarg*
  Rkkg tttt  ,
Labeling
The (MAX, +) problem
130
Labeling
The (MAX, +) problem: the best path on graph
131
 
 






tt
Tt
tttt
Kk
kkgk
T

,maxarg*
Labeling
The (MAX, +) problem: the best path on graph
132
 
 






tt
Tt
tttt
Kk
kkgk T

,min*
  городамимеждурастояниеkkg tttt  ,
городаT 
дорогиK 
Labeling
The (MIN, +) problem: travelling salesman problem
133
Labeling
The (OR, AND) problem: example
 
 tttt
tt
TtKk
kkgk T 


 ,&*

134
 
 tttt
tt
TtKk
kkgk T 


 ,&*

Labels in all the neighbor objects should be
connected by an edge
Labeling
The (OR, AND) problem: example
135
 
 tttt
tt
TtKk
kkgk T 


 ,maxmin*

Labeling
The (MIN, MAX) problem: clustering
The distance between most different objects of
the same cluster should be minimal
T = objects
K = clusters
𝑔 𝑡𝑡′(𝑘 𝑡, 𝑘 𝑡′) = distance between the objects
136
 
 tttt
tt
TtKk
kkgk T 


 ,*

 
 
 
 
 
 
 
 
 maxmin,
minmax,
min,
max,
min,
max,
andor,
,
,






Count of valid labelings
Valid labeling
Travelling salesman problem
Travelling salesman problem
Optimization on Gibbs field
Optimization on Gibbs field
Hamiltonian path
Clustering
Labeling
The general labeling problem
137
Labeling
Some applications: texture segmentation
138
Labeling
Some applications: stereo vision
139
Labeling
Some applications: stereo vision
140
Labeling
(MAX, +) labeling problem on 1D chain structure
141
Labeling
(MAX, +) labeling problem on 1D chain structure
142
Labeling
(MAX, +) labeling problem on 1D chain structure: N best paths
143
       1 1 2 2 1 2 2 1, & , , & ,g k k g k k g k k g k k   
1 2 1 2> , >k k k k 
Labeling
(OR, AND) labeling problem with supermodular weights
144
Labeling
Supermodular weights
145
Labeling
NOT supermodular weights
146
Labeling
(OR, AND) labeling problem with supermodular weights: example
147
Labeling
(OR, AND) labeling problem with supermodular weights: example
148
Labeling
(OR, AND) labeling problem with supermodular weights: example
149
Labeling
(OR, AND) labeling problem with supermodular weights: example
150
Labeling
(OR, AND) labeling problem with supermodular weights: example
151
Labeling
(OR, AND) labeling problem with supermodular weights
152
Labeling
(OR, AND) labeling problem with supermodular weights: example
153
Labeling
(OR, AND) labeling problem with supermodular weights: example
154
1 2 1 2> , >k k k k 
       1 2 2 1 1 1 2 2, , , , , ,min g k k g k k min g k k g k k         
Labeling
(MAX, MIN) labeling problem with supermodular weights
155
Labeling
(MAX, MIN) labeling problem with supermodular weights
156
Labeling
(MAX, MIN) labeling problem with supermodular weights
157
Labeling
(MAX, MIN) labeling problem with supermodular weights
158
Labeling
(MAX, MIN) labeling problem with supermodular weights
159
Labeling
(MAX, MIN) labeling problem with supermodular weights
160
Labeling
(MAX, MIN) labeling problem with supermodular weights
161
Labeling
(MAX, MIN) labeling problem with supermodular weights
162
Labeling
(MAX, MIN) labeling problem with supermodular weights
163
Labeling
(MAX, MIN) labeling problem with supermodular weights
164
Labeling
(MAX, MIN) labeling problem with supermodular weights
165
 
 tttt
tt
TtKk
kkgk T 


 ,maxmin*

  кластераодногообъектамимеждуотличиеkkg tttt  ,
объектыT 
кластерыK 
Labeling
(MIN, MAX) labeling problem: clustering
The distance between most different objects of
the same cluster should be minimal
166
Labeling
(MIN, MAX) labeling problem: clustering
167
Labeling
(MIN, MAX) labeling problem: clustering
Remove all edges having weight > 0
Solve (OR,AND) problem
168
Labeling
(MIN, MAX) labeling problem: clustering
Remove all edges having weight ≥ 1
Solve (OR,AND) problem
169
Labeling
Remove all edges having weight ≥ 1
Solve (OR,AND) problem
(MIN, MAX) labeling problem: clustering
170
Labeling
(MIN, MAX) labeling problem: clustering
distance between most different objects of the same cluster = 1

More Related Content

PDF
Machine Vision for Intelligent Drones: An Overview
PPTX
Computer vision introduction
PDF
Deep learning
PPT
Metabase
PDF
Optimization in deep learning
PPTX
Introduction of data science
PDF
Convolutional Neural Network Models - Deep Learning
PDF
Optimization for Deep Learning
Machine Vision for Intelligent Drones: An Overview
Computer vision introduction
Deep learning
Metabase
Optimization in deep learning
Introduction of data science
Convolutional Neural Network Models - Deep Learning
Optimization for Deep Learning

What's hot (20)

PPTX
Computer vision
PPTX
Computer vision (machine learning for developers)
PPT
Chapter10 image segmentation
PDF
Machine learning
PDF
Feature Extraction
PDF
Introduction to Computer Vision.pdf
PPTX
Computer vision
PPTX
Object Recognition
PPTX
What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...
PPTX
Computer Vision - Artificial Intelligence
PPTX
Support Vector Machine - How Support Vector Machine works | SVM in Machine Le...
PPTX
Computer Vision Introduction
PDF
Deep Learning
PPTX
Computer Vision
PPTX
AI Computer vision
PDF
Deep learning
PDF
Computer Vision
PPTX
Support vector machines (svm)
PPTX
Image classification with Deep Neural Networks
PPT
ImageProcessing10-Segmentation(Thresholding) (1).ppt
Computer vision
Computer vision (machine learning for developers)
Chapter10 image segmentation
Machine learning
Feature Extraction
Introduction to Computer Vision.pdf
Computer vision
Object Recognition
What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...
Computer Vision - Artificial Intelligence
Support Vector Machine - How Support Vector Machine works | SVM in Machine Le...
Computer Vision Introduction
Deep Learning
Computer Vision
AI Computer vision
Deep learning
Computer Vision
Support vector machines (svm)
Image classification with Deep Neural Networks
ImageProcessing10-Segmentation(Thresholding) (1).ppt

Similar to Computer vision (20)

PDF
Viktor Tsykunov: Azure Machine Learning Service
PDF
Deep Learning for Computer Vision: Software Frameworks (UPC 2016)
PDF
Sangam 19 - PLSQL still the coolest
PDF
reactjs-quiz..docs.pdf
PDF
Beyond the Query – Bringing Complex Access Patterns to NoSQL with DataStax - ...
PDF
On-the-fly Visual Category Search in Web-scale Image Collections
PDF
[GEG1] 10.camera-centric engine design for multithreaded rendering
PPTX
29-kashyap-mask-detaction.pptx
TXT
Advance C++notes
PDF
Structure Unstructured Data
PPTX
Smart Data Conference: DL4J and DataVec
PDF
PDF
NativeBoost
PDF
426 lecture 4: AR Developer Tools
PDF
6 tips for improving ruby performance
PDF
Automated reduction of attack surface using call graph enumeration
PDF
Datagrids with Symfony 2, Backbone and Backgrid
PDF
Datagrids with Symfony 2, Backbone and Backgrid
PDF
Profiling your Applications using the Linux Perf Tools
PDF
Using Netconf/Yang with OpenDalight
Viktor Tsykunov: Azure Machine Learning Service
Deep Learning for Computer Vision: Software Frameworks (UPC 2016)
Sangam 19 - PLSQL still the coolest
reactjs-quiz..docs.pdf
Beyond the Query – Bringing Complex Access Patterns to NoSQL with DataStax - ...
On-the-fly Visual Category Search in Web-scale Image Collections
[GEG1] 10.camera-centric engine design for multithreaded rendering
29-kashyap-mask-detaction.pptx
Advance C++notes
Structure Unstructured Data
Smart Data Conference: DL4J and DataVec
NativeBoost
426 lecture 4: AR Developer Tools
6 tips for improving ruby performance
Automated reduction of attack surface using call graph enumeration
Datagrids with Symfony 2, Backbone and Backgrid
Datagrids with Symfony 2, Backbone and Backgrid
Profiling your Applications using the Linux Perf Tools
Using Netconf/Yang with OpenDalight

Recently uploaded (20)

PPTX
Cell Structure & Organelles in detailed.
PDF
102 student loan defaulters named and shamed – Is someone you know on the list?
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PDF
Microbial disease of the cardiovascular and lymphatic systems
PDF
Business Ethics Teaching Materials for college
PPTX
master seminar digital applications in india
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PDF
Origin of periodic table-Mendeleev’s Periodic-Modern Periodic table
PDF
01-Introduction-to-Information-Management.pdf
PDF
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
PPTX
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PPTX
Institutional Correction lecture only . . .
PDF
FourierSeries-QuestionsWithAnswers(Part-A).pdf
PDF
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
PDF
Basic Mud Logging Guide for educational purpose
PPTX
Cell Types and Its function , kingdom of life
PDF
TR - Agricultural Crops Production NC III.pdf
PPTX
PPH.pptx obstetrics and gynecology in nursing
PPTX
Renaissance Architecture: A Journey from Faith to Humanism
Cell Structure & Organelles in detailed.
102 student loan defaulters named and shamed – Is someone you know on the list?
Module 4: Burden of Disease Tutorial Slides S2 2025
Microbial disease of the cardiovascular and lymphatic systems
Business Ethics Teaching Materials for college
master seminar digital applications in india
Supply Chain Operations Speaking Notes -ICLT Program
Origin of periodic table-Mendeleev’s Periodic-Modern Periodic table
01-Introduction-to-Information-Management.pdf
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
Pharmacology of Heart Failure /Pharmacotherapy of CHF
Final Presentation General Medicine 03-08-2024.pptx
Institutional Correction lecture only . . .
FourierSeries-QuestionsWithAnswers(Part-A).pdf
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
Basic Mud Logging Guide for educational purpose
Cell Types and Its function , kingdom of life
TR - Agricultural Crops Production NC III.pdf
PPH.pptx obstetrics and gynecology in nursing
Renaissance Architecture: A Journey from Faith to Humanism

Computer vision