Concept Kit
Modeling of 3-Phase AC Motor
Drive Simulation
For Electric Drive Systems
[PSpice Version]


         All Rights Reserved Copyright (C) Bee Technologies Inc. 2012   1
Contents

                                                                                                                                                       Slide #

    1. Modeling of 3-Phase AC Motor Model
         1.1 Manufacturer Specification.........................................................................................................       3
         1.2 Torque and Back-EMF...............................................................................................................        4
         1.3 Simplified 3-Phase AC Motor Model.........................................................................................                5
         1.4 The 3-Phase AC Motor Equivalent Circuit.................................................................................                  6
         1.5 Parameter Settings.....................................................................................................................   7
    2. Simulation Circuit of 3-Phase AC Motor Model................................................................................                    8
         2.1 Phase Current Characteristics Under Load Variation................................................................                        9
         2.2 Back-EMF Characteristics Under Load Condition.....................................................................                        10
         2.3 Speed and Torque Characteristics At 140Arms........................................................................                       11
         2.4 Power Output and Efficiency Characteristics At 140Arms.........................................................                           12
              Appendix A: Measured Point of Simulation Circuit (1/2)...........................................................                        13
              Appendix A: Measured Point of Simulation Circuit (2/2)...........................................................                        14
              Appendix B: Evaluation Text......................................................................................................        15
              Appendix C: Gate Signal for Six-Step Control...........................................................................                  16
              Appendix D: 3-Phase AC Motor Model Text (1/2).....................................................................                       17
              Appendix D: 3-Phase AC Motor Model Text (2/2).....................................................................                       18
              Appendix E: Simulation Settings................................................................................................          19




                                              All Rights Reserved Copyright (C) Bee Technologies Inc. 2012                                                       2
1.1) Manufacturer Specification


     Motenergy, Inc (ME0913)
       Motor Electrical Parameters
         •   Operating Voltage Range..........................0 – 72 V MAX
         •   Rated Continuous Current........................140 Arms
         •   Peak Stalled Current.................................400 Arms
         •   Voltage Constant.......................................50 RPM/V
         •   Phase Resistance (L-L).............................0.0125 Ω
         •   Phase Inductance......................................105uH at 120Hz, 110uH at 1kHz
         •   Maximum Continuous Power Rating……..17KW at 102V DC Battery Voltage

                                                                    14.3KW at 84VDC Battery Voltage

                                                                  12KW at 72VDC Battery Voltage

       Motor Mechanical Parameters
         •   Rated Speed.............................................3000 RPM
         •   Maximum Speed.......................................5000 RPM
         •   Rated Torque............................................288 Lb-in
         •   Torque Constant.......................................1.6 Lb-in/A

                               All Rights Reserved Copyright (C) Bee Technologies Inc. 2012           3
1.2) Torque and Back-EMF
•    The Torque are defined by :
                                                                               phe : u, v, w
                          Tu = KT ⋅ Iu
                                                                              Vphe : Phase voltage applied from inverter to motor
                          Tv = KT ⋅ Iv                     (1)
                                                                              VAC : Operating voltage range (Maximum voltage)
                          Tw = KT ⋅ Iw
                                                                              VBAT : DC Voltage applied from battery
                          Te = Tu + Tv + Tw                (2)                Iphe : Phase current

      At 140Arms (Rated Continuous Current)                                   Tphe : Electric torque produced by u, v, w phase
      KT = 1.6 Lb-in/A                                                        Te : Electric torque produced by motor
                                                                              Ephe : Phase Back-EMF
      Tphe = 1.6  140 = 224Lb-in
                                                                              KE : Back-EMF constant
      Te = 224*3= 672Lb-in                                                    KT : Torque constant
•    The Back-EMF are defined by :                                            ωm : Angular speed of rotor
                          Eu = KE ⋅ ω m
                                                                                                      1 Pound Inch equals 0.11 Nm
                          Ev = K E ⋅ ω m                   (3)
                          Ew = K E ⋅ ω m
            At 5000 RPM (Maximum Speed)
            Ephe ≈ VBAT      (In an ideal motor, R and L are zero)

            Ephe = 102V

            KE = Ephe /ωm = 102 / 5000

             KE ≈ 0.02V/RPM
                                    All Rights Reserved Copyright (C) Bee Technologies Inc. 2012                                 4
1.3) Simplified 3-Phase AC Motor Model


                                                              Frequency Response




                                                                                               110uH




                                                                                           105uH



                                  BEMF1
             R 1       L1
 U                 1        2




             R 2       L2
                                  BEMF2                               Phase Resistance (L-L)       : 0.0125Ω
 V                 1        2                                         Phase Inductance             : 105uH
                                                  N 0                                               : 110uH
                                  BEMF3
             R 3       L3
 W                 1        2




     Fig. 1 Scheme of the 3-Phase Model                                                Fig.2 Phase-to-Ground

                                All Rights Reserved Copyright (C) Bee Technologies Inc. 2012                   5
RLL = 0.0125
                            PARAMET




                                                                                                                                    0




                                                                                                                                                           0
                                  LL = 105U




                                                                                                                             OUT-




                                                                                                                                                    OUT-
                                                                                                                             OUT+




                                                                                                                                                    OUT+
                                  KE = 0.02
                                  KT = 1.6




                                                                                                                             IN+
                                                                                                                             IN-




                                                                                                                                                    IN+
                                                                                                                                                    IN-
1.4) The 3-Phase AC Motor Equivalent Circuit




                                                                                  lim_w




                                                                                                                                    0




                                                                                                                                                           0
                                        lim_u




                                                             lim_v




                                                                                                                                                 mul
         |Z| - Frequency                                                              Back-EMF Voltage




                                                                0



                                                                                    0



                                                                                                           0
                                                     OUT+




                                                                      OUT+




                                                                                               OUT+
                                                     OUT-




                                                                      OUT-




                                                                                               OUT-
                                                     IN+
                                                     IN-



                                                                      IN+
                                                                      IN-



                                                                                               IN+
                                                                                               IN-




                                                                                                                                                 sp_w
                                                                                                                                                 sp_u
                                                                                                                                                 sp_v
                                                             0



                                                                                  0



                                                                                                       0
                                                             0




                                                                                                           0




                                                                                                                                                 0
                                                                                                                                                               Mechanical part
                                                     IN+
                                                     IN-




                                                                                                  IN+
                                                                                                  IN-




                                                                                                                                         IN+
                                                                                                                                         IN-
                                                     OUT+




                                                                                                  OUT-




                                                                                                                                         OUT+
                                                     OUT-




                                                                                                  OUT+




                                                                                                                                         OUT-
                                                                                                                     emf_w
                                emf_u




                                                                          emf_v




                                                                                                                                     emf_w
                                                 emf_u




                                                                                               emf_v




                                                                                                                                             sp_w
                                                         sp_u
                                -




                                                                          -




                                                                                                                     -
                                                                                                       sp_v
                                +




                                                                          +




                                                                                                                     +
                           E1




                                                                     E2




                                                                                                                E3




                                                                                                                                             tw
                                                         tu




                                                                                                       tv
                                  +




                                                                            +




                                                                                                                       +
                                  -




                                                                            -




                                                                                                                       -
                                          0




                                                                                          0




                                                                                                                                0
                                                         TQSP 2                                        TQSP 2                                TQSP 2




                                                                                                                     ew
                                eu




                                                                          ev




                           Fig. 3 Three-Phase AC Motor Equivalent Circuit

   •   This figure shows the equivalent circuit of AC motor model that includes the |Z|-
                                                U1




                                                                                          U2




                                                                                                                                    U3




       frequency part ,Back-EMF voltage part ,and Mechanical part.
                                                         1                                             1                                     1
                                                 n1




                                                                                                                                     n3
                                                                                               n2




   •    The Back-EMF voltage is the voltage generated across the motor's terminals as the
       windings move through the motor's magnetic field.
                                                                                                                                Vw
                                          Vu




                                                                                          Vv




                                      All Rights Reserved Copyright (C) Bee Technologies Inc. 2012                                                                               6
                                                                                                                                                           0
1.5) Parameters Settings

                                                              Model Parameters:
                                                                  LOAD : Load current each phase of motor [Arms]
                                     U 1                          – e.g. LL = 125Arms, 140Arms, or 400Arms
                                     M E0913
    1
                                                                  LL : Phase inductance [H]
                                     LL    = 105U

                M
                                                                  – e.g. LL = 10mH, 100mH, or 1H
    2                    4           R L   L = 0 .0 1 2 5
                             N 0     KE     = 0 .0 2
    3                                KT     = 1 .6                RLL : Phase resistance (Phase-to-phase) [Ω]
                                     LO    AD = 140               – e.g. RLL = 10mΩ, 100mΩ, or 1Ω

                                                                  KE : Back-EMF constant [V/RPM]
                                                                  – e.g. KE= 0.01, 0.05, or 0.1

Fig. 4 Symbol of 3-Phase Induction Motor                          KT : Torque constant [Lb-in/A]
                                                                  – e.g. KT= 0.1, 0.5, or 1

                                                                                                   1 Pound Inch equals 0.11 Nm



•       From the 3-Phase Induction Motor specification, the model is characterized by setting parameters
        LL, RLL, KE, KT and LOAD.

                                   All Rights Reserved Copyright (C) Bee Technologies Inc. 2012                            7
2) Simulation Circuit of 3-Phase AC Motor Model



            V1                    S1               D 1                      S3            D 3                     S5       D 5
           102V    U P            +    +           D M O D _01     VP       +    +        D M O D _01   W P       +    +   D M O D _01
                                  -    -                                    -    -                                -    -

                              0                                         0                                     0                                                       U 1
                                                                                                                                                                      M E0913
                                                                                                                            R U              U    1

                                                                                                                            R V                   2
                                                                                                                                                         M




                                                                                                                                                                   4
                                                                                                                                             V
                                                                                                                                                                       N 0
N 0                                                                                                                         R W              W    3
                                                                                                                                                                                 N 0
                                                                                                                            RU, RV, RW: 173.75m
            V2
           102V
                                                                                                                                                      LL = 105U
                                  S2               D 2                      S4            D 4                     S6       D 6                        R L L = 0 .0 1 2 5
                  U D             +    +           D M O D _01     VD       +    +        D M O D _01   W D       +    +   D M O D _01                K E = 0 .0 2
                                                                                                                                                      K T = 1 .6
                                  -    -                                    -    -                                -    -
                                                                                                                                                      LO AD = 140
                              0                                         0                                     0


       0


                                                                        •            Fig.5 Analysis of motor operation powered by
           U P    U D    VP            VD   W P   W D
                                                                                     alternating voltage variation involves using the
                                                                                     model of three-phase induction motor.
                                                         U 2
                         VP
           U P




                                            W P
                                       VD
                  U D




                                                  W D




                                                         G D R V




                                                            All Rights Reserved Copyright (C) Bee Technologies Inc. 2012                                                     8
2.1) Phase Current Characteristics Under Load Variation
- Simulation Results

   500A

                                                                                                       Load 50Arms

     0A




  - 500A
           0s                                                                                                      5 0 0 ms
   500A         I ( RU) / SQRT( 2 )
                                                                       Ti me
                                                                                                       Load 140Arms

     0A




  - 500A
           0s                                                                                                      5 0 0 ms
   500A         I ( RU) / SQRT( 2 )
                                                                       Ti me                           Load 200Arms

     0A




  - 500A
           0s                                                                                                      5 0 0 ms
                I ( RU) / SQRT( 2 )
                                                                       Ti me                           Reference of Phase U

                                      Fig. 6 Current Characteristics under load Condition

                                       All Rights Reserved Copyright (C) Bee Technologies Inc. 2012                           9
2.2) Back-EMF Characteristics Under Load Condition
- Simulation Results

   200V
                                                                                                  Load 50Arms
   100V


     0V


  - 100V


  - 200V
           0s                                                                                                 5 0 0 ms
   200V         V( X_ U1 . EU)
                                                                  Ti me
                                                                                                  Load 140Arms
   100V


     0V


  - 100V


  - 200V
           0s                                                                                                 5 0 0 ms
   200V         V( X_ U1 . EU)
                                                                  Ti me
                                                                                                  Load 200Arms
   100V


     0V


  - 100V


  - 200V
           0s                                                                                                 5 0 0 ms
                V( X_ U1 . EU)
                                                                  Ti me                           Reference of Phase U

                                 Fig. 7 Back-EMF Characteristics under load Condition

                                  All Rights Reserved Copyright (C) Bee Technologies Inc. 2012                       10
2.3) Speed and Torque Characteristics At 140Arms
  - Simulation Results

        4 . 0 KV

                        The Load 140(Arms) is Rated Continuous Current
        3 . 0 KV

                                                                                                                   ( 4 6 4 . 1 4 6 m, 3 . 2 3 1 1 K)

RPM     2 . 0 KV



        1 . 0 KV


        SEL > >
           0V
                        V( X_ U1 . s p e e d )
        1 . 0 KV

                                                                                              Tphe: Electric torque produced by each phase



Lb-in   0 . 5 KV
                                                                                                                     ( 4 4 6 . 4 8 6 m, 2 2 3 . 7 2 8 )




            0V
                   0s                                                                                                                                     5 0 0 ms
                        V( X_ U1 . t u )
                                                                                    Ti me                                        Reference of Phase U


                                             Fig. 8 Speed and Torque Characteristics at Load=140Arms

                                                    All Rights Reserved Copyright (C) Bee Technologies Inc. 2012                                                 11
2.4) Power Output and Efficiency Characteristics At 140Arms
   - Simulation Results

       2 0 KW

                 At Load=140Arms, Power Output ≈ 13.7 [KW]



                                                                                                                            ( 9 6 0 . 6 1 6 m, 1 3 . 6 6 2 K)
Watt   1 0 KW




       SEL > >
          0W
                    RMS( V( RU: 1 , N0 ) ) * RMS( I ( RU) )
         100

                 At Load=140Arms, Efficiency ≈ 82 [%]

                                                                                                                                 ( 9 6 2 . 5 0 0 m, 8 1 . 9 4 1 )

 [%]      50




            0
            0. 5s                                                                                                                                                   1. 0s
                    100* (   ( RMS( V( U, N0 ) ) * RMS( I ( RU) ) )   /   ( RMS( V( RU: 1 , N0 ) ) * RMS( I ( RU) ) )   )
                                                                                                     Ti me                               Reference of Phase U


                               Fig. 9 Power Output and Efficiency Characteristics at Load=140Arms

                                                      All Rights Reserved Copyright (C) Bee Technologies Inc. 2012                                                    12

More Related Content

PPTX
3-Phase AC Motor Model (LTspice)
PPTX
3-Phase AC Motor Model(PSpice Model)
PPT
Concept Kit 3-Phase AC Motor Drive Circuit Simulation (LTspice Version)
PDF
Concept Kit 3-Phase AC Motor Drive Simulation (LTspice Version)
PDF
LTspiceのDCモーターシミュレーション
PDF
Simple Model of DC Motor using LTspice
PPTX
ACモーターのスパイスモデルについて
PPT
ニッケル水素電池のシンプルモデル(PSpice)
3-Phase AC Motor Model (LTspice)
3-Phase AC Motor Model(PSpice Model)
Concept Kit 3-Phase AC Motor Drive Circuit Simulation (LTspice Version)
Concept Kit 3-Phase AC Motor Drive Simulation (LTspice Version)
LTspiceのDCモーターシミュレーション
Simple Model of DC Motor using LTspice
ACモーターのスパイスモデルについて
ニッケル水素電池のシンプルモデル(PSpice)

What's hot (19)

PPT
ニッケル水素電池のシンプルモデル(LTspice)
PDF
鉛蓄電池のシンプルモデル(PSpice)
PPT
Simple Model of Transformer using LTspice
PDF
Temple, San Jose Interconnection App Stamped (1)
PDF
Power Electronics
PDF
デザインキット・DCモータ制御回路の解説書
PDF
SPICE Model of Fuse
DOCX
Single Stage Differential Folded Cascode Amplifier
PDF
New Model Variable Frequency Transformer (NMVFT) – A Technology for V/f Contr...
PDF
デザインキット・DCDCコンバータによる昇圧回路の解説書
PDF
BiTT Heat Loss Performance Comparison
PDF
E L E C T R I C A L M A C H I N E S I I J N T U M O D E L P A P E R{Www
PPTX
RF Power Amplifier Tutorial (1)
PDF
Design of two stage OPAMP
PDF
Negative feedback Amplifiers
PDF
Design of Low Power & High Speed Comparator with 0.18μm Technology for ADC Ap...
PPSX
Isae 2011 A HYBRID CONTROLLER DESIGN FOR KEEPING CONSTANT VOLTAGE AND CURREN...
PPT
シンプルモデルのトランスのモデルの種類
PDF
シンプルモデル:トランスモデルのパラメータ及び説明について
ニッケル水素電池のシンプルモデル(LTspice)
鉛蓄電池のシンプルモデル(PSpice)
Simple Model of Transformer using LTspice
Temple, San Jose Interconnection App Stamped (1)
Power Electronics
デザインキット・DCモータ制御回路の解説書
SPICE Model of Fuse
Single Stage Differential Folded Cascode Amplifier
New Model Variable Frequency Transformer (NMVFT) – A Technology for V/f Contr...
デザインキット・DCDCコンバータによる昇圧回路の解説書
BiTT Heat Loss Performance Comparison
E L E C T R I C A L M A C H I N E S I I J N T U M O D E L P A P E R{Www
RF Power Amplifier Tutorial (1)
Design of two stage OPAMP
Negative feedback Amplifiers
Design of Low Power & High Speed Comparator with 0.18μm Technology for ADC Ap...
Isae 2011 A HYBRID CONTROLLER DESIGN FOR KEEPING CONSTANT VOLTAGE AND CURREN...
シンプルモデルのトランスのモデルの種類
シンプルモデル:トランスモデルのパラメータ及び説明について
Ad

Similar to Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version) (20)

PDF
Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version)
PPT
Basics of an ac drive - with motor basics
PDF
DCモーターのシンプルモデルの解説書(PSpice)
PDF
Simple Model of DC Motor using PSpice
PDF
control of AC machines
PDF
SPICE MODEL of RE-260 in SPICE PARK
PDF
53669836 brake-test-on-a-d
PDF
SPICE MODEL of RE-280 in SPICE PARK
DOC
Electrical motor efficiency
PDF
SPICE MODEL of RS-540SH in SPICE PARK
PPT
puni
PPT
Induction machines
PDF
5630731
PDF
SPICE MODEL of RE-140 in SPICE PARK
PPT
Induction machines
PDF
Bx26501512
PDF
Electrical Technology Jntu Model Paper{Www.Studentyogi.Com}
PDF
E L E C T R I C A L T E C H N O L O G Y J N T U M O D E L P A P E R{Www
PDF
E L E C T R I C A L M A C H I N E S I I I J N T U M O D E L P A P E R{Www
PDF
Electrical Machines Iii Jntu Model Paper{Www.Studentyogi.Com}
Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version)
Basics of an ac drive - with motor basics
DCモーターのシンプルモデルの解説書(PSpice)
Simple Model of DC Motor using PSpice
control of AC machines
SPICE MODEL of RE-260 in SPICE PARK
53669836 brake-test-on-a-d
SPICE MODEL of RE-280 in SPICE PARK
Electrical motor efficiency
SPICE MODEL of RS-540SH in SPICE PARK
puni
Induction machines
5630731
SPICE MODEL of RE-140 in SPICE PARK
Induction machines
Bx26501512
Electrical Technology Jntu Model Paper{Www.Studentyogi.Com}
E L E C T R I C A L T E C H N O L O G Y J N T U M O D E L P A P E R{Www
E L E C T R I C A L M A C H I N E S I I I J N T U M O D E L P A P E R{Www
Electrical Machines Iii Jntu Model Paper{Www.Studentyogi.Com}
Ad

More from Tsuyoshi Horigome (20)

PPTX
Setting KPI of Estimation Department Division
PPTX
回路ブロック図の事例(PMBus 対応、周波数同期機能搭載、4.5V ~ 18V、20A 同期整流 SWIFT™ 降圧コンバータ)
PPTX
STHV64SW(STマイクロエレクトロニクス)のデータシートの要約について(Suitable for ultrasound imaging applic...
PDF
Safety Lock Circuits (LTspice + Explanation)
PPTX
H8500-based Scintillation Detection System (Block Diagram) by Bee Technologies
PPT
Package Design Design Kit 20100009 PWM IC by Bee Technologies
PDF
Wio LTE JP Version v1.3b- 4G, Cat.1, Espruino Compatible\202001935, PCBA;Wio ...
PDF
High-frequency high-voltage transformer outline drawing
PPTX
高周波回路のノイズ抑制について回路設計、基板設計、基板製造における対策方法について
PPTX
sub-GHz帯域(315MHzや920MHz)で使用する際のポイントについてのご説明
DOCX
Basic Flow Chart Shapes(Reference Memo)for word version
PPTX
Update 40 models( Solar Cell ) in SPICE PARK(JUL2024)
PPTX
SPICE PARK JUL2024 ( 6,866 SPICE Models )
PPTX
Update 33 models(General Diode ) in SPICE PARK(JUN2024)
PPTX
SPICE PARK JUN2024 ( 6,826 SPICE Models )
PPTX
KGIとKPIについて(営業の目標設定とKPIの商談プロセス) About KGI and KPI
PPTX
FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
PPTX
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
PPTX
SPICE PARK APR2024 ( 6,793 SPICE Models )
PPTX
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Setting KPI of Estimation Department Division
回路ブロック図の事例(PMBus 対応、周波数同期機能搭載、4.5V ~ 18V、20A 同期整流 SWIFT™ 降圧コンバータ)
STHV64SW(STマイクロエレクトロニクス)のデータシートの要約について(Suitable for ultrasound imaging applic...
Safety Lock Circuits (LTspice + Explanation)
H8500-based Scintillation Detection System (Block Diagram) by Bee Technologies
Package Design Design Kit 20100009 PWM IC by Bee Technologies
Wio LTE JP Version v1.3b- 4G, Cat.1, Espruino Compatible\202001935, PCBA;Wio ...
High-frequency high-voltage transformer outline drawing
高周波回路のノイズ抑制について回路設計、基板設計、基板製造における対策方法について
sub-GHz帯域(315MHzや920MHz)で使用する際のポイントについてのご説明
Basic Flow Chart Shapes(Reference Memo)for word version
Update 40 models( Solar Cell ) in SPICE PARK(JUL2024)
SPICE PARK JUL2024 ( 6,866 SPICE Models )
Update 33 models(General Diode ) in SPICE PARK(JUN2024)
SPICE PARK JUN2024 ( 6,826 SPICE Models )
KGIとKPIについて(営業の目標設定とKPIの商談プロセス) About KGI and KPI
FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
SPICE PARK APR2024 ( 6,793 SPICE Models )
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)

Recently uploaded (20)

PPTX
BUSINESS CYCLE_INFLATION AND UNEMPLOYMENT.pptx
PDF
Highest-Paid CEO in 2025_ You Won’t Believe Who Tops the List.pdf
DOCX
Center Enamel Powering Innovation and Resilience in the Italian Chemical Indu...
PDF
Sustainable Digital Finance in Asia_FINAL_22.pdf
DOCX
Center Enamel A Strategic Partner for the Modernization of Georgia's Chemical...
PPTX
IMM marketing mix of four ps give fjcb jjb
PPTX
Chapter 2 strategic Presentation (6).pptx
PDF
Immigration Law and Communication: Challenges and Solutions {www.kiu.ac.ug)
PDF
Communication Tactics in Legal Contexts: Historical Case Studies (www.kiu.ac...
PDF
Value-based IP Management at Siemens: A Cross-Divisional Analysis
PDF
Vinod Bhatt - Most Inspiring Supply Chain Leader in India 2025.pdf
PPTX
operations management : demand supply ch
PPT
Retail Management and Retail Markets and Concepts
PDF
Susan Semmelmann: Enriching the Lives of others through her Talents and Bless...
PPTX
Transportation in Logistics management.pptx
PDF
Second Hand Fashion Call to Action March 2025
DOCX
80 DE ÔN VÀO 10 NĂM 2023vhkkkjjhhhhjjjj
PPTX
interschool scomp.pptxzdkjhdjvdjvdjdhjhieij
PDF
Comments on Clouds that Assimilate Parts I&II.pdf
PDF
Chapter 2 - AI chatbots and prompt engineering.pdf
BUSINESS CYCLE_INFLATION AND UNEMPLOYMENT.pptx
Highest-Paid CEO in 2025_ You Won’t Believe Who Tops the List.pdf
Center Enamel Powering Innovation and Resilience in the Italian Chemical Indu...
Sustainable Digital Finance in Asia_FINAL_22.pdf
Center Enamel A Strategic Partner for the Modernization of Georgia's Chemical...
IMM marketing mix of four ps give fjcb jjb
Chapter 2 strategic Presentation (6).pptx
Immigration Law and Communication: Challenges and Solutions {www.kiu.ac.ug)
Communication Tactics in Legal Contexts: Historical Case Studies (www.kiu.ac...
Value-based IP Management at Siemens: A Cross-Divisional Analysis
Vinod Bhatt - Most Inspiring Supply Chain Leader in India 2025.pdf
operations management : demand supply ch
Retail Management and Retail Markets and Concepts
Susan Semmelmann: Enriching the Lives of others through her Talents and Bless...
Transportation in Logistics management.pptx
Second Hand Fashion Call to Action March 2025
80 DE ÔN VÀO 10 NĂM 2023vhkkkjjhhhhjjjj
interschool scomp.pptxzdkjhdjvdjvdjdhjhieij
Comments on Clouds that Assimilate Parts I&II.pdf
Chapter 2 - AI chatbots and prompt engineering.pdf

Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version)

  • 1. Concept Kit Modeling of 3-Phase AC Motor Drive Simulation For Electric Drive Systems [PSpice Version] All Rights Reserved Copyright (C) Bee Technologies Inc. 2012 1
  • 2. Contents Slide # 1. Modeling of 3-Phase AC Motor Model 1.1 Manufacturer Specification......................................................................................................... 3 1.2 Torque and Back-EMF............................................................................................................... 4 1.3 Simplified 3-Phase AC Motor Model......................................................................................... 5 1.4 The 3-Phase AC Motor Equivalent Circuit................................................................................. 6 1.5 Parameter Settings..................................................................................................................... 7 2. Simulation Circuit of 3-Phase AC Motor Model................................................................................ 8 2.1 Phase Current Characteristics Under Load Variation................................................................ 9 2.2 Back-EMF Characteristics Under Load Condition..................................................................... 10 2.3 Speed and Torque Characteristics At 140Arms........................................................................ 11 2.4 Power Output and Efficiency Characteristics At 140Arms......................................................... 12 Appendix A: Measured Point of Simulation Circuit (1/2)........................................................... 13 Appendix A: Measured Point of Simulation Circuit (2/2)........................................................... 14 Appendix B: Evaluation Text...................................................................................................... 15 Appendix C: Gate Signal for Six-Step Control........................................................................... 16 Appendix D: 3-Phase AC Motor Model Text (1/2)..................................................................... 17 Appendix D: 3-Phase AC Motor Model Text (2/2)..................................................................... 18 Appendix E: Simulation Settings................................................................................................ 19 All Rights Reserved Copyright (C) Bee Technologies Inc. 2012 2
  • 3. 1.1) Manufacturer Specification Motenergy, Inc (ME0913) Motor Electrical Parameters • Operating Voltage Range..........................0 – 72 V MAX • Rated Continuous Current........................140 Arms • Peak Stalled Current.................................400 Arms • Voltage Constant.......................................50 RPM/V • Phase Resistance (L-L).............................0.0125 Ω • Phase Inductance......................................105uH at 120Hz, 110uH at 1kHz • Maximum Continuous Power Rating……..17KW at 102V DC Battery Voltage 14.3KW at 84VDC Battery Voltage 12KW at 72VDC Battery Voltage Motor Mechanical Parameters • Rated Speed.............................................3000 RPM • Maximum Speed.......................................5000 RPM • Rated Torque............................................288 Lb-in • Torque Constant.......................................1.6 Lb-in/A All Rights Reserved Copyright (C) Bee Technologies Inc. 2012 3
  • 4. 1.2) Torque and Back-EMF • The Torque are defined by :  phe : u, v, w Tu = KT ⋅ Iu Vphe : Phase voltage applied from inverter to motor Tv = KT ⋅ Iv (1) VAC : Operating voltage range (Maximum voltage) Tw = KT ⋅ Iw VBAT : DC Voltage applied from battery Te = Tu + Tv + Tw (2) Iphe : Phase current At 140Arms (Rated Continuous Current) Tphe : Electric torque produced by u, v, w phase KT = 1.6 Lb-in/A Te : Electric torque produced by motor Ephe : Phase Back-EMF Tphe = 1.6  140 = 224Lb-in KE : Back-EMF constant Te = 224*3= 672Lb-in KT : Torque constant • The Back-EMF are defined by : ωm : Angular speed of rotor Eu = KE ⋅ ω m  1 Pound Inch equals 0.11 Nm Ev = K E ⋅ ω m (3) Ew = K E ⋅ ω m At 5000 RPM (Maximum Speed) Ephe ≈ VBAT (In an ideal motor, R and L are zero) Ephe = 102V KE = Ephe /ωm = 102 / 5000 KE ≈ 0.02V/RPM All Rights Reserved Copyright (C) Bee Technologies Inc. 2012 4
  • 5. 1.3) Simplified 3-Phase AC Motor Model Frequency Response 110uH 105uH BEMF1 R 1 L1 U 1 2 R 2 L2 BEMF2 Phase Resistance (L-L) : 0.0125Ω V 1 2 Phase Inductance : 105uH N 0 : 110uH BEMF3 R 3 L3 W 1 2 Fig. 1 Scheme of the 3-Phase Model Fig.2 Phase-to-Ground All Rights Reserved Copyright (C) Bee Technologies Inc. 2012 5
  • 6. RLL = 0.0125 PARAMET 0 0 LL = 105U OUT- OUT- OUT+ OUT+ KE = 0.02 KT = 1.6 IN+ IN- IN+ IN- 1.4) The 3-Phase AC Motor Equivalent Circuit lim_w 0 0 lim_u lim_v mul |Z| - Frequency Back-EMF Voltage 0 0 0 OUT+ OUT+ OUT+ OUT- OUT- OUT- IN+ IN- IN+ IN- IN+ IN- sp_w sp_u sp_v 0 0 0 0 0 0 Mechanical part IN+ IN- IN+ IN- IN+ IN- OUT+ OUT- OUT+ OUT- OUT+ OUT- emf_w emf_u emf_v emf_w emf_u emf_v sp_w sp_u - - - sp_v + + + E1 E2 E3 tw tu tv + + + - - - 0 0 0 TQSP 2 TQSP 2 TQSP 2 ew eu ev Fig. 3 Three-Phase AC Motor Equivalent Circuit • This figure shows the equivalent circuit of AC motor model that includes the |Z|- U1 U2 U3 frequency part ,Back-EMF voltage part ,and Mechanical part. 1 1 1 n1 n3 n2 • The Back-EMF voltage is the voltage generated across the motor's terminals as the windings move through the motor's magnetic field. Vw Vu Vv All Rights Reserved Copyright (C) Bee Technologies Inc. 2012 6 0
  • 7. 1.5) Parameters Settings Model Parameters: LOAD : Load current each phase of motor [Arms] U 1 – e.g. LL = 125Arms, 140Arms, or 400Arms M E0913 1 LL : Phase inductance [H] LL = 105U M – e.g. LL = 10mH, 100mH, or 1H 2 4 R L L = 0 .0 1 2 5 N 0 KE = 0 .0 2 3 KT = 1 .6 RLL : Phase resistance (Phase-to-phase) [Ω] LO AD = 140 – e.g. RLL = 10mΩ, 100mΩ, or 1Ω KE : Back-EMF constant [V/RPM] – e.g. KE= 0.01, 0.05, or 0.1 Fig. 4 Symbol of 3-Phase Induction Motor KT : Torque constant [Lb-in/A] – e.g. KT= 0.1, 0.5, or 1  1 Pound Inch equals 0.11 Nm • From the 3-Phase Induction Motor specification, the model is characterized by setting parameters LL, RLL, KE, KT and LOAD. All Rights Reserved Copyright (C) Bee Technologies Inc. 2012 7
  • 8. 2) Simulation Circuit of 3-Phase AC Motor Model V1 S1 D 1 S3 D 3 S5 D 5 102V U P + + D M O D _01 VP + + D M O D _01 W P + + D M O D _01 - - - - - - 0 0 0 U 1 M E0913 R U U 1 R V 2 M 4 V N 0 N 0 R W W 3 N 0 RU, RV, RW: 173.75m V2 102V LL = 105U S2 D 2 S4 D 4 S6 D 6 R L L = 0 .0 1 2 5 U D + + D M O D _01 VD + + D M O D _01 W D + + D M O D _01 K E = 0 .0 2 K T = 1 .6 - - - - - - LO AD = 140 0 0 0 0 • Fig.5 Analysis of motor operation powered by U P U D VP VD W P W D alternating voltage variation involves using the model of three-phase induction motor. U 2 VP U P W P VD U D W D G D R V All Rights Reserved Copyright (C) Bee Technologies Inc. 2012 8
  • 9. 2.1) Phase Current Characteristics Under Load Variation - Simulation Results 500A Load 50Arms 0A - 500A 0s 5 0 0 ms 500A I ( RU) / SQRT( 2 ) Ti me Load 140Arms 0A - 500A 0s 5 0 0 ms 500A I ( RU) / SQRT( 2 ) Ti me Load 200Arms 0A - 500A 0s 5 0 0 ms I ( RU) / SQRT( 2 ) Ti me  Reference of Phase U Fig. 6 Current Characteristics under load Condition All Rights Reserved Copyright (C) Bee Technologies Inc. 2012 9
  • 10. 2.2) Back-EMF Characteristics Under Load Condition - Simulation Results 200V Load 50Arms 100V 0V - 100V - 200V 0s 5 0 0 ms 200V V( X_ U1 . EU) Ti me Load 140Arms 100V 0V - 100V - 200V 0s 5 0 0 ms 200V V( X_ U1 . EU) Ti me Load 200Arms 100V 0V - 100V - 200V 0s 5 0 0 ms V( X_ U1 . EU) Ti me  Reference of Phase U Fig. 7 Back-EMF Characteristics under load Condition All Rights Reserved Copyright (C) Bee Technologies Inc. 2012 10
  • 11. 2.3) Speed and Torque Characteristics At 140Arms - Simulation Results 4 . 0 KV The Load 140(Arms) is Rated Continuous Current 3 . 0 KV ( 4 6 4 . 1 4 6 m, 3 . 2 3 1 1 K) RPM 2 . 0 KV 1 . 0 KV SEL > > 0V V( X_ U1 . s p e e d ) 1 . 0 KV Tphe: Electric torque produced by each phase Lb-in 0 . 5 KV ( 4 4 6 . 4 8 6 m, 2 2 3 . 7 2 8 ) 0V 0s 5 0 0 ms V( X_ U1 . t u ) Ti me  Reference of Phase U Fig. 8 Speed and Torque Characteristics at Load=140Arms All Rights Reserved Copyright (C) Bee Technologies Inc. 2012 11
  • 12. 2.4) Power Output and Efficiency Characteristics At 140Arms - Simulation Results 2 0 KW At Load=140Arms, Power Output ≈ 13.7 [KW] ( 9 6 0 . 6 1 6 m, 1 3 . 6 6 2 K) Watt 1 0 KW SEL > > 0W RMS( V( RU: 1 , N0 ) ) * RMS( I ( RU) ) 100 At Load=140Arms, Efficiency ≈ 82 [%] ( 9 6 2 . 5 0 0 m, 8 1 . 9 4 1 ) [%] 50 0 0. 5s 1. 0s 100* ( ( RMS( V( U, N0 ) ) * RMS( I ( RU) ) ) / ( RMS( V( RU: 1 , N0 ) ) * RMS( I ( RU) ) ) ) Ti me  Reference of Phase U Fig. 9 Power Output and Efficiency Characteristics at Load=140Arms All Rights Reserved Copyright (C) Bee Technologies Inc. 2012 12