This document defines continuity and uniform continuity of functions. A function f is continuous on a set S if small changes in the input x result in small changes in the output f(x). A function is uniformly continuous if the same relationship holds for all inputs and outputs simultaneously, not just for a fixed input. Several examples are provided to illustrate the difference. The key difference is that a continuous function may depend on the specific input point, while a uniformly continuous function does not. Functions that satisfy a Lipschitz inequality are proven to be uniformly continuous.