SlideShare a Scribd company logo
 Open	
  Government	
  
Open	
  Data	
  and	
  Data	
  Management	
  
                        	
  
•  We	
  acknowledge	
  that	
  people	
  all	
  around	
  the	
  world	
  
   are	
  demanding	
  more	
  openness	
  in	
  government;	
  
•  We	
  accept	
  responsibility	
  for	
  seizing	
  this	
  moment	
  to	
  
   strengthen	
  our	
  commitments	
  to	
  promote	
  
   transparency;	
  
•  We	
  accept	
  responsibility	
  to	
  harness	
  the	
  power	
  of	
  
   new	
  technologies;	
  
•  We	
  uphold	
  the	
  value	
  of	
  openness	
  in	
  our	
  engagement	
  
   with	
  ci9zens	
  
The	
  Open	
  Data	
  Landscape	
  


DOB: 2009
Thank-you
Obama
Ac9on	
  Plan	
  on	
  Open	
  Government	
  




Source: Treasury Board of Canada Secretariat
Tony	
  Clement	
  


 “Data is
 Canada’s new
 Natural
 Resource”
 Winnipeg Free Press, July 12, 2012
Canadians                                           Government
                                                          Citizen / Industry
                                                            Participation
Opportunities / Benefits




                           Timely Access to                                       Elimination of effort and cost
                             Quality Data                                        responding to ad-hoc requests
                                                            Economic
                                                            Innovation
                                                                                        Royalties from commercial
                              Gov’t Accountability
                                                                                       exploitation of liberated data




                                                                                       Loss of Revenue from Data
                           Privacy rights compromised
                                                                      Cost/Capacity of Provisioning Data
                               Lack of skills to manipulate /
Challenges / Risks




                              understand (ie non-tech savvy)                       Lack of consistency of standards-
                                                                                   architecture, meta-data, delivery
                           Decisions compromised by
                           relying on erroneous data                            Quality Issues
                              Misinterpretation of Data                  Unable to explain contextual questions
                                                      National / Individual
                                                           Security
Neighborhood
Knowledge Los
Angeles (http://
nkla.ucla.edu) (NKLA) is a
website dedicated to
providing public access to
vital data and information for
neighborhood improvement
in Los Angeles.
Digital	
  Economy	
  
“The	
  total	
  size	
  of	
  digital	
  economy	
  is	
  es=mated	
  at	
  
$20.4	
  trillion,	
  equivalent	
  to	
  roughly	
  13.8%	
  of	
  all	
  
sales	
  flowing	
  through	
  the	
  world	
  economy.”	
  
Source:	
  The	
  New	
  Digital	
  Economy	
  How	
  it	
  will	
  transform	
  business,	
  Oxford	
  
Economics	
  
Source: McKinsey Global Institute, Big Data Next Frontier for Innovation
Volume	
  of	
  Data	
  
Velocity	
  of	
  Data	
  
“Big	
  Brother	
  is	
  Watching”	
  
Variety	
  of	
  Data	
  
Data	
  Analysis	
  




Source: AIIM Industry Watch, Big Data
Content	
  Management	
  




Source: AIIM Industry Watch, Big Data
Implica9ons	
  
•    Governance	
  
•    Insight/Analy9cs	
  
•    Privacy	
  
•    Discoverability	
  	
  
•    Security	
  
•    IP	
  	
  
Open Government, Open Data and Data Management - Coradix
Does	
  Big	
  Data	
  =	
  More	
  Technology?	
  
Big	
  Data	
  Challenges	
  
 •  Source:	
  AIIM	
  Industry	
  Watch,	
  Big	
  Data	
  




Source: AIIM Industry Watch, Big Data
Open Government, Open Data and Data Management - Coradix
They	
  set	
  out	
  to	
  buy	
  this	
  
And	
  this	
  is	
  what	
  they	
  got	
  
Data	
  Quality	
  
Problems	
  are	
  not	
  
     cheap	
  
Open Government, Open Data and Data Management - Coradix
The	
  ERP	
  Experience	
  
Costs
Peopleso[	
  Anyone	
  ?	
  
Peopleso[	
  Anyone	
  ?	
  
Tank,	
  Tanks,	
  Tankers,	
  Tanked	
  
Legal	
  Challenges	
  
Result	
  
Open Government, Open Data and Data Management - Coradix
Open Government, Open Data and Data Management - Coradix
This hits
close to
home
Professional	
  Data	
  Management	
  is	
  new	
  
Data	
  Blueprint	
  –	
  Na9onal	
  Cancer	
  
 Ins9tute	
  Re-­‐architec9ng	
  Data	
  
Data	
  Management	
  Planning	
  Online	
  
State	
  of	
  Colorado	
  
•  How	
  Data	
  Management	
  Improved	
  
      –  The	
  EDM	
  program	
  helped	
  facilitate	
  much	
  greater	
  communica=on	
  between	
  
         business	
  and	
  IT	
  
      –  A	
  robust	
  Governance	
  process	
  and	
  commiOee	
  structure	
  was	
  established	
  
      –  	
  A	
  set	
  of	
  Data	
  Principles	
  were	
  developed	
  and	
  accepted	
  
      –  Specific	
  ini=a=ves	
  were	
  undertaken	
  in	
  the	
  areas	
  of	
  Master	
  Data,	
  Architecture	
  
         and	
  Meta-­‐data	
  
•  How	
  the	
  Business	
  Issue	
  was	
  addressed	
  
      –  Colorado	
  Unique	
  Personal	
  Iden=fier	
  (CUPID)	
  MDM	
  program	
  generated	
  
         benefits	
  in	
  quality,	
  sharing,	
  understanding,	
  security	
  and	
  stewardship	
  
      –  Educa=on	
  Longitudinal	
  Data	
  System	
  Architecture	
  ini=a=ve	
  reduced	
  the	
  gaps	
  in	
  
         school	
  readiness	
  and	
  academic	
  achievement	
  between	
  popula=ons	
  of	
  children	
  
      –  Improved	
  client-­‐service	
  through	
  access	
  to	
  integrated	
  health	
  informa=on	
  
      –  Improved	
  policy	
  making	
  through	
  a	
  more	
  informed	
  process	
  
Recognize	
  this	
  ?	
  




           Architectural Bubble Chart
Enterprise	
  Architecture	
  

John Zachman’s Seminal
article in 1987 launched
Enterprise Architecture
W3C	
  Linking	
  Open	
  Data	
  
DBpedia	
  
                 A community-based
                     effort structure
                       Wikipedia




                            Semantic
              techniques extend this
                to structured models
For	
                                                                         Against	
  
•  "Data	
  belong	
  to	
  the	
  human	
  race”	
                •  Government	
  funding	
  may	
  not	
  be	
  used	
  to	
  duplicate	
  or	
  
•  Public	
  money	
  was	
  used	
  to	
  fund	
  the	
              challenge	
  the	
  ac=vi=es	
  of	
  the	
  private	
  sector	
  
   work	
  and	
  so	
  it	
  should	
  be	
  universally	
        •  Governments	
  have	
  to	
  be	
  accountable	
  for	
  the	
  efficient	
  
   available.	
                                                       use	
  of	
  taxpayer's	
  money:	
  If	
  public	
  funds	
  are	
  used	
  to	
  
•  It	
  was	
  created	
  by	
  or	
  at	
  a	
  government	
        aggregate	
  the	
  data	
  and	
  if	
  the	
  data	
  will	
  bring	
  commercial	
  
   ins=tu=on	
                                                        (private)	
  benefits	
  to	
  only	
  a	
  small	
  number	
  of	
  users,	
  the	
  
•  Facts	
  cannot	
  legally	
  be	
  copyrighted.	
                 users	
  should	
  reimburse	
  governments	
  for	
  the	
  cost	
  of	
  
•  Sponsors	
  of	
  research	
  do	
  not	
  get	
  full	
           providing	
  the	
  data.	
  
   value	
  unless	
  the	
  resul=ng	
  data	
  are	
             •  The	
  government	
  gives	
  specific	
  legi=macy	
  for	
  certain	
  
   freely	
  available.	
                                             organisa=ons	
  to	
  recover	
  costs	
  (Stats	
  Canada)	
  
•  Data	
  are	
  required	
  for	
  the	
  smooth	
               •  Privacy	
  concerns	
  may	
  require	
  that	
  access	
  to	
  data	
  is	
  
   process	
  of	
  running	
  communal	
                             limited	
  to	
  specific	
  users	
  or	
  to	
  sub-­‐sets	
  of	
  the	
  data.	
  
   human	
  ac=vi=es	
  (map	
  data,	
  public	
                  •  Collec=ng,	
  'cleaning',	
  managing	
  and	
  dissemina=ng	
  data	
  
   ins=tu=ons).	
                                                     are	
  typically	
  labour-­‐	
  and/or	
  cost-­‐intensive	
  processes	
  -­‐	
  
•  In	
  scien=fic	
  research,	
  the	
  rate	
  of	
                 whoever	
  provides	
  these	
  services	
  should	
  receive	
  fair	
  
   discovery	
  is	
  accelerated	
  by	
  beOer	
                    remunera=on	
  for	
  providing	
  those	
  services.	
  
   access	
  to	
  data.	
                                         •  O]en,	
  targeted	
  end-­‐users	
  cannot	
  use	
  the	
  data	
  without	
  
                                                                      addi=onal	
  processing	
  (analysis,	
  apps	
  etc.)	
  
Canadians                                           Government
                                                          Citizen / Industry
                                                            Participation
Opportunities / Benefits




                           Timely Access to                                       Elimination of effort and cost
                             Quality Data                                        responding to ad-hoc requests
                                                            Economic
                                                            Innovation
                                                                                        Royalties from commercial
                              Gov’t Accountability
                                                                                       exploitation of liberated data




                                                                                       Loss of Revenue from Data
                           Privacy rights compromised
                                                                      Cost/Capacity of Provisioning Data
                               Lack of skills to manipulate /
Challenges / Risks




                              understand (ie non-tech savvy)                       Lack of consistency of standards-
                                                                                   architecture, meta-data, delivery
                           Decisions compromised by
                           relying on erroneous data                            Quality Issues
                              Misinterpretation of Data                  Unable to explain contextual questions
                                                      National / Individual
                                                           Security
Addressing	
  the	
  Challenges,	
  Realizing	
  the	
  Opportunity	
  
 Decisions compromised by                     Quality Issues
 relying on erroneous data
                                           Data Quality Management             EDM	
  
  Privacy rights compromised                                                Governance	
  
                                            Enterprise Data Security
   National / Individual Security
Lack of consistency of standards-          Master-Data Management           Open Data
architecture, meta-data, delivery                                            Delivery
 Misinterpretation of Data                  Meta-Data Management             Platform
 Can’t address contextual questions
                                                Data Architecture
                                                                         Timely Access to
     Lack of skills to                                                     Quality Data
  manipulate / understand                  EDM Competency Center


         Loss of Revenue                    Cost/Capacity of             Citizen / Industry
            from Data                       Provisioning Data              Participation

    Royalties from commercial          Elimination of effort and cost   Economic Innovation
   exploitation of liberated data     responding to ad-hoc requests

More Related Content

PPT
What Do Records Managers Need to Know About Open Source, Open Standards, Open...
PDF
Open standards and open source mean open for business cms expo session mc-k...
PDF
ARMA IM Days "Open source and open standards"
PPTX
Building Optimisation using Scenario Modeling and Linked Data
PDF
Open metadataos summit_28oct2019vfinal
PPTX
Acode innovation leadership
PPTX
Oracle fusion 11g soa suite application development
PDF
Sentara Linked Data Workshop - Sept 10, 2012
What Do Records Managers Need to Know About Open Source, Open Standards, Open...
Open standards and open source mean open for business cms expo session mc-k...
ARMA IM Days "Open source and open standards"
Building Optimisation using Scenario Modeling and Linked Data
Open metadataos summit_28oct2019vfinal
Acode innovation leadership
Oracle fusion 11g soa suite application development
Sentara Linked Data Workshop - Sept 10, 2012

What's hot (14)

PDF
Crowdsourcing Approaches to Big Data Curation for Earth Sciences
PDF
Nominet Trust Charity Open Data Days - What is open data anyway
PDF
Towards Lightweight Cyber-Physical Energy Systems using Linked Data, the Web ...
PPT
Querying Heterogeneous Datasets on the Linked Data Web
PDF
Transforming the European Data Economy: A Strategic Research and Innovation A...
PDF
SLUA: Towards Semantic Linking of Users with Actions in Crowdsourcing
PDF
The Big Data Value PPP: A Standardisation Opportunity for Europe
PDF
Linked Building (Energy) Data
PDF
Approximate Semantic Matching of Heterogeneous Events
PPTX
Oracle fusion soa operations and configuration
PPT
Theodore Zahariadis (Synelixis Solutions): Fundamental Limitation of Current ...
PPT
The infotention network story 03132012
PPTX
Wikipedia (DBpedia): Crowdsourced Data Curation
PPT
Cyberinfrastructure and the Research Process in Canada
Crowdsourcing Approaches to Big Data Curation for Earth Sciences
Nominet Trust Charity Open Data Days - What is open data anyway
Towards Lightweight Cyber-Physical Energy Systems using Linked Data, the Web ...
Querying Heterogeneous Datasets on the Linked Data Web
Transforming the European Data Economy: A Strategic Research and Innovation A...
SLUA: Towards Semantic Linking of Users with Actions in Crowdsourcing
The Big Data Value PPP: A Standardisation Opportunity for Europe
Linked Building (Energy) Data
Approximate Semantic Matching of Heterogeneous Events
Oracle fusion soa operations and configuration
Theodore Zahariadis (Synelixis Solutions): Fundamental Limitation of Current ...
The infotention network story 03132012
Wikipedia (DBpedia): Crowdsourced Data Curation
Cyberinfrastructure and the Research Process in Canada
Ad

Similar to Open Government, Open Data and Data Management - Coradix (20)

PPTX
Privacy lecture 7 partners
PPTX
Privacy lecture 8 resources
PDF
Big data a possible game changer for e-governance
PDF
Austrade Presentation - Big Data the New Oil (Microsoft draft)
PDF
EDF2013: Invited Talk Julie Marguerite: Big data: a new world of opportunitie...
PDF
48 benot-long
PPTX
Big Data Is Here - Now What?
PDF
Big data cloud cloud circle keynote_final laura colvine 8th november 2012
 
PDF
Big data and the data quality imperative
PPTX
Data Governance in the Big Data Era
PDF
The Bigger They Are The Harder They Fall
PDF
OSC2012: Big Data Using Open Source: Netapp Project - Technical
PDF
Herding Cats in the Digital World
PPTX
Age Friendly Economy - Improving your business with external data
PPTX
Module 1 the power of data
PPTX
TSB_IoT_Presentations_27June2012
PDF
The Open Data Institute
PPTX
Data2030 Summit Data Megatrends Turner Sept 2022.pptx
PDF
HHS IT Challenges
PDF
Smart Analytics For The Utility Sector
Privacy lecture 7 partners
Privacy lecture 8 resources
Big data a possible game changer for e-governance
Austrade Presentation - Big Data the New Oil (Microsoft draft)
EDF2013: Invited Talk Julie Marguerite: Big data: a new world of opportunitie...
48 benot-long
Big Data Is Here - Now What?
Big data cloud cloud circle keynote_final laura colvine 8th november 2012
 
Big data and the data quality imperative
Data Governance in the Big Data Era
The Bigger They Are The Harder They Fall
OSC2012: Big Data Using Open Source: Netapp Project - Technical
Herding Cats in the Digital World
Age Friendly Economy - Improving your business with external data
Module 1 the power of data
TSB_IoT_Presentations_27June2012
The Open Data Institute
Data2030 Summit Data Megatrends Turner Sept 2022.pptx
HHS IT Challenges
Smart Analytics For The Utility Sector
Ad

More from Cheryl McKinnon (20)

PPT
Document Imaging Initiatives in Government of Canada - PWGSC - October 27, 20...
PDF
Capture is Powerful - Harvey Spencer presentation to AIIM Ottawa Event Oct 27...
PDF
AIIM Ottawa Sept 8 2011 Agenda
DOC
SharePoint Governance Planning - Microsoft
PDF
AIIM Ottawa June 15/11 - Information Governance and Microsoft SharePoint
PPTX
AIIM Ottawa June 15/11 - StoneShare Governance for SharePoint 2010
PDF
AIIM Ottawa May 12 2011 Agenda
PDF
AIIM Ottawa June 15 2011 Agenda
PDF
Open Source and Open Standards for Information and Records Managers
PDF
AIIM Ottawa - Dominic Jaar - eDiscovery Issues and Trends Affecting Canadian ...
PDF
AIIM Ottawa - Stephen Ludlow - eDiscovery in Canada
PDF
ECM-as-a-Service: Are We Ready?
PDF
Open Source and Open Standards, the Future of ECM? IRMS Conference April 2011
PDF
AIIM New England - ECM in an Interoperable World
PDF
What do records and information managers need to know about open source ECM?
PDF
Cheryl McKinnon - Speaker Bio
PDF
“Recognizing Value from a Shared RM/DM Repository: Canadian Government Perspe...
PDF
Transcending Geography and Generations with Social Media
ODP
Social Networking for Business
ODP
Social Media 101 - Where to Get Started for Customer Engagement
Document Imaging Initiatives in Government of Canada - PWGSC - October 27, 20...
Capture is Powerful - Harvey Spencer presentation to AIIM Ottawa Event Oct 27...
AIIM Ottawa Sept 8 2011 Agenda
SharePoint Governance Planning - Microsoft
AIIM Ottawa June 15/11 - Information Governance and Microsoft SharePoint
AIIM Ottawa June 15/11 - StoneShare Governance for SharePoint 2010
AIIM Ottawa May 12 2011 Agenda
AIIM Ottawa June 15 2011 Agenda
Open Source and Open Standards for Information and Records Managers
AIIM Ottawa - Dominic Jaar - eDiscovery Issues and Trends Affecting Canadian ...
AIIM Ottawa - Stephen Ludlow - eDiscovery in Canada
ECM-as-a-Service: Are We Ready?
Open Source and Open Standards, the Future of ECM? IRMS Conference April 2011
AIIM New England - ECM in an Interoperable World
What do records and information managers need to know about open source ECM?
Cheryl McKinnon - Speaker Bio
“Recognizing Value from a Shared RM/DM Repository: Canadian Government Perspe...
Transcending Geography and Generations with Social Media
Social Networking for Business
Social Media 101 - Where to Get Started for Customer Engagement

Recently uploaded (20)

PDF
Advanced methodologies resolving dimensionality complications for autism neur...
PDF
Encapsulation theory and applications.pdf
PPTX
20250228 LYD VKU AI Blended-Learning.pptx
PDF
Shreyas Phanse Resume: Experienced Backend Engineer | Java • Spring Boot • Ka...
PPTX
A Presentation on Artificial Intelligence
PPTX
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
PDF
NewMind AI Monthly Chronicles - July 2025
PDF
Reach Out and Touch Someone: Haptics and Empathic Computing
PPTX
Cloud computing and distributed systems.
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
PPTX
Big Data Technologies - Introduction.pptx
PDF
Network Security Unit 5.pdf for BCA BBA.
PDF
CIFDAQ's Market Insight: SEC Turns Pro Crypto
PDF
NewMind AI Weekly Chronicles - August'25 Week I
PPTX
PA Analog/Digital System: The Backbone of Modern Surveillance and Communication
PPT
“AI and Expert System Decision Support & Business Intelligence Systems”
PDF
Agricultural_Statistics_at_a_Glance_2022_0.pdf
PDF
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
PPT
Teaching material agriculture food technology
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
Advanced methodologies resolving dimensionality complications for autism neur...
Encapsulation theory and applications.pdf
20250228 LYD VKU AI Blended-Learning.pptx
Shreyas Phanse Resume: Experienced Backend Engineer | Java • Spring Boot • Ka...
A Presentation on Artificial Intelligence
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
NewMind AI Monthly Chronicles - July 2025
Reach Out and Touch Someone: Haptics and Empathic Computing
Cloud computing and distributed systems.
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
Big Data Technologies - Introduction.pptx
Network Security Unit 5.pdf for BCA BBA.
CIFDAQ's Market Insight: SEC Turns Pro Crypto
NewMind AI Weekly Chronicles - August'25 Week I
PA Analog/Digital System: The Backbone of Modern Surveillance and Communication
“AI and Expert System Decision Support & Business Intelligence Systems”
Agricultural_Statistics_at_a_Glance_2022_0.pdf
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
Teaching material agriculture food technology
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf

Open Government, Open Data and Data Management - Coradix

  • 1.  Open  Government   Open  Data  and  Data  Management    
  • 2. •  We  acknowledge  that  people  all  around  the  world   are  demanding  more  openness  in  government;   •  We  accept  responsibility  for  seizing  this  moment  to   strengthen  our  commitments  to  promote   transparency;   •  We  accept  responsibility  to  harness  the  power  of   new  technologies;   •  We  uphold  the  value  of  openness  in  our  engagement   with  ci9zens  
  • 3. The  Open  Data  Landscape   DOB: 2009 Thank-you Obama
  • 4. Ac9on  Plan  on  Open  Government   Source: Treasury Board of Canada Secretariat
  • 5. Tony  Clement   “Data is Canada’s new Natural Resource” Winnipeg Free Press, July 12, 2012
  • 6. Canadians Government Citizen / Industry Participation Opportunities / Benefits Timely Access to Elimination of effort and cost Quality Data responding to ad-hoc requests Economic Innovation Royalties from commercial Gov’t Accountability exploitation of liberated data Loss of Revenue from Data Privacy rights compromised Cost/Capacity of Provisioning Data Lack of skills to manipulate / Challenges / Risks understand (ie non-tech savvy) Lack of consistency of standards- architecture, meta-data, delivery Decisions compromised by relying on erroneous data Quality Issues Misinterpretation of Data Unable to explain contextual questions National / Individual Security
  • 7. Neighborhood Knowledge Los Angeles (http:// nkla.ucla.edu) (NKLA) is a website dedicated to providing public access to vital data and information for neighborhood improvement in Los Angeles.
  • 8. Digital  Economy   “The  total  size  of  digital  economy  is  es=mated  at   $20.4  trillion,  equivalent  to  roughly  13.8%  of  all   sales  flowing  through  the  world  economy.”   Source:  The  New  Digital  Economy  How  it  will  transform  business,  Oxford   Economics  
  • 9. Source: McKinsey Global Institute, Big Data Next Frontier for Innovation
  • 12. “Big  Brother  is  Watching”  
  • 14. Data  Analysis   Source: AIIM Industry Watch, Big Data
  • 15. Content  Management   Source: AIIM Industry Watch, Big Data
  • 16. Implica9ons   •  Governance   •  Insight/Analy9cs   •  Privacy   •  Discoverability     •  Security   •  IP    
  • 18. Does  Big  Data  =  More  Technology?  
  • 19. Big  Data  Challenges   •  Source:  AIIM  Industry  Watch,  Big  Data   Source: AIIM Industry Watch, Big Data
  • 21. They  set  out  to  buy  this  
  • 22. And  this  is  what  they  got  
  • 23. Data  Quality   Problems  are  not   cheap  
  • 26. Costs
  • 36. Data  Blueprint  –  Na9onal  Cancer   Ins9tute  Re-­‐architec9ng  Data  
  • 38. State  of  Colorado   •  How  Data  Management  Improved   –  The  EDM  program  helped  facilitate  much  greater  communica=on  between   business  and  IT   –  A  robust  Governance  process  and  commiOee  structure  was  established   –   A  set  of  Data  Principles  were  developed  and  accepted   –  Specific  ini=a=ves  were  undertaken  in  the  areas  of  Master  Data,  Architecture   and  Meta-­‐data   •  How  the  Business  Issue  was  addressed   –  Colorado  Unique  Personal  Iden=fier  (CUPID)  MDM  program  generated   benefits  in  quality,  sharing,  understanding,  security  and  stewardship   –  Educa=on  Longitudinal  Data  System  Architecture  ini=a=ve  reduced  the  gaps  in   school  readiness  and  academic  achievement  between  popula=ons  of  children   –  Improved  client-­‐service  through  access  to  integrated  health  informa=on   –  Improved  policy  making  through  a  more  informed  process  
  • 39. Recognize  this  ?   Architectural Bubble Chart
  • 40. Enterprise  Architecture   John Zachman’s Seminal article in 1987 launched Enterprise Architecture
  • 41. W3C  Linking  Open  Data  
  • 42. DBpedia   A community-based effort structure Wikipedia Semantic techniques extend this to structured models
  • 43. For   Against   •  "Data  belong  to  the  human  race”   •  Government  funding  may  not  be  used  to  duplicate  or   •  Public  money  was  used  to  fund  the   challenge  the  ac=vi=es  of  the  private  sector   work  and  so  it  should  be  universally   •  Governments  have  to  be  accountable  for  the  efficient   available.   use  of  taxpayer's  money:  If  public  funds  are  used  to   •  It  was  created  by  or  at  a  government   aggregate  the  data  and  if  the  data  will  bring  commercial   ins=tu=on   (private)  benefits  to  only  a  small  number  of  users,  the   •  Facts  cannot  legally  be  copyrighted.   users  should  reimburse  governments  for  the  cost  of   •  Sponsors  of  research  do  not  get  full   providing  the  data.   value  unless  the  resul=ng  data  are   •  The  government  gives  specific  legi=macy  for  certain   freely  available.   organisa=ons  to  recover  costs  (Stats  Canada)   •  Data  are  required  for  the  smooth   •  Privacy  concerns  may  require  that  access  to  data  is   process  of  running  communal   limited  to  specific  users  or  to  sub-­‐sets  of  the  data.   human  ac=vi=es  (map  data,  public   •  Collec=ng,  'cleaning',  managing  and  dissemina=ng  data   ins=tu=ons).   are  typically  labour-­‐  and/or  cost-­‐intensive  processes  -­‐   •  In  scien=fic  research,  the  rate  of   whoever  provides  these  services  should  receive  fair   discovery  is  accelerated  by  beOer   remunera=on  for  providing  those  services.   access  to  data.   •  O]en,  targeted  end-­‐users  cannot  use  the  data  without   addi=onal  processing  (analysis,  apps  etc.)  
  • 44. Canadians Government Citizen / Industry Participation Opportunities / Benefits Timely Access to Elimination of effort and cost Quality Data responding to ad-hoc requests Economic Innovation Royalties from commercial Gov’t Accountability exploitation of liberated data Loss of Revenue from Data Privacy rights compromised Cost/Capacity of Provisioning Data Lack of skills to manipulate / Challenges / Risks understand (ie non-tech savvy) Lack of consistency of standards- architecture, meta-data, delivery Decisions compromised by relying on erroneous data Quality Issues Misinterpretation of Data Unable to explain contextual questions National / Individual Security
  • 45. Addressing  the  Challenges,  Realizing  the  Opportunity   Decisions compromised by Quality Issues relying on erroneous data Data Quality Management EDM   Privacy rights compromised Governance   Enterprise Data Security National / Individual Security Lack of consistency of standards- Master-Data Management Open Data architecture, meta-data, delivery Delivery Misinterpretation of Data Meta-Data Management Platform Can’t address contextual questions Data Architecture Timely Access to Lack of skills to Quality Data manipulate / understand EDM Competency Center Loss of Revenue Cost/Capacity of Citizen / Industry from Data Provisioning Data Participation Royalties from commercial Elimination of effort and cost Economic Innovation exploitation of liberated data responding to ad-hoc requests