SlideShare a Scribd company logo
Saturable transformer model Simplified SPICE Behavioral Model   Bee Technologies Inc. All Rights Reserved Copyright (C) Bee Technologies Corporation 2012
Contents Model Overview Concept of the Model Parameter Settings of Saturable Core  Saturable core SUBCKT using LTspiceIV  <<-- Netlist is not open(If you buy this model , you can show netlist) Saturable Core Parameter Setting (Example)  5.1 Curve fitting: RLOSS 5.2 Curve fitting: LM 5.3 Curve fitting: BEXP 6.  Dynamic Magnetizing Curves Characteristics 7.  Basic Ideal Transformers and Their Parameters 7.1 Parameter settings of 1:1 ideal transformer  7.2 Parameter settings of 2:1 ideal transformer  7.3 Parameter settings of 1:2 ideal transformer  8.  Saturable transformer SUBCKT Using LTspiceIV <<-- Netlist is not open(If you buy this model ,    you can show netlist) 9.  1:1 Saturable transformer model (Example) 10.  1:1 Saturable transformer model  (Example)  (Phase reverse) 11.  2:1 Saturable transformer model (Example)  12.  1:2 Saturable transformer model (Example)  13.  1:2 Saturable transformer model (Example) (Center tap) 14.  Application Circuit Example: Flyback converter Library Files and Symbol Files Location Library Files Index Simulation Index All Rights Reserved Copyright (C) Bee Technologies Corporation 2012
This Saturable Transformer  Simplified SPICE Behavioral Model  is for users who require the model of the core loss and hysteresis as a part of their system. The model focuses on the hysteresis loop behavior in their operation area, which user can shape the B-H curve. 1) Model Overview All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 Saturation Flux  Density B S H  (A-turns/m) B  (Teslas) Coercive Field H C Remanent Flux  Density B r Saturation Field H S Figure 1 , Hysteresis Loop and Magnetic Properties.
2) Concept of the Model The Saturable core is characterized by parameters: BSAT, RLOSS, LM and BEXP, which represent the Flux density vs. Magnetic field characteristics of the Saturable core.  The Ideal transformer is characterized by parameters: N, R P , R S  and L P  . Saturable Core Simplified SPICE Behavioral Model [Model parameters: BSAT, RLOSS, LM and BEXP] Ideal Transformer Simplified SPICE Behavioral Model [Model parameters: N, R P , R S  and L P ] All Rights Reserved Copyright (C) Bee Technologies Corporation 2012
3) Parameter Settings of Saturable Core BSAT     The saturation flux density (in teslas).  e.g. 100mT, 350mT, 500mT Value = <BSAT> RLOSS     The resistor RLOSS represents a loss when a voltage is applied. e.g. 0.5 Ω , 1 Ω , 100K Ω Value = <RLOSS> LM     Magnetizing inductance of the core inductor  (in henry). e.g. 1uH, 5uH, 50uH Value = <LM> BEXP     The exponent in the expression for coupling factor K C . e.g. 2, 4, 8 Value = <BEXP> From the Saturable Core specification, the model is characterized by setting parameter BSAT, then adjust the parameters RLOSS, LM and BEXP to shape the dynamic magnetic curve. All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 Model Parameters: B-H Curve test points Figure 2 , Saturable core model (Default parameters).
4) Saturable core SUBCKT using LTspiceIV  All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 Figure 3 , Saturable core subcircuit SPICE compatible, the key parameters are shown in bold. Information of  Netlist
5) Saturable Core Parameter Setting (Example) Material: NC-2H Manganese Zinc Ferrite Cores with B S   = 500(mT) B r   = 140(mT) H C  = 15.9(A/m) Conditions: F = 10(KHz) T C  = 23(  C) All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 Figure 4 , Dynamic Magnetization Curves.  Specification     The data is provided in the datasheet Input the parameter  BSAT=500m
5.1) Curve fitting: RLOSS  Condition: F=10KHz, Vin=80V P Parametric sweep: RLOSS=0.5 Ω , 1 Ω ,   100K Ω   All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 0.5 Ω   --- 1 Ω   --- 100K Ω   --- Figure 5 , The magnetizing line difference,  RLOSS.   H  (A-turns/m) B  (Teslas)
5.2) Curve fitting: LM  Condition: F=10KHz, Vin=80V P Parametric sweep: LM=1uH,   5uH, 50uH  All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 1uH  --- 5uH  --- 50uH  --- Figure 6 , The magnetizing line difference,  LM  . H  (A-turns/m) B  (Teslas)
5.3) Curve fitting: BEXP  Condition: F=10KHz, Vin=80V P Parametric sweep: BEXP=2,   4, 8  All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 2  --- 4  --- 8  --- Figure 7 , The magnetizing line difference,  BEXP. H  (A-turns/m) B  (Teslas)
6) Dynamic Magnetizing Curves Characteristics  - Evaluation Circuit and Setting Sine wave excitation Square wave excitation  Condition: F=10KHz, Vin=80V P , T C =23°C .tran 0 200u 100u 10n .lib score.sub All Rights Reserved Copyright (C) Bee Technologies Corporation 2012
6) Dynamic Magnetizing Curves Characteristics - Simulation Result The saturable core model is completed with both sine and square wave (above) excitation as shown in these LTspiceIV simulations.  All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 Figure 8 , Sine wave excitation Figure 9 , Square wave excitation
7) Basic Ideal Transformers and Their Parameters The relationship between the Voltage and current are defined as equations below.  V P   is the primary voltage. V S   is the secondary voltage. I P   is the primary current. I S   is the secondary current. N P   is the turns number of primary winding.   N S   is the turns number of secondary winding.   All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 Figure 10 , Symbol of basic ideal transformer with  The voltage to current relationships.  N P N S I P I S V P V S 1 : N + - + - (7.2) (7.3) (7.1) N   is the turns ratio of Ideal transformer  (above).
7.1) Parameter settings of 1:1 ideal transformer LP     Inductance of primary winding (in henry).  e.g. 100uH, 250uH, 500uH Value = <LP> N     is the turns ratio of Ideal transformer.  e.g. 0.1, 0.5, 1 Value = <N> RP     A series resistance of primary winding (in ohm). e.g. 1m Ω , 10m Ω , 100m Ω Value = <RP> RS     A series resistance of secondary winding (in ohm). e.g. 1m Ω , 10m Ω , 100m Ω Value = <RS> All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 Model Parameters: Figure 11 , 1:1 Ideal transformer (Default parameters).  Figure 12 , 1:1 Phase reverse ideal transformer  (Default parameters).
7.2) Parameter settings of 2:1 ideal transformer LP     Inductance of primary winding (in henry).  e.g. 100uH, 250uH, 500uH Value = <LP> N     is the turns ratio of Ideal transformer.  e.g. 0.1, 0.5, 1 Value = <N> RP1     A series resistance of primary winding 1 (in ohm). e.g. 1m Ω , 10m Ω , 100m Ω Value = <RP1> RP2     A series resistance of primary winding 2 (in ohm). e.g. 1m Ω , 10m Ω , 100m Ω Value = <RP2> RS     A series resistance of secondary winding (in ohm). e.g. 1m Ω , 10m Ω , 100m Ω Value = <RS> All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 Model Parameters: Figure 13 , 2:1 Ideal transformer (Default parameters).
7.3) Parameter settings of 1:2 ideal transformer LP     Inductance of primary winding (in henry).  e.g. 100uH, 250uH, 500uH Value = <LP> N     is the turns ratio of Ideal transformer.  e.g. 0.1, 0.5, 1 Value = <N> RP     A series resistance of primary winding (in ohm). e.g. 1m Ω , 10m Ω , 100m Ω Value = <RP> RS1     A series resistance of secondary winding 1 (in ohm). e.g. 1m Ω , 10m Ω , 100m Ω Value = <RS1> RS2     A series resistance of secondary winding 2 (in ohm). e.g. 1m Ω , 10m Ω , 100m Ω Value = <RS2> All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 Model Parameters: Figure 14 , 1:2 Ideal transformer (Default parameters).  Figure 15 , 1:2 Center tap ideal transformer  (Default parameters).
8) Saturable transformer SUBCKT Using LTspiceIV All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 Figure 17 , Saturable transformer equivalent circuit. Figure 16 , Saturable transformer symbol,  the key parameters are shown in bold. Information of  Netlist
Condition: F=10KHz, V IN =50V P , V OUT =5V P , R OUT =10 Ω .tran 0 2500u 0 50n .lib tfmr1.sub 9) 1:1 Saturable transformer model (Example) - Simulation Circuit and Setting All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 Saturable transformer model Primary current Output Voltage 1 : {N} Secondary current
9) 1:1 Saturable transformer model (Example)  - Simulation Result All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 Input voltage Output voltage Input Current Output Current Figure 18 , The Input–Output Characteristics of 1:1 Saturable transformer.
Condition: F=10KHz, V IN =50V P , V OUT =5V P , R OUT =10 Ω .tran 0 2500u 0 50n .lib tfmr1_rev.sub 10) 1:1 Saturable transformer model (Example)  - Simulation Circuit and Setting (Phase reverse) All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 1 : {N}
10) 1:1 Saturable transformer model (Example)   - Simulation Result (Phase reverse) All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 Figure 19 , The Input–Output Characteristics of 1:1 Saturable transformer (Phase reverse).  Input voltage Output voltage Input Current Output Current
Condition: F=10KHz, V IN =25V P , V OUT =5V P , R OUT =10 Ω .tran 0 2500u 0 50n .lib tfmr2prim.sub 11) 2:1 Saturable transformer model (Example)  - Simulation Circuit and Setting All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 1 : {N}
11) 2:1 Saturable transformer model (Example)  - Simulation Result All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 Figure 20 , The Input–Output Characteristics of 2:1 Saturable transformer.  Input voltage 1 Input Current 1 Output voltage Output Current  Input voltage 2 Input Current 2
Condition: F=10KHz, V IN =50V P , V OUT1 =V OUT2 =5V P , R OUT =10 Ω .tran 0 2500u 0 50n .lib tfmr2.sub 12) 1:2 Saturable transformer model (Example)  - Simulation Circuit and Setting All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 1 : {N}
12) 1:2 Saturable transformer model (Example) - Simulation Result  All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 Input voltage Output voltage 1 Input Current Output Current 1 Figure 21 , The Input–Output Characteristics of 1:2 Saturable transformer.  Output voltage 2 Output Current 2
Condition: F=10KHz, V IN =50V P , V OUT1 =V OUT2 =5V P , R OUT =10 Ω .tran 0 2500u 0 50n .lib tfmr2_ct.sub 13) 1:2 Saturable transformer model (Example)  - Simulation Circuit and Setting (Center tap) All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 1 : {N}
13) 1:2 Saturable transformer model (Example)  - Simulation Result (Center tap)  All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 Figure 22 , The Input–Output Characteristics of 1:2 Saturable transformer (Center tap).  Input voltage Output voltage 1 Input Current Output Current 1 Output voltage 2 Output Current 2
Condition: F=40KHz, V IN =24V, V OUT =5V, R L =5 Ω , C L =200uF, L P =500uH .tran 0 10m 0 100n startup .lib tfmr1_rev.sub 14) Application Circuit Example: Flyback converter - Simulation Circuit and Setting  All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 1 : {N}
14) Application Circuit Example: Flyback converter - Simulation Result All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 Secondary voltage of transformer Output voltage= 5Vdc Figure 23 , Flyback converter with Saturable transformer model.  Output ripple voltage Secondary current of transformer V RIPPLE Input voltage= 24Vdc
Library Files and Symbol Files Location All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 … \Simulations C:\Program Files\LTC\LTspiceIV\lib\sub C:\Program Files\LTC\LTspiceIV\lib\sym Copy/Paste into Copy/Paste into Copy the library files (.lib) from the folder …\Simulations \.lib\, then paste into the folder C:\Program Files\LTC\LTspiceIV\lib\sub Copy the symbol files(.asy) from the folder …\Simulations \.asy\, then paste into the folder C:\Program Files\LTC\LTspiceIV\lib\sym
Library Files Index All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 Model Library Symbol Saturable Core……....................................................... 1:1 Saturable transformer model………………….......... 1:1 Saturable transformer model (Phase reverse)……. 2:1 Saturable transformer model..…………….………… 1:2 Saturable transformer model..…….………………… 1:2 Saturable transformer model (Center tap)……....... score.sub tfmr1.sub tfmr1_rev.sub tfmr2prim.sub tfmr2.sub tfmr2_ct.sub SCORE.asy TFMR1.asy TFMR1_REV.asy TFMR2PRIM.asyTFMR2.asy TFMR2_CT.asy
Simulation Index All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 Simulations Folder name Curve fitting: RLOSS…………………………………………........ Curve fitting: LM………………………………………………........ Curve fitting: BEXP………………………………………………… Dynamic Magnetizing Curves Characteristics…….................... 1:1 Saturable transformer model (Example)……………………..  1:1 Saturable transformer model (Example) (Phase reverse)… 2:1 Saturable transformer model (Example)..…………….…….. 1:2 Saturable transformer model (Example)..…….…………….. 1:2 Saturable transformer model (Example) (Center tap)……...  Application Circuit Example: Flyback converter……………….... Curve fitting Curve fitting Curve fitting Sat_Core Sat_Trans1 Sat_Trans2 Sat_Trans3 Sat_Trans4 Sat_Trans5 Appl

More Related Content

PPTX
Induction machines
PPT
Rc and rl differentiator and integrator circuit
PPTX
Two port network
PDF
Thevenin's theorem for ac network
PPT
signal & system inverse z-transform
PDF
pwm inverter
PPTX
Resonant Inverters
PPTX
Facts static voltage & phase angle regulators
Induction machines
Rc and rl differentiator and integrator circuit
Two port network
Thevenin's theorem for ac network
signal & system inverse z-transform
pwm inverter
Resonant Inverters
Facts static voltage & phase angle regulators

What's hot (20)

PDF
8.2.3 Back Emf
PDF
Chapter 2
PPT
Control chap5
PPT
Design of optimum self cascode low voltage current mirror
PPTX
ROOT-LOCUS METHOD, Determine the root loci on the real axis /the asymptotes o...
PPTX
Wave Propagation In Lossy Dielectrics
PPT
Inductance of transmission line
PPTX
Power System Analysis Unit - V
PPTX
What is Power factor?
PPTX
SPICE Model of Current Transformer
PDF
Nyquist stability criterion
PDF
Two ports
PDF
14 feedback &amp; oscillator circuits
PPT
Duality concept
PPT
Semiconductors
PPT
VSC based HVDC system
PPT
Per unit systems in power systems
DOC
Chapter 4 synchronous machine
PPTX
Power BJT and Power MOSFET
8.2.3 Back Emf
Chapter 2
Control chap5
Design of optimum self cascode low voltage current mirror
ROOT-LOCUS METHOD, Determine the root loci on the real axis /the asymptotes o...
Wave Propagation In Lossy Dielectrics
Inductance of transmission line
Power System Analysis Unit - V
What is Power factor?
SPICE Model of Current Transformer
Nyquist stability criterion
Two ports
14 feedback &amp; oscillator circuits
Duality concept
Semiconductors
VSC based HVDC system
Per unit systems in power systems
Chapter 4 synchronous machine
Power BJT and Power MOSFET
Ad

Viewers also liked (20)

PDF
LTspice audio simulation
PPT
Simple model of Fuse(LTspice)
PPT
Simple model of DC Power Supply(LTspice)
PDF
Simple model of Fuse(PSpice)
PDF
シンプルモデル(トランスモデル)のCD-Rの内容
PPTX
SPICE PARK ALL LIST of SEP2015
PPT
DC/AC 3-Phase Inverter (LTspice Model)
PPTX
シンプルモデルとは
PPT
Simple model of DC Power Supply(PSpice)
PPT
Simple model of Lithium Ion Battery (PSpice)
PPT
DC/AC 3-Phase Inverter (PSpice Model)
PPTX
ENERGY REGENERATING SYSTEM for HEV,EV using PSpice
PPT
Simple mode of Li-ion battery (LTspice)
PDF
R&D of New Technology Using Simulation
PPTX
How to Design of Power Management of Hybrid Circuit(Battery and Capacitor) us...
PPTX
Flyback Converter using PWM IC(LTspice Version)
PDF
PSpice Simulation Data(Transformer)
PDF
Simple Model of Lead-Acid Battery Model using PSpice
PDF
Simple Model of Lead-Acid Battery Model using LTspice
PPTX
3-Phase AC Motor Model(PSpice Model)
LTspice audio simulation
Simple model of Fuse(LTspice)
Simple model of DC Power Supply(LTspice)
Simple model of Fuse(PSpice)
シンプルモデル(トランスモデル)のCD-Rの内容
SPICE PARK ALL LIST of SEP2015
DC/AC 3-Phase Inverter (LTspice Model)
シンプルモデルとは
Simple model of DC Power Supply(PSpice)
Simple model of Lithium Ion Battery (PSpice)
DC/AC 3-Phase Inverter (PSpice Model)
ENERGY REGENERATING SYSTEM for HEV,EV using PSpice
Simple mode of Li-ion battery (LTspice)
R&D of New Technology Using Simulation
How to Design of Power Management of Hybrid Circuit(Battery and Capacitor) us...
Flyback Converter using PWM IC(LTspice Version)
PSpice Simulation Data(Transformer)
Simple Model of Lead-Acid Battery Model using PSpice
Simple Model of Lead-Acid Battery Model using LTspice
3-Phase AC Motor Model(PSpice Model)
Ad

Similar to Simple Model of Transformer using LTspice (20)

PPTX
Fitting Parameter Guide of Core model
PPT
シンプルモデルのトランスのモデルの種類
PPTX
Core Model (LTspice Model)
PPTX
「SPICEの活用方法」セミナー資料(28JAN2011) PPT
PPTX
PSpiceで位相余裕度シミュレーション
PDF
シンプルモデル:トランスモデルのパラメータ及び説明について
PPTX
EN - o2.3 - EEE - EXP7 - 2 TRANSFORMERS.pptx
PDF
Operation and Control of Inductive Wireless Power Transfer
PDF
Electrical power ecx3232 lab report
PDF
Transformers devices and its efficiency of it
PDF
How to create a transformer using lt spice
PPT
Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version)
PDF
Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version)
PPT
Electricmotor4
PPSX
Permanent Magnet Brushless DC Motor brief
PDF
Electrical Technology Jntu Model Paper{Www.Studentyogi.Com}
PDF
E L E C T R I C A L T E C H N O L O G Y J N T U M O D E L P A P E R{Www
PPTX
201606_Ferrites,_CMC,_and_Power_Transformer_(1)e
PDF
Design of a Linear and Non-linear controller for Induction Motor
Fitting Parameter Guide of Core model
シンプルモデルのトランスのモデルの種類
Core Model (LTspice Model)
「SPICEの活用方法」セミナー資料(28JAN2011) PPT
PSpiceで位相余裕度シミュレーション
シンプルモデル:トランスモデルのパラメータ及び説明について
EN - o2.3 - EEE - EXP7 - 2 TRANSFORMERS.pptx
Operation and Control of Inductive Wireless Power Transfer
Electrical power ecx3232 lab report
Transformers devices and its efficiency of it
How to create a transformer using lt spice
Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version)
Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version)
Electricmotor4
Permanent Magnet Brushless DC Motor brief
Electrical Technology Jntu Model Paper{Www.Studentyogi.Com}
E L E C T R I C A L T E C H N O L O G Y J N T U M O D E L P A P E R{Www
201606_Ferrites,_CMC,_and_Power_Transformer_(1)e
Design of a Linear and Non-linear controller for Induction Motor

More from Tsuyoshi Horigome (20)

PPTX
STHV64SW(STマイクロエレクトロニクス)のデータシートの要約について(Suitable for ultrasound imaging applic...
PDF
Safety Lock Circuits (LTspice + Explanation)
PPTX
H8500-based Scintillation Detection System (Block Diagram) by Bee Technologies
PPT
Package Design Design Kit 20100009 PWM IC by Bee Technologies
PDF
Wio LTE JP Version v1.3b- 4G, Cat.1, Espruino Compatible\202001935, PCBA;Wio ...
PDF
High-frequency high-voltage transformer outline drawing
PPTX
高周波回路のノイズ抑制について回路設計、基板設計、基板製造における対策方法について
PPTX
sub-GHz帯域(315MHzや920MHz)で使用する際のポイントについてのご説明
DOCX
Basic Flow Chart Shapes(Reference Memo)for word version
PPTX
Update 40 models( Solar Cell ) in SPICE PARK(JUL2024)
PPTX
SPICE PARK JUL2024 ( 6,866 SPICE Models )
PPTX
Update 33 models(General Diode ) in SPICE PARK(JUN2024)
PPTX
SPICE PARK JUN2024 ( 6,826 SPICE Models )
PPTX
KGIとKPIについて(営業の目標設定とKPIの商談プロセス) About KGI and KPI
PPTX
FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
PPTX
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
PPTX
SPICE PARK APR2024 ( 6,793 SPICE Models )
PPTX
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
PPTX
SPICE PARK APR2024 ( 6,747 SPICE Models )
PPTX
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
STHV64SW(STマイクロエレクトロニクス)のデータシートの要約について(Suitable for ultrasound imaging applic...
Safety Lock Circuits (LTspice + Explanation)
H8500-based Scintillation Detection System (Block Diagram) by Bee Technologies
Package Design Design Kit 20100009 PWM IC by Bee Technologies
Wio LTE JP Version v1.3b- 4G, Cat.1, Espruino Compatible\202001935, PCBA;Wio ...
High-frequency high-voltage transformer outline drawing
高周波回路のノイズ抑制について回路設計、基板設計、基板製造における対策方法について
sub-GHz帯域(315MHzや920MHz)で使用する際のポイントについてのご説明
Basic Flow Chart Shapes(Reference Memo)for word version
Update 40 models( Solar Cell ) in SPICE PARK(JUL2024)
SPICE PARK JUL2024 ( 6,866 SPICE Models )
Update 33 models(General Diode ) in SPICE PARK(JUN2024)
SPICE PARK JUN2024 ( 6,826 SPICE Models )
KGIとKPIについて(営業の目標設定とKPIの商談プロセス) About KGI and KPI
FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
SPICE PARK APR2024 ( 6,793 SPICE Models )
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
SPICE PARK APR2024 ( 6,747 SPICE Models )
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)

Recently uploaded (20)

PDF
A comparative analysis of optical character recognition models for extracting...
PDF
NewMind AI Weekly Chronicles - August'25-Week II
PPTX
Big Data Technologies - Introduction.pptx
PDF
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
PDF
Approach and Philosophy of On baking technology
PPTX
Spectroscopy.pptx food analysis technology
PPTX
SOPHOS-XG Firewall Administrator PPT.pptx
PDF
Machine learning based COVID-19 study performance prediction
PDF
Getting Started with Data Integration: FME Form 101
PDF
Diabetes mellitus diagnosis method based random forest with bat algorithm
PDF
Reach Out and Touch Someone: Haptics and Empathic Computing
PDF
Spectral efficient network and resource selection model in 5G networks
PPTX
A Presentation on Artificial Intelligence
PDF
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
PDF
Accuracy of neural networks in brain wave diagnosis of schizophrenia
PDF
The Rise and Fall of 3GPP – Time for a Sabbatical?
PDF
Agricultural_Statistics_at_a_Glance_2022_0.pdf
PDF
Advanced methodologies resolving dimensionality complications for autism neur...
PDF
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
A comparative analysis of optical character recognition models for extracting...
NewMind AI Weekly Chronicles - August'25-Week II
Big Data Technologies - Introduction.pptx
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
Approach and Philosophy of On baking technology
Spectroscopy.pptx food analysis technology
SOPHOS-XG Firewall Administrator PPT.pptx
Machine learning based COVID-19 study performance prediction
Getting Started with Data Integration: FME Form 101
Diabetes mellitus diagnosis method based random forest with bat algorithm
Reach Out and Touch Someone: Haptics and Empathic Computing
Spectral efficient network and resource selection model in 5G networks
A Presentation on Artificial Intelligence
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
Accuracy of neural networks in brain wave diagnosis of schizophrenia
The Rise and Fall of 3GPP – Time for a Sabbatical?
Agricultural_Statistics_at_a_Glance_2022_0.pdf
Advanced methodologies resolving dimensionality complications for autism neur...
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx

Simple Model of Transformer using LTspice

  • 1. Saturable transformer model Simplified SPICE Behavioral Model Bee Technologies Inc. All Rights Reserved Copyright (C) Bee Technologies Corporation 2012
  • 2. Contents Model Overview Concept of the Model Parameter Settings of Saturable Core Saturable core SUBCKT using LTspiceIV <<-- Netlist is not open(If you buy this model , you can show netlist) Saturable Core Parameter Setting (Example) 5.1 Curve fitting: RLOSS 5.2 Curve fitting: LM 5.3 Curve fitting: BEXP 6. Dynamic Magnetizing Curves Characteristics 7. Basic Ideal Transformers and Their Parameters 7.1 Parameter settings of 1:1 ideal transformer 7.2 Parameter settings of 2:1 ideal transformer 7.3 Parameter settings of 1:2 ideal transformer 8. Saturable transformer SUBCKT Using LTspiceIV <<-- Netlist is not open(If you buy this model , you can show netlist) 9. 1:1 Saturable transformer model (Example) 10. 1:1 Saturable transformer model (Example) (Phase reverse) 11. 2:1 Saturable transformer model (Example) 12. 1:2 Saturable transformer model (Example) 13. 1:2 Saturable transformer model (Example) (Center tap) 14. Application Circuit Example: Flyback converter Library Files and Symbol Files Location Library Files Index Simulation Index All Rights Reserved Copyright (C) Bee Technologies Corporation 2012
  • 3. This Saturable Transformer Simplified SPICE Behavioral Model is for users who require the model of the core loss and hysteresis as a part of their system. The model focuses on the hysteresis loop behavior in their operation area, which user can shape the B-H curve. 1) Model Overview All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 Saturation Flux Density B S H (A-turns/m) B (Teslas) Coercive Field H C Remanent Flux Density B r Saturation Field H S Figure 1 , Hysteresis Loop and Magnetic Properties.
  • 4. 2) Concept of the Model The Saturable core is characterized by parameters: BSAT, RLOSS, LM and BEXP, which represent the Flux density vs. Magnetic field characteristics of the Saturable core. The Ideal transformer is characterized by parameters: N, R P , R S and L P . Saturable Core Simplified SPICE Behavioral Model [Model parameters: BSAT, RLOSS, LM and BEXP] Ideal Transformer Simplified SPICE Behavioral Model [Model parameters: N, R P , R S and L P ] All Rights Reserved Copyright (C) Bee Technologies Corporation 2012
  • 5. 3) Parameter Settings of Saturable Core BSAT  The saturation flux density (in teslas). e.g. 100mT, 350mT, 500mT Value = <BSAT> RLOSS  The resistor RLOSS represents a loss when a voltage is applied. e.g. 0.5 Ω , 1 Ω , 100K Ω Value = <RLOSS> LM  Magnetizing inductance of the core inductor (in henry). e.g. 1uH, 5uH, 50uH Value = <LM> BEXP  The exponent in the expression for coupling factor K C . e.g. 2, 4, 8 Value = <BEXP> From the Saturable Core specification, the model is characterized by setting parameter BSAT, then adjust the parameters RLOSS, LM and BEXP to shape the dynamic magnetic curve. All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 Model Parameters: B-H Curve test points Figure 2 , Saturable core model (Default parameters).
  • 6. 4) Saturable core SUBCKT using LTspiceIV All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 Figure 3 , Saturable core subcircuit SPICE compatible, the key parameters are shown in bold. Information of Netlist
  • 7. 5) Saturable Core Parameter Setting (Example) Material: NC-2H Manganese Zinc Ferrite Cores with B S = 500(mT) B r = 140(mT) H C = 15.9(A/m) Conditions: F = 10(KHz) T C = 23(  C) All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 Figure 4 , Dynamic Magnetization Curves. Specification   The data is provided in the datasheet Input the parameter BSAT=500m
  • 8. 5.1) Curve fitting: RLOSS Condition: F=10KHz, Vin=80V P Parametric sweep: RLOSS=0.5 Ω , 1 Ω , 100K Ω All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 0.5 Ω --- 1 Ω --- 100K Ω --- Figure 5 , The magnetizing line difference, RLOSS. H (A-turns/m) B (Teslas)
  • 9. 5.2) Curve fitting: LM Condition: F=10KHz, Vin=80V P Parametric sweep: LM=1uH, 5uH, 50uH All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 1uH --- 5uH --- 50uH --- Figure 6 , The magnetizing line difference, LM . H (A-turns/m) B (Teslas)
  • 10. 5.3) Curve fitting: BEXP Condition: F=10KHz, Vin=80V P Parametric sweep: BEXP=2, 4, 8 All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 2 --- 4 --- 8 --- Figure 7 , The magnetizing line difference, BEXP. H (A-turns/m) B (Teslas)
  • 11. 6) Dynamic Magnetizing Curves Characteristics - Evaluation Circuit and Setting Sine wave excitation Square wave excitation Condition: F=10KHz, Vin=80V P , T C =23°C .tran 0 200u 100u 10n .lib score.sub All Rights Reserved Copyright (C) Bee Technologies Corporation 2012
  • 12. 6) Dynamic Magnetizing Curves Characteristics - Simulation Result The saturable core model is completed with both sine and square wave (above) excitation as shown in these LTspiceIV simulations. All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 Figure 8 , Sine wave excitation Figure 9 , Square wave excitation
  • 13. 7) Basic Ideal Transformers and Their Parameters The relationship between the Voltage and current are defined as equations below. V P is the primary voltage. V S is the secondary voltage. I P is the primary current. I S is the secondary current. N P is the turns number of primary winding. N S is the turns number of secondary winding. All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 Figure 10 , Symbol of basic ideal transformer with The voltage to current relationships. N P N S I P I S V P V S 1 : N + - + - (7.2) (7.3) (7.1) N is the turns ratio of Ideal transformer (above).
  • 14. 7.1) Parameter settings of 1:1 ideal transformer LP  Inductance of primary winding (in henry). e.g. 100uH, 250uH, 500uH Value = <LP> N  is the turns ratio of Ideal transformer. e.g. 0.1, 0.5, 1 Value = <N> RP  A series resistance of primary winding (in ohm). e.g. 1m Ω , 10m Ω , 100m Ω Value = <RP> RS  A series resistance of secondary winding (in ohm). e.g. 1m Ω , 10m Ω , 100m Ω Value = <RS> All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 Model Parameters: Figure 11 , 1:1 Ideal transformer (Default parameters). Figure 12 , 1:1 Phase reverse ideal transformer (Default parameters).
  • 15. 7.2) Parameter settings of 2:1 ideal transformer LP  Inductance of primary winding (in henry). e.g. 100uH, 250uH, 500uH Value = <LP> N  is the turns ratio of Ideal transformer. e.g. 0.1, 0.5, 1 Value = <N> RP1  A series resistance of primary winding 1 (in ohm). e.g. 1m Ω , 10m Ω , 100m Ω Value = <RP1> RP2  A series resistance of primary winding 2 (in ohm). e.g. 1m Ω , 10m Ω , 100m Ω Value = <RP2> RS  A series resistance of secondary winding (in ohm). e.g. 1m Ω , 10m Ω , 100m Ω Value = <RS> All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 Model Parameters: Figure 13 , 2:1 Ideal transformer (Default parameters).
  • 16. 7.3) Parameter settings of 1:2 ideal transformer LP  Inductance of primary winding (in henry). e.g. 100uH, 250uH, 500uH Value = <LP> N  is the turns ratio of Ideal transformer. e.g. 0.1, 0.5, 1 Value = <N> RP  A series resistance of primary winding (in ohm). e.g. 1m Ω , 10m Ω , 100m Ω Value = <RP> RS1  A series resistance of secondary winding 1 (in ohm). e.g. 1m Ω , 10m Ω , 100m Ω Value = <RS1> RS2  A series resistance of secondary winding 2 (in ohm). e.g. 1m Ω , 10m Ω , 100m Ω Value = <RS2> All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 Model Parameters: Figure 14 , 1:2 Ideal transformer (Default parameters). Figure 15 , 1:2 Center tap ideal transformer (Default parameters).
  • 17. 8) Saturable transformer SUBCKT Using LTspiceIV All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 Figure 17 , Saturable transformer equivalent circuit. Figure 16 , Saturable transformer symbol, the key parameters are shown in bold. Information of Netlist
  • 18. Condition: F=10KHz, V IN =50V P , V OUT =5V P , R OUT =10 Ω .tran 0 2500u 0 50n .lib tfmr1.sub 9) 1:1 Saturable transformer model (Example) - Simulation Circuit and Setting All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 Saturable transformer model Primary current Output Voltage 1 : {N} Secondary current
  • 19. 9) 1:1 Saturable transformer model (Example) - Simulation Result All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 Input voltage Output voltage Input Current Output Current Figure 18 , The Input–Output Characteristics of 1:1 Saturable transformer.
  • 20. Condition: F=10KHz, V IN =50V P , V OUT =5V P , R OUT =10 Ω .tran 0 2500u 0 50n .lib tfmr1_rev.sub 10) 1:1 Saturable transformer model (Example) - Simulation Circuit and Setting (Phase reverse) All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 1 : {N}
  • 21. 10) 1:1 Saturable transformer model (Example) - Simulation Result (Phase reverse) All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 Figure 19 , The Input–Output Characteristics of 1:1 Saturable transformer (Phase reverse). Input voltage Output voltage Input Current Output Current
  • 22. Condition: F=10KHz, V IN =25V P , V OUT =5V P , R OUT =10 Ω .tran 0 2500u 0 50n .lib tfmr2prim.sub 11) 2:1 Saturable transformer model (Example) - Simulation Circuit and Setting All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 1 : {N}
  • 23. 11) 2:1 Saturable transformer model (Example) - Simulation Result All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 Figure 20 , The Input–Output Characteristics of 2:1 Saturable transformer. Input voltage 1 Input Current 1 Output voltage Output Current Input voltage 2 Input Current 2
  • 24. Condition: F=10KHz, V IN =50V P , V OUT1 =V OUT2 =5V P , R OUT =10 Ω .tran 0 2500u 0 50n .lib tfmr2.sub 12) 1:2 Saturable transformer model (Example) - Simulation Circuit and Setting All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 1 : {N}
  • 25. 12) 1:2 Saturable transformer model (Example) - Simulation Result All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 Input voltage Output voltage 1 Input Current Output Current 1 Figure 21 , The Input–Output Characteristics of 1:2 Saturable transformer. Output voltage 2 Output Current 2
  • 26. Condition: F=10KHz, V IN =50V P , V OUT1 =V OUT2 =5V P , R OUT =10 Ω .tran 0 2500u 0 50n .lib tfmr2_ct.sub 13) 1:2 Saturable transformer model (Example) - Simulation Circuit and Setting (Center tap) All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 1 : {N}
  • 27. 13) 1:2 Saturable transformer model (Example) - Simulation Result (Center tap) All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 Figure 22 , The Input–Output Characteristics of 1:2 Saturable transformer (Center tap). Input voltage Output voltage 1 Input Current Output Current 1 Output voltage 2 Output Current 2
  • 28. Condition: F=40KHz, V IN =24V, V OUT =5V, R L =5 Ω , C L =200uF, L P =500uH .tran 0 10m 0 100n startup .lib tfmr1_rev.sub 14) Application Circuit Example: Flyback converter - Simulation Circuit and Setting All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 1 : {N}
  • 29. 14) Application Circuit Example: Flyback converter - Simulation Result All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 Secondary voltage of transformer Output voltage= 5Vdc Figure 23 , Flyback converter with Saturable transformer model. Output ripple voltage Secondary current of transformer V RIPPLE Input voltage= 24Vdc
  • 30. Library Files and Symbol Files Location All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 … \Simulations C:\Program Files\LTC\LTspiceIV\lib\sub C:\Program Files\LTC\LTspiceIV\lib\sym Copy/Paste into Copy/Paste into Copy the library files (.lib) from the folder …\Simulations \.lib\, then paste into the folder C:\Program Files\LTC\LTspiceIV\lib\sub Copy the symbol files(.asy) from the folder …\Simulations \.asy\, then paste into the folder C:\Program Files\LTC\LTspiceIV\lib\sym
  • 31. Library Files Index All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 Model Library Symbol Saturable Core……....................................................... 1:1 Saturable transformer model………………….......... 1:1 Saturable transformer model (Phase reverse)……. 2:1 Saturable transformer model..…………….………… 1:2 Saturable transformer model..…….………………… 1:2 Saturable transformer model (Center tap)……....... score.sub tfmr1.sub tfmr1_rev.sub tfmr2prim.sub tfmr2.sub tfmr2_ct.sub SCORE.asy TFMR1.asy TFMR1_REV.asy TFMR2PRIM.asyTFMR2.asy TFMR2_CT.asy
  • 32. Simulation Index All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 Simulations Folder name Curve fitting: RLOSS…………………………………………........ Curve fitting: LM………………………………………………........ Curve fitting: BEXP………………………………………………… Dynamic Magnetizing Curves Characteristics…….................... 1:1 Saturable transformer model (Example)…………………….. 1:1 Saturable transformer model (Example) (Phase reverse)… 2:1 Saturable transformer model (Example)..…………….…….. 1:2 Saturable transformer model (Example)..…….…………….. 1:2 Saturable transformer model (Example) (Center tap)……... Application Circuit Example: Flyback converter……………….... Curve fitting Curve fitting Curve fitting Sat_Core Sat_Trans1 Sat_Trans2 Sat_Trans3 Sat_Trans4 Sat_Trans5 Appl