SlideShare a Scribd company logo
CONSIDERATIONS ON THE
COLLECTION OF DATA FROM
BIO-ARGO FLOATS ACROSS
SAMPLING SCALES.
ABSTRACT
	
  
The flexibility of the current generation of float sensor packages peovides an
opportunity to craft mission specific sampling schemes that balance the
collection of data for specific sampling goals with the practicalities of float
operation.
Autonomous floats operate within constraints of battery life and data transfer
rates. For simplicity of data transfer and handling, most float data sets are
transmitted after binning on pressure. Within a given pressure bin different
instruments will be sampling within a particular defined sequence. A
sampling sequence should be balanced towards minimizing energy
consumption while maximizing data accuracy of each instrument. As the
number of sensors increases and the breadth of mission parameters expands
it becomes more difficult to optimize data sequencing and reporting.
We consider methods to reduce the size of the problem by setting rules for
sequence development and test those rules relative to field data. We examine
a set of data from a float that was equipped with internal memory that
captured the full set of sample data taken during the profiling mission.
Comparing the ‘raw’ data and the transmitted data we examine the variance
around the transmitted data and discuss the impact of data sequencing on the
data.
NAVIS BGC float 0028 (above)
a f t e r d e p l o y m e n t i n t h e
Mediterranean Sea. The float used
in this study was equipped with and
MCOMS and pH sensor. Photo by
Christoph Gerigk.
Navis BGCi Float
	
  
Sea-Bird Scientific has developed the Navis BGCi float as a
flexible, multi-role scientific platform for autonomous
biogeochemical research. The float incorporates Iridium two-way
satellite communications for fast data transfer and mission
adaptation. Lithium batteries are included for long deployment
missions. The SBE 41N CTD measures conductivity,
temperature, and pressure (depth). The SBE 63 Optical Dissolved
Oxygen sensor is integrated within the CTD flow path, providing
optimal correlation with CTD measurements.
The MCOMS has three optical sensors, providing chlorophyll a,
backscattering, and CDOM, or chlorophyll a and 2 backscattering
channels. MCOMS is integrated directly into the float end cap
and co-located with DO and physical measurements. The Navis
float can be expanded with additional sensors, in this case with an
experimental pH sensor.
Instrument Sequencing	
  
Pressure,	
   temperature	
   and	
   conduc0vity	
   (PTS	
   in	
   the	
   diagram)	
   are	
  
measured	
  at	
  1Hz	
  while	
  serial	
  instruments	
  can	
  have	
  independent	
  update	
  
rates	
  up	
  to	
  1Hz	
  and	
  be	
  mixed	
  and	
  matched,	
  as	
  the	
  deployment	
  requires.	
  	
  
Each	
  instrument	
  can	
  have	
  its	
  own	
  inquiry	
  mode:	
  queried	
  for	
  a	
  sample	
  or	
  
free	
  running	
  with	
  con0nuous	
  output.	
  	
  In	
  this	
  example,	
  the	
  SBE	
  63	
  and	
  pH	
  
sensors	
  are	
  con0nuously	
  powered,	
  queried	
  for	
  a	
  value,	
  and	
  put	
  to	
  sleep	
  
between	
  each	
  measurement.	
  	
  In	
  contrast,	
  the	
  MCOMS	
  port	
  is	
  powered,	
  
the	
  output	
  is	
  recorded,	
  and	
  power	
  is	
  removed	
  at	
  the	
  desired	
  update	
  rate.	
  
The	
  MCOMS	
  operates	
  at	
  1.4	
  kHz	
  and	
  internally	
  averages	
  packets	
  of	
  LED	
  
on/off	
  cycles	
  to	
  remove	
  ambient	
  light.	
  The	
  MCOMS	
  output	
  rate	
  is	
  	
  set	
  at	
  
1	
  Hz.	
  	
  
	
  
The	
  sampling	
  technique	
  for	
  each	
  instrument	
  can	
  be	
  tuned	
  to	
  op0mize	
  
the	
  data	
  density	
  for	
  the	
  power	
  expended.	
  	
  
Profiling Rate and Data Output
The Navis float’s ascent rate
modulates the number of
subsamples within each individual
transmitted bin. The horizontal
lines connect the negative peaks in
the ascent rate with the local
increases in the number of
subsamples per pressure bin.
Since the ascent rate is a function
of the density gradient, the float
will collect more samples where
the gradient is increasing.
Data Output Structure
Data from each instrument
is recorded as the float rises
a c c o r d i n g t o t h e
programmed instrument
sequence. The rise rate of
the float determines the data
density within the profile as
the instruments are driven
by the time sequence. For
example, as the float rises
past 700 dbar (top panel),
four complete sequences of
data are completed over 4.1
dbar in 32 seconds. Later in
the profile as the float
passes 100 dbar (bottom
panel), the float covers 1.5
dbar in 32 seconds and
records four complete
sequences.
Ian D. Walsh, Ph. D,
Joel Reiter,
Dan Quittman,
David J. Murphy,
Thomas O. Mitchell, Ph.D.
Sea-Bird Scientific
GAIC 2015 Meeting
Galway, Ireland
14 – 18 Sept. 2015
Time	
  
PTS	
  
PTS	
  
PTS	
  
PTS	
  
PTS	
  
PTS	
  
PTS	
  
63	
  63	
  
MCOMS	
  
pH	
  
0	
  
100	
  
200	
  
300	
  
400	
  
500	
  
600	
  
700	
  
800	
  
900	
  
1000	
  
0	
   5	
   10	
   15	
   20	
   25	
   30	
  
Pressure	
  (dbar)	
  
Temperature	
  (deg	
  C)	
  
Temperature	
  
0	
  
100	
  
200	
  
300	
  
400	
  
500	
  
600	
  
700	
  
800	
  
900	
  
1000	
  
0	
   2	
   4	
   6	
   8	
   10	
  
Pressure	
  (dbar)	
  
Samples	
  Per	
  Reported	
  Value	
  
nBins	
  MCOMS	
  
0	
  
100	
  
200	
  
300	
  
400	
  
500	
  
600	
  
700	
  
800	
  
900	
  
1000	
  
0	
   20	
   40	
   60	
   80	
  
Pressure	
  (dbar)	
  
Ascent	
  Rate	
  (dbar/min)	
  
Ascent	
  Rate	
  15	
  sec	
  sm	
  
Transmitted v Recorded Data – Temperature and Fluorescence
Temperature data (left panel) from
both the transmitted and recorded
data sets overlaid in the left panel
demonstrates no effective
difference between the two data
sets.
Chlorophyll data (right panel)
from both data sets demonstrates
no effective difference except for at
t h e c h l o ro p h y l l m a x i m a .
Transmitted data is the red circles.
0	
  
100	
  
200	
  
300	
  
400	
  
500	
  
600	
  
700	
  
800	
  
900	
  
1000	
  
0	
   0.2	
   0.4	
   0.6	
   0.8	
  
Pressure	
  (dbar)	
  
Chlorophyll	
  (ug/l)	
  
Chlorphyll	
  Fluorescence	
  
0	
  
100	
  
200	
  
300	
  
400	
  
500	
  
600	
  
700	
  
800	
  
900	
  
1000	
  
0	
   0.2	
   0.4	
   0.6	
   0.8	
  
Pressure	
  (dbar)	
  
Chlorophyll	
  (ug/l)	
  
Chlorphyll	
  Fluorescence	
  
Transmitted v Recorded Data – Backscattering
NAVIS BGCi float 0038 was
an experimental float
deployed off Hawaii. The
float was recovered after 100
profiles and five months at
sea.
1	
  
9/23/
12	
  
101	
  
2/14/14	
  
0	
  
100	
  
200	
  
300	
  
400	
  
500	
  
600	
  
700	
  
800	
  
900	
  
1000	
  
0.00005	
  0.0001	
  0.00015	
  0.0002	
  0.00025	
  0.0003	
  
Pressure	
  (dbar)	
  
Beta	
  (m-­‐1	
  sr-­‐1)	
  
TransmiEed	
  bb700	
  
0	
  
100	
  
200	
  
300	
  
400	
  
500	
  
600	
  
700	
  
800	
  
900	
  
1000	
  
0.00005	
  0.0001	
  0.00015	
  0.0002	
  0.00025	
  0.0003	
  
Pressure	
  (dbar)	
  
Beta	
  (m-­‐1	
  sr-­‐1)	
  
bb700	
  Median	
  Filter	
  
0	
  
100	
  
200	
  
300	
  
400	
  
500	
  
600	
  
700	
  
800	
  
900	
  
1000	
  
0.00005	
  0.0001	
  0.00015	
  0.0002	
  0.00025	
  0.0003	
  
Pressure	
  (dbar)	
  
Beta	
  (m-­‐1	
  sr-­‐1)	
  
TransmiEed	
  bb700	
  
0	
  
100	
  
200	
  
300	
  
400	
  
500	
  
600	
  
700	
  
800	
  
900	
  
1000	
  
0.00005	
  0.0001	
  0.00015	
  0.0002	
  0.00025	
  0.0003	
  
Pressure	
  (dbar)	
  
Beta	
  (m-­‐1	
  sr-­‐1)	
  
Sharpened	
  TransmiEed	
  	
  
0	
  
100	
  
200	
  
300	
  
400	
  
500	
  
600	
  
700	
  
800	
  
900	
  
1000	
  
0	
   0.0001	
   0.0002	
   0.0003	
  
Pressure	
  (dbar)	
  
Beta	
  (m-­‐1	
  sr-­‐1)	
  
Chart	
  Title	
  
0	
  
100	
  
200	
  
300	
  
400	
  
500	
  
600	
  
700	
  
800	
  
900	
  
1000	
  
0.00005	
  0.0001	
  0.00015	
  0.0002	
  0.00025	
  0.0003	
  
Pressure	
  (dbar)	
  
Beta	
  (m-­‐1	
  sr-­‐1)	
  
BackscaEering	
  -­‐	
  700	
  nm	
  
0	
  
100	
  
200	
  
300	
  
400	
  
500	
  
600	
  
700	
  
800	
  
900	
  
1000	
  
0.00005	
  0.0001	
  0.00015	
  0.0002	
  0.00025	
  0.0003	
  
Pressure	
  (dbar)	
  
Beta	
  (m-­‐1	
  sr-­‐1)	
  
bb700	
  
Median	
  Filtered	
   Data	
  -­‐	
  Median	
  
T h e t r a n s m i t t e d
backscattering data (far
left), the recovered data
(middle), and both data sets
overlain (right). The
recovered data demonstrates
that the transmitted data
smooths the variance in the
recovered data. Assuming
the ‘spikes’ represent
relatively rare large
particles, the transmitted
data undercounts the large
particles.
Applying a running median
filter to both data sets (far
left) generates coherence
between both profiles. The
residual data, assumed to be
the large particles, again
shows the undercounting in
t h e t r a n s m i t t e d d a t a
( m i d d l e ) . U s i n g a
sharpening algorithm
( r i g h t ) , m u c h o f t h e
recovered data can be
g e n e r a t e d f r o m t h e
transmitted data.

More Related Content

DOCX
Sudhendu Rai Patent abstracts (Word document with embedded patents)
PDF
Sudhendu Rai - Patent title and abstracts
PPTX
Airborne in-situ sampling over Europe during CoMet 1.0
PDF
ASLO2016_C-PrOPS_Poster_Final
PPT
2_prats_IGARSS2011_distributed_imaging_v4.ppt
PDF
Modern Land Recording- Systems
PPT
MO3.L09.2 - BISTATIC SAR BASED ON TERRASAR-X AND GROUND BASED RECEIVERS
PPT
Oil and Gas Imaging, pumpsandpipesmdhc
Sudhendu Rai Patent abstracts (Word document with embedded patents)
Sudhendu Rai - Patent title and abstracts
Airborne in-situ sampling over Europe during CoMet 1.0
ASLO2016_C-PrOPS_Poster_Final
2_prats_IGARSS2011_distributed_imaging_v4.ppt
Modern Land Recording- Systems
MO3.L09.2 - BISTATIC SAR BASED ON TERRASAR-X AND GROUND BASED RECEIVERS
Oil and Gas Imaging, pumpsandpipesmdhc

What's hot (6)

PPT
Fujimura_Presen.ppt
PDF
TGS NSA- Loyal 3D
 
PPTX
SIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATOR
PPT
FIRST BISTATIC SPACEBORNE SAR EXPERIMENTS WITH TANDEM-X.ppt
PDF
Poster : STM/STS Techniques
PDF
Orbit determination of a non transmitting satellite
Fujimura_Presen.ppt
TGS NSA- Loyal 3D
 
SIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATOR
FIRST BISTATIC SPACEBORNE SAR EXPERIMENTS WITH TANDEM-X.ppt
Poster : STM/STS Techniques
Orbit determination of a non transmitting satellite
Ad

Similar to Considerations on the collection of data from bio-argo floats across sampling scales. (20)

PPTX
Bathymetric Attributed Grid (BAG) format
PDF
Programming a Seismic Program Articl.pdf
PPTX
Nick - Benefits of Using Combined Bathymetry and Side Scan Sonar in Shallow W...
PDF
Shallow Survey 2018 - Applications of Sonar Detection Uncertainty for Survey ...
PPTX
Hidden Depths and Hidden Data
PDF
Field Acqusition Paramater Design
PDF
Sbp final
PDF
Samer najjar fiber optic leak detection
PPTX
Advantages of a combined sonar data acquisition system for AUVs and ASVs
PDF
Well Water Level Monitor
PDF
AUV TO COVER SEAFLOOR: COVERAGE RATES AS A FUNCTION OF PAYLOAD QUALITY & ENDU...
PDF
Advances in bio-optical sensing on robotic platforms to elucidate ecosystem p...
PDF
Backscatter Working Group Software Inter-comparison Project Requesting and Co...
PPT
mufuwecore
PPTX
The National Oceanographic Data Center’s NetCDF Templates
PDF
Trusted Crowd-Sourced Bathymetry Project
PPT
Centennial Talk Hydrates
PDF
CPrOPS_Alex_SBH (002)
PPTX
AQUAscat Technology - Commercial Acoustic Sediment Profiling
PPT
Seismic acquisition
Bathymetric Attributed Grid (BAG) format
Programming a Seismic Program Articl.pdf
Nick - Benefits of Using Combined Bathymetry and Side Scan Sonar in Shallow W...
Shallow Survey 2018 - Applications of Sonar Detection Uncertainty for Survey ...
Hidden Depths and Hidden Data
Field Acqusition Paramater Design
Sbp final
Samer najjar fiber optic leak detection
Advantages of a combined sonar data acquisition system for AUVs and ASVs
Well Water Level Monitor
AUV TO COVER SEAFLOOR: COVERAGE RATES AS A FUNCTION OF PAYLOAD QUALITY & ENDU...
Advances in bio-optical sensing on robotic platforms to elucidate ecosystem p...
Backscatter Working Group Software Inter-comparison Project Requesting and Co...
mufuwecore
The National Oceanographic Data Center’s NetCDF Templates
Trusted Crowd-Sourced Bathymetry Project
Centennial Talk Hydrates
CPrOPS_Alex_SBH (002)
AQUAscat Technology - Commercial Acoustic Sediment Profiling
Seismic acquisition
Ad

Recently uploaded (20)

PPT
1. INTRODUCTION TO EPIDEMIOLOGY.pptx for community medicine
PPTX
POULTRY PRODUCTION AND MANAGEMENTNNN.pptx
PPT
veterinary parasitology ````````````.ppt
PPTX
endocrine - management of adrenal incidentaloma.pptx
PPT
THE CELL THEORY AND ITS FUNDAMENTALS AND USE
PPTX
Understanding the Circulatory System……..
PPTX
SCIENCE 4 Q2W5 PPT.pptx Lesson About Plnts and animals and their habitat
PPTX
BODY FLUIDS AND CIRCULATION class 11 .pptx
PPTX
Fluid dynamics vivavoce presentation of prakash
PDF
The Land of Punt — A research by Dhani Irwanto
PPTX
INTRODUCTION TO PAEDIATRICS AND PAEDIATRIC HISTORY TAKING-1.pptx
PDF
Science Form five needed shit SCIENEce so
PDF
lecture 2026 of Sjogren's syndrome l .pdf
PDF
Worlds Next Door: A Candidate Giant Planet Imaged in the Habitable Zone of ↵ ...
PDF
Assessment of environmental effects of quarrying in Kitengela subcountyof Kaj...
PPTX
TORCH INFECTIONS in pregnancy with toxoplasma
PPTX
perinatal infections 2-171220190027.pptx
PPTX
A powerpoint on colorectal cancer with brief background
PPTX
Biomechanics of the Hip - Basic Science.pptx
PPTX
ap-psych-ch-1-introduction-to-psychology-presentation.pptx
1. INTRODUCTION TO EPIDEMIOLOGY.pptx for community medicine
POULTRY PRODUCTION AND MANAGEMENTNNN.pptx
veterinary parasitology ````````````.ppt
endocrine - management of adrenal incidentaloma.pptx
THE CELL THEORY AND ITS FUNDAMENTALS AND USE
Understanding the Circulatory System……..
SCIENCE 4 Q2W5 PPT.pptx Lesson About Plnts and animals and their habitat
BODY FLUIDS AND CIRCULATION class 11 .pptx
Fluid dynamics vivavoce presentation of prakash
The Land of Punt — A research by Dhani Irwanto
INTRODUCTION TO PAEDIATRICS AND PAEDIATRIC HISTORY TAKING-1.pptx
Science Form five needed shit SCIENEce so
lecture 2026 of Sjogren's syndrome l .pdf
Worlds Next Door: A Candidate Giant Planet Imaged in the Habitable Zone of ↵ ...
Assessment of environmental effects of quarrying in Kitengela subcountyof Kaj...
TORCH INFECTIONS in pregnancy with toxoplasma
perinatal infections 2-171220190027.pptx
A powerpoint on colorectal cancer with brief background
Biomechanics of the Hip - Basic Science.pptx
ap-psych-ch-1-introduction-to-psychology-presentation.pptx

Considerations on the collection of data from bio-argo floats across sampling scales.

  • 1. CONSIDERATIONS ON THE COLLECTION OF DATA FROM BIO-ARGO FLOATS ACROSS SAMPLING SCALES. ABSTRACT   The flexibility of the current generation of float sensor packages peovides an opportunity to craft mission specific sampling schemes that balance the collection of data for specific sampling goals with the practicalities of float operation. Autonomous floats operate within constraints of battery life and data transfer rates. For simplicity of data transfer and handling, most float data sets are transmitted after binning on pressure. Within a given pressure bin different instruments will be sampling within a particular defined sequence. A sampling sequence should be balanced towards minimizing energy consumption while maximizing data accuracy of each instrument. As the number of sensors increases and the breadth of mission parameters expands it becomes more difficult to optimize data sequencing and reporting. We consider methods to reduce the size of the problem by setting rules for sequence development and test those rules relative to field data. We examine a set of data from a float that was equipped with internal memory that captured the full set of sample data taken during the profiling mission. Comparing the ‘raw’ data and the transmitted data we examine the variance around the transmitted data and discuss the impact of data sequencing on the data. NAVIS BGC float 0028 (above) a f t e r d e p l o y m e n t i n t h e Mediterranean Sea. The float used in this study was equipped with and MCOMS and pH sensor. Photo by Christoph Gerigk. Navis BGCi Float   Sea-Bird Scientific has developed the Navis BGCi float as a flexible, multi-role scientific platform for autonomous biogeochemical research. The float incorporates Iridium two-way satellite communications for fast data transfer and mission adaptation. Lithium batteries are included for long deployment missions. The SBE 41N CTD measures conductivity, temperature, and pressure (depth). The SBE 63 Optical Dissolved Oxygen sensor is integrated within the CTD flow path, providing optimal correlation with CTD measurements. The MCOMS has three optical sensors, providing chlorophyll a, backscattering, and CDOM, or chlorophyll a and 2 backscattering channels. MCOMS is integrated directly into the float end cap and co-located with DO and physical measurements. The Navis float can be expanded with additional sensors, in this case with an experimental pH sensor. Instrument Sequencing   Pressure,   temperature   and   conduc0vity   (PTS   in   the   diagram)   are   measured  at  1Hz  while  serial  instruments  can  have  independent  update   rates  up  to  1Hz  and  be  mixed  and  matched,  as  the  deployment  requires.     Each  instrument  can  have  its  own  inquiry  mode:  queried  for  a  sample  or   free  running  with  con0nuous  output.    In  this  example,  the  SBE  63  and  pH   sensors  are  con0nuously  powered,  queried  for  a  value,  and  put  to  sleep   between  each  measurement.    In  contrast,  the  MCOMS  port  is  powered,   the  output  is  recorded,  and  power  is  removed  at  the  desired  update  rate.   The  MCOMS  operates  at  1.4  kHz  and  internally  averages  packets  of  LED   on/off  cycles  to  remove  ambient  light.  The  MCOMS  output  rate  is    set  at   1  Hz.       The  sampling  technique  for  each  instrument  can  be  tuned  to  op0mize   the  data  density  for  the  power  expended.     Profiling Rate and Data Output The Navis float’s ascent rate modulates the number of subsamples within each individual transmitted bin. The horizontal lines connect the negative peaks in the ascent rate with the local increases in the number of subsamples per pressure bin. Since the ascent rate is a function of the density gradient, the float will collect more samples where the gradient is increasing. Data Output Structure Data from each instrument is recorded as the float rises a c c o r d i n g t o t h e programmed instrument sequence. The rise rate of the float determines the data density within the profile as the instruments are driven by the time sequence. For example, as the float rises past 700 dbar (top panel), four complete sequences of data are completed over 4.1 dbar in 32 seconds. Later in the profile as the float passes 100 dbar (bottom panel), the float covers 1.5 dbar in 32 seconds and records four complete sequences. Ian D. Walsh, Ph. D, Joel Reiter, Dan Quittman, David J. Murphy, Thomas O. Mitchell, Ph.D. Sea-Bird Scientific GAIC 2015 Meeting Galway, Ireland 14 – 18 Sept. 2015 Time   PTS   PTS   PTS   PTS   PTS   PTS   PTS   63  63   MCOMS   pH   0   100   200   300   400   500   600   700   800   900   1000   0   5   10   15   20   25   30   Pressure  (dbar)   Temperature  (deg  C)   Temperature   0   100   200   300   400   500   600   700   800   900   1000   0   2   4   6   8   10   Pressure  (dbar)   Samples  Per  Reported  Value   nBins  MCOMS   0   100   200   300   400   500   600   700   800   900   1000   0   20   40   60   80   Pressure  (dbar)   Ascent  Rate  (dbar/min)   Ascent  Rate  15  sec  sm   Transmitted v Recorded Data – Temperature and Fluorescence Temperature data (left panel) from both the transmitted and recorded data sets overlaid in the left panel demonstrates no effective difference between the two data sets. Chlorophyll data (right panel) from both data sets demonstrates no effective difference except for at t h e c h l o ro p h y l l m a x i m a . Transmitted data is the red circles. 0   100   200   300   400   500   600   700   800   900   1000   0   0.2   0.4   0.6   0.8   Pressure  (dbar)   Chlorophyll  (ug/l)   Chlorphyll  Fluorescence   0   100   200   300   400   500   600   700   800   900   1000   0   0.2   0.4   0.6   0.8   Pressure  (dbar)   Chlorophyll  (ug/l)   Chlorphyll  Fluorescence   Transmitted v Recorded Data – Backscattering NAVIS BGCi float 0038 was an experimental float deployed off Hawaii. The float was recovered after 100 profiles and five months at sea. 1   9/23/ 12   101   2/14/14   0   100   200   300   400   500   600   700   800   900   1000   0.00005  0.0001  0.00015  0.0002  0.00025  0.0003   Pressure  (dbar)   Beta  (m-­‐1  sr-­‐1)   TransmiEed  bb700   0   100   200   300   400   500   600   700   800   900   1000   0.00005  0.0001  0.00015  0.0002  0.00025  0.0003   Pressure  (dbar)   Beta  (m-­‐1  sr-­‐1)   bb700  Median  Filter   0   100   200   300   400   500   600   700   800   900   1000   0.00005  0.0001  0.00015  0.0002  0.00025  0.0003   Pressure  (dbar)   Beta  (m-­‐1  sr-­‐1)   TransmiEed  bb700   0   100   200   300   400   500   600   700   800   900   1000   0.00005  0.0001  0.00015  0.0002  0.00025  0.0003   Pressure  (dbar)   Beta  (m-­‐1  sr-­‐1)   Sharpened  TransmiEed     0   100   200   300   400   500   600   700   800   900   1000   0   0.0001   0.0002   0.0003   Pressure  (dbar)   Beta  (m-­‐1  sr-­‐1)   Chart  Title   0   100   200   300   400   500   600   700   800   900   1000   0.00005  0.0001  0.00015  0.0002  0.00025  0.0003   Pressure  (dbar)   Beta  (m-­‐1  sr-­‐1)   BackscaEering  -­‐  700  nm   0   100   200   300   400   500   600   700   800   900   1000   0.00005  0.0001  0.00015  0.0002  0.00025  0.0003   Pressure  (dbar)   Beta  (m-­‐1  sr-­‐1)   bb700   Median  Filtered   Data  -­‐  Median   T h e t r a n s m i t t e d backscattering data (far left), the recovered data (middle), and both data sets overlain (right). The recovered data demonstrates that the transmitted data smooths the variance in the recovered data. Assuming the ‘spikes’ represent relatively rare large particles, the transmitted data undercounts the large particles. Applying a running median filter to both data sets (far left) generates coherence between both profiles. The residual data, assumed to be the large particles, again shows the undercounting in t h e t r a n s m i t t e d d a t a ( m i d d l e ) . U s i n g a sharpening algorithm ( r i g h t ) , m u c h o f t h e recovered data can be g e n e r a t e d f r o m t h e transmitted data.