International Journal of Modern Engineering Research (IJMER)
www.ijmer.com Vol.3, Issue.2, March-April. 2013 pp-1026-1031 ISSN: 2249-6645
www.ijmer.com 1026 | Page
Sahithi Avirneni, 1
Dharmateja Bandlamudi2
12
Electrical and Electronics Engineering, Koneru Lakshmaiah University, India
Abstract: This research paper discusses the impacts of the coal combustion in thermal power plant, emphasized the
problems associated with fly ash, collection using Electro Static Precipitator, mitigation measures for fly ash has also been
highlighted such as development of bricks, use of fly ash for manufacturing of cement, development of ceramics, fertilizer,
development of distemper and use of fly ash in road construction and road embankment. This article gives the direction for
the beneficial use of fly ash generated during coal combustion in power plants
Keywords: Coal, fly ash, thermal power plant, Electro Static Precipitator, combustion.
I. Introduction
Coal is the only natural resource and fossil fuel available in abundance in India. Consequently, it is used widely as a
thermal energy source and also as fuel for thermal power plants producing electricity [1]. Power generation in India has
increased manifold in the recent decades to meet the demand of the increasing population [2]. Generating capacity has grown
many times from 1362MW in 1947 to 147,403MW (as on December 2008). India has about 90,000 MW installed capacity
for electricity generation, of which more than 70% is produced by coal- based thermal power plants. The only fossil fuel
available in abundance is coal, and hence its usage will keep growing for another 2–3 decades at least till nuclear power
makes a significant contribution. The coal available in India is of poor quality, with very high ash content and low calorific
value, and most of the coal mines are located in the eastern part of the country. Whatever good quality coal available is used
by the metallurgical industry, like steel plants. The coal supplied to power plants is of the worst quality. Some of the coal
mines are owned by private companies, and they do not wish to invest on quality improvement [1]. Combustion process
converts coal into useful heat energy, but it is also a part of the process that produce greatest environmental and health
concerns. Combustion of coal at thermal power plants emits mainly carbon dioxide (CO2), sulphur oxides (SOx), nitrogen
oxides (NOx); CFCs other trace gases and air borne inorganic particulates, such as fly ash and suspended particulate matter
(SPM). CO2, NOx and CFCs are greenhouse gases (GHGs) High ash content in Indian coal and inefficient combustion
technologies contribute to India‟s emission of air particulate matter and other trace gases, including gases that are
responsible for the greenhouse effect. And mercury which is a dangerous metal released by this coal combustion.
II. Fly Ash
The present coal consumption in thermal power station in India results in adding ash estimated 12.21 million tons
fly ash in to the environment a year of which nearly a third goes in to air and the rest is dumped on land or Water in spite of
various research results a consistent utilization is not evident, and it expected that stocks piles Of fly ash will continue to
grow with the increasing number of super thermal power station in India. As reliance upon coal as a fuel source increases,
this large quantities of this material will be increasingly brought into contact with the water and soil environment [3].
2.1 Problems associated of increasing fly ash
India has about 211 billion tons of coal reserves, which is known to be the largest resource of energy and presently
240MT of coal is being used annually to meet the Nation‟s electricity demand. In terms of energy, India stands at world sixth
position accounting 3.5% of the world commercial energy demand in 2001, but the electricity generation yet not completely
fulfilled the present requirement. Environmental pollution by the coal based thermal power plants all over the world is cited
to be one of the major sources of pollution affecting the general aesthetics of environment in terms of land use, health
hazards and air, soil and water in particular and thus leads to environmental dangers[4]. Fly ash water also affects the scale
structure because it is a directly in contact with water. Heavy metals can also adversely affect the growth rate in major
carps[5]. Coal combustion residues (CCRs) are a collective term referring to the residues produced during the combustion of
coal regardless of ultimate utilization or disposal. It includes fly ash, bottom ash, boiler slag, and fluidized bed combustion
ash and other solid fine particles [6]. In India, presently coal based thermal power plants are releasing 105MT of CCRs
which possess major environmental problems [7]. Presently from all these thermal power plants, dry fly ash has been
collected through Electrostatic Precipitator (ESP) in dry condition as well as pond ash from ash ponds in semi-wet condition.
In India most of the thermal power plants do not have the facility for automatic dry ash collection system. Commonly both
fly ash and bottom ash together are discharged as slurry to the ash pond/lagoon these effect on environment, economy, and
social factor.
Environmental Impact of Thermal Power Plant in India and
Its Mitigation Measure
International Journal of Modern Engineering Research (IJMER)
www.ijmer.com Vol.3, Issue.2, March-April. 2013 pp-1026-1031 ISSN: 2249-6645
www.ijmer.com 1027 | Page
Table-I
Composition of Indian coal and fly ash in ppm
NA –Not Available
Table-II
Chemical Composition of Fly Ash
2.2 Problems associated with radionuclide increase in atmosphere coal combustion: Coal, like most materials found in
nature, contains radionuclides. The levels of natural radionuclides in a geological formation depend on its composition and
geological history. In the production of electric power, coal is burned in a furnace operating at temperatures of up to 1700°C
[8]. In the combustion process, volatile radionuclide‟s such as Pb210
and Po210
are partly released in the flue gases and escape
to the atmosphere. A significant fraction of the radioactivity is also retained in the bottom ash or slag .The greatest part of the
radioactivity in coal remains with the ash but some of the fly ash from coal-fired power plants escapes into the atmosphere
[9]. Air pollution in the vicinity of a coal fired thermal power station affects soil, water, vegetation, the whole ecosystem and
human health [10]."Environmental impact of coal utilization in thermal power plant" notes that "Radon is a colourless,
odourless but noble gas, which is radioactive and ubiquitously present. It poses grate health hazards not only to uranium
miners but also people living in normal houses and buildings and at work place like coal mines, cement industry, thermal
power plants etc. Coal, a naturally occurring fossil fuel is burnt in conventional power plants to meet out about 72% of the
electricity needs in our country [11]. It was lesser known hitherto until recently that the fly ash which is a by-product of
burnt coal is a potential radioactive air pollutant and it modifies radiation exposure.
III. Collection of Fly Ash
After the combustion of the coal in the boiler, 20% of the ash is collected at the bottom of the boiler called bottom
ash and 80% is carried along with flue gases called fly ash. Bottom ash is mixed with water and made into sludge form and
sent through pumps into the ash ponds. The Electro Static Precipitator is used to collect the ash particles in the flue gases.
The era after the introduction of the Electro Static Precipitator has partly protected the environment from harmful gases and
hazardous chemicals. Generally dust is collected from the waste in two processes that is mechanically and electrically.
Element
s
Coal Fly ash Coal Fly ash
Na 1500 6700 289 1299
K 10,000 15,000 2075 18,275
La 22.2 94 47.6 238
Ce 42 212 30.2 145
Hg 0.6 9 11 48
Te NA NA 1.83 8.87
Th 5.1 6.6 5.34 25
Cr 55 210 62.8 404
Hf 1.8 7 7.1 32.6
Sc 8.9 64 22.9 106
Zn 170 3100 539 2027
Fe 11,000 51,000 20,088 1,06,665
Ta NA NA 153 5.05
Co 13.9 520 33.4 128
Eu 0.8 8.6 0.95 5.6
Sm NA NA 0.65 1.99
Am 0.4 0.2 0.136 0.69
Name Formula Percentage
Silica SiO2 62
Iron oxide Fe2O3 63
Aluminium Al2O3 26
Titanium oxide TiO2 1.8
Potassium oxide K2O 1.28
Calcium oxide CaO 1.13
Magnesium oxide MgO 0.49
Phosphorus pent
oxide
P2O5 0.40
Sulphate SO4 0.36
Disodium oxide Na2O 0.28
International Journal of Modern Engineering Research (IJMER)
www.ijmer.com Vol.3, Issue.2, March-April. 2013 pp-1026-1031 ISSN: 2249-6645
www.ijmer.com 1028 | Page
Mechanically is by using filters and electrically is by using Electro Static Precipitators. The ESP is efficient in precipitation
of particles from sub microns to large sizes of particles and hence they are preferred to mechanical precipitators. The
efficiency of modern ESP‟s is of the order 99.9%.The Electro Static Precipitators have high collecting efficiency, low
sensitivity to high temperatures, low pressure drop, limited process controls and an easy and reduced maintenance make the
electro static precipitators one of the most reliable and appreciated units available at the moment in the market.
Electrostatic precipitators can be used for collecting virtually all kinds of dust coming from coal and oil fired power
stations, blast furnaces and industrial furnaces, iron and steel processes, cement factories, municipal solid wastes incinerators
, paper mills, wood factories, textile industries, food and pharmaceuticals industries.
3.1 Principle of Electro Static Precipitator
The electro static precipitator utilizes electrostatic forces to separate dust particles from the gas to be cleaned. The
flue gas is ionized in the electro static field and large quantities of positive and negative ions are formed. The positive ions
are immediately attracted towards the negative wires by the strength of the field. The negative ions however attracts towards
the positive diode.
IV. Fly Ash Mitigation Measure
Fly ash is fine glass powder, the particles of which are generally spherical in shape and range from 0.5 to 100
micron in size. The fine particles of fly ash reach the pulmonary region of the lungs and remain there for long periods of
time; they behave like cumulative poisons. The submicron particles enter deeper into the lungs and are deposited on the
alveolar walls where the metals could be transferred to the blood plasma across the cell membrane fly ash can be disposed-
off in a dry or wet state. Studies show that wet disposal of this waste does not protect the environment from migration of
metal into the soil. Heavy metals cannot be degraded biologically into harmless products like other organic waste. Studies
also show that coal ash satisfies the criteria for landfill disposal, according to the Environmental Agency of Japan. According
to the hazardous waste management and handling rule of 1989, fly ash is considered as non-hazardous. With the present
practice of fly-ash disposal in ash ponds (generally in the form of slurry), the total land required for ash disposal would be
about 82,200 ha by the year 2020 at an estimated 0.6 ha per MW. Fly ash can be treated as a by-product rather than waste
[12].
4.1 Fly ash bricks: The Central Fuel Research Institute, Dhanbad has developed a technology for the utilization of fly ash
for the manufacture of building bricks. Fly ash bricks have a number of advantages over the conventional burnt clay bricks.
Unglazed tiles for use on footpaths can also be made from it (Figure 1). Awareness among the public is required and the
Government has to provide special incentives for this purpose [12]. Six mechanized fly ash brick manufacturing units at
Korba are producing about 60000 bricks per day. In addition to this, two mechanized fly ash brick manufacturing units have
been set up by private entrepreneurs also at Korba [13], the total production being about 30000 bricks/day. Apart from this
about 23 entrepreneurs have registered in DTIC proposals for establishing ash brick units. To give impetus to ash brick
manufacturing [13]
Orissa Government in India has banned the use of soil for the manufacture of bricks up to 20 km. of a thermal
power station. In the case of fly ash-clay fired bricks, a mixture of clay and fly ash is fired. The unburnt carbon of the fly ash
serves as fuel for burning. Approximately 20-30% energy can be reduced by adding25-40% fly ash [14].
Fly ash using for making bricks
4.2 Fly ash in manufacture of cement: In the presence of moisture, fly ash reacts chemically with calcium hydroxide and
CO2 present in the environment attack the free lime causing deterioration of the concrete. A cement technologist observed
that the reactive elements present in fly ash convert the problematic free lime into durable concrete [15]. Fly ash can
substitute up to 66% of cement in the construction of dams. Fly ash in R.C.C. is used not only for saving cement cost but
also for enhancing strength and durability. Fly ash can also be used in Portland cement concrete to enhance the performance
International Journal of Modern Engineering Research (IJMER)
www.ijmer.com Vol.3, Issue.2, March-April. 2013 pp-1026-1031 ISSN: 2249-6645
www.ijmer.com 1029 | Page
of the concrete. Portland cement is manufactured with Calcium oxide, some of which is released in a free state during
hydration. Studies show that one ton of Portland cement production discharges 0.87 tonnes of carbon dioxide in the
environment. Another Japanese study indicates that every year barren land approximately 1.5 times of the Indian Territory
need to be afforested to compensate for the total global accumulation of carbon dioxide discharged into the atmosphere
because of total global cement production. Utilization of fly ash in cement concrete minimizes the carbon dioxide emission
problem to the extent of its proportion in cement.
4.3 Fly ash-based ceramics: Ceramic products with up to 50 wt% of mullite and 16 wt% of feldspars were obtained from
binary mixtures of fly ash from the Teruel power station (NE Spain) and plastic clays from the Teruel coal mining district
[16]. The firing behaviour of fly ash and the ceramic mixtures was investigated by determining their changes in mineralogy
and basic ceramic properties such as colour, bulk density, water absorption and firing shrinkage. To determine the changes
on heating suffered by both the fly ash and the ceramic bodies, firing tests were carried out at temperatures between 900 and
1200°C in short firing cycles [17]. The resulting ceramic bodies exhibit features that suggest possibilities for use in paving
stoneware manufacture, for tiling and for conventional brick making (fig-2). The National Metallurgical Laboratory;
Jamshedpur has developed a process to produce ceramics from fly ash having superior resistance to abrasion [12].
a) Mosaic tile b) Interlocking paver
4.4 Fly ash as fertilizer: Fly ash provides the uptake of vital nutrients/minerals (Ca, Mg, Fe, Zn, Mo, S and Se) by crops and
vegetation, and can be considered as a potential growth improver [18]. Because it can be a soil modifier and enhance its
moisture retaining capacity and fertility the improvement in yield has been recorded with fly ash doses varying from 20 tone
/ hectare to 100 tone / hectare (Figure 3). On an average 20-30% yield increase has been observed. Out of 150 million
hectare of land under cultivation, 10 million hectares of land can safely be taken up for application of fly ash per year. The
fly ash treated fields would give additional yield of 5 million tone food grains per year valued at Rs.3000 per year.
a) Cabbage at Dobhar, fly ash amended soils
b) Reclamation of saline soils using fly ash
(75% saving in gypsum)
International Journal of Modern Engineering Research (IJMER)
www.ijmer.com Vol.3, Issue.2, March-April. 2013 pp-1026-1031 ISSN: 2249-6645
www.ijmer.com 1030 | Page
4.4 Fly ash based polymer products: Fly ashes are also being used as wood substitutes. They have been developed by using
fly ash as the matrix and jute cloth as the reinforcement. The Jute cloth is laminated by passing through a polymer fly ash
matrix and then cured. The number of Laminates is increased to get the desired thickness. The product can be used in many
applications like door shutters, partition panels, flooring tiles, wall panelling and ceiling. The developed material is stronger
more durable, resistant to corrosion and cost effective as compared to wood. This technology has been developed by the
Regional Research Laboratory, Bhopal in collaboration with Building Materials and Technology Promotion Council
(B.M.T.P.C) and TIFAC [19]. One commercial plant has been set up based on this technology near Chennai, India. The
Government of India has withdrawn an 8% excise duty imposed earlier on fly ash products.
4.5 Fly ash in road construction: The use of fly ash in large quantities making the road base and surfacing can result in low
value–high volume utilization technology demonstration projects at New Delhi, Dadri (U.P.) and Raichur (Karnataka) have
been successfully completed for use of fly ash in road / flyover embankments (figure-4). Guidelines have been prepared and
approved by Indian Roads Congress (IRC) as national standard. More than 10 multiplier effects have taken place across the
country.
In the recent past CRRI offered advise/ consultancy services in the following road/embankment projects in which
fly ash was utilized:
1. Construction of plant roads at Budge-Budge thermal power plant using fly ash based pavement specifications
(Collaboration with CESC Ltd, Kolkata),
2. Construction of one km long rural road near Raichur in Karnataka with fly ash based flexible/semi-rigid pavement
composition (Collaboration with Karnataka PWD and Raichur thermal power station -executed as Fly Ash Mission
demonstration project)
3. Construction of plant road and two rural roads using fly ash (collaboration with National Capital Power Station, NTPC,
Dadri, U.P) [20].
Figure 4
Nizamuddin Bridge approach road embankment at New Delhi (in flood zone of river Yamuna)
4.6 Roads and Embankments: Another area that holds potential for utilization of large volumes of fly ash is road and
flyover embankments. Fly ash embankments at Okhla, Hanuman Setu, Second Nizamuddin bridge in Delhi and roads at
Raichur, Calcutta, Dadri etc. have established that on an average Rs. 50 to 75 per MT of earth work cost can be saved by
using fly ash (in lieu of soil) in such works, primarily due to reduction in excavation & transportation costs[18].
In the recent past CRRI offered advise/ consultancy services in the following road/embankment projects in which
fly ash was utilized:
1. Fly ash embankment construction for Okhla flyover at Delhi adopting „Reinforced Embankment Technique‟
(Collaboration with Delhi PWD – executed as Fly Ash Mission demonstration project),
2. Fly ash embankment construction for Hanuman Setu flyover at Delhi adopting „Reinforced Embankment Technique‟
(Collaboration with Delhi PWD and Badarpur Thermal Power Station, Delhi).
3. Construction of reinforced approach embankment using fly ash at SaritaVihar flyover in Delhi (Collaboration with Delhi
Development Authority and Badarpur Thermal Power Station, Delhi).
4. Construction of embankment for Noida-Greater Noida Expressway project (Collaboration with IRCON International and
Badarpur Thermal Power Station, Delhi)[19]
V. Environmental Impact of Fly Ash Usage
Utilization of fly ash will not only minimize the disposal problem but will also help in utilizing precious land in a
better way. Construction of road embankments using fly ash, involves encapsulation of fly ash in earthen-core or with RCC
facing panels. Since there is no seepage of rain water into the fly ash core, leaching of heavy metals is also prevented. When
fly ash is used in concrete, it chemically reacts with cement and reduces any leaching effect. Even when it is used in
stabilization work, a similar chemical reaction takes place which binds fly ash particles. Hence chances of pollution due to
use of fly ash in road works are negligible [21].
International Journal of Modern Engineering Research (IJMER)
www.ijmer.com Vol.3, Issue.2, March-April. 2013 pp-1026-1031 ISSN: 2249-6645
www.ijmer.com 1031 | Page
VI. Energy Saving and Environmental Benifits
Most of the developing countries face energy scarcity and huge housing and other infrastructure shortage. Ideally in
these countries materials for habitat and other construction activities should be energy efficient (having low energy demand).
The following table shows some examples of energy savings achieved through the use of Fly Ash in the manufacture of
conventional building materials [22].
VII. Conclusion
Coal is used widely as a thermal energy source in thermal power plant for production of electricity but available
coal in India is of poor quality, with very high ash content and low calorific value. Utilization of huge amount of coal in
thermal power plant has created several adverse effects on environment leading to global climate change and fly ash
management problem. Coal based thermal power plants all over the world is cited to be one of the major sources of pollution
affecting the general aesthetics of environment in terms of land use, health hazards and air, soil and water in particular and
thus leads to environmental dangers. So, the disposable management of fly ash from thermal power plant is necessary to
protect our environment. It is advisable to explore all possible application for fly ash utilization. Several efforts are needed to
utilize fly ash for making bricks, in manufacture of cement, ceramics etc. Various governmental and nongovernmental
bodies working in the field of utilization of fly ash for construction of road/road embankment The utilization of fly ash gives
good result in almost every aspects including good strength, economically feasible and environmental friendly.
References
[1] Mishra U.C., Environmental impact of coal industry and thermal power plants in India, J Environ Radio act, 72(1-2), 35-40 (2004)
[2] Jamil S., Abhilash P.C., Singh A., Singh N. and BhelHari M., Fly ash trapping and metal accumulation capacity of plant,
implication of for green belt around thermal power plant, J. Land Esc. And Urban Plan, 92, 136-147 (2009)
[3] Fulekar M.H. and Dave J.M., Release and behavior of Cr, Mn, Ni and Pb in a fly‐ash/soil/water environment: column experiment,
IntJ. Of Environmental Studies, 4, 281-296 (1991)
[4] Ashoka D., Saxena M. and Asholekar S.R., Coal Combustion Residue-Environmental Implication and Recycling Potential, Resource
Conservation and Recycling, 3, 1342-1355 (2005)
[5] Shrivastava Shikha and Dwivedi Sushma, Effect of fly Ash Pollution on Fish Scales, Re. J. of Che. Sci, 1(9), 24-28 (2011)
[6] Keefer R.F., Coal ashes-industrial wastes or beneficial by-products. In: Keefer R.F., Sajwan K., editors, Trace Element in Coal and
Coal Combustion Residues. Advances in Trace Substances Research, Florida: Lewis Publishers, CRC Press, 3–9 (1993)
[7] Kumar Vimal and Mathur Mukesh, Clean environment through fly as utilization Cleaner (2003)
[8] Critical Review in Environmental Control, CRC Press, 3, (1989)
[9] Pvrecek, Lbendik, Pb210
and Po210
in fossil fuel at the sostanj thermal power plant (Slovenia), Czechoslovak j of phy, 53 a, 51-a
(2003)
[10] F˙IL˙IZ G ¨ UR and G ¨ UNSEL˙I YAPRAK, Natural radionuclide emission from coal-fired power plants in the southwestern of
Turkey and the population exposure to external radiation in their vicinity, J. of Environ. Sci. and Health Part a, 45, 1900–1908
(2010)
[11] Kant K., Chakarvarti S.K Environmental impact of coal utilization in thermal power plant, J. of Punjab Acad. of For. Med. &Toxi,
3, 15-18 (2003)
[12] Senapati Manas Ranjan, Fly ash from thermal power plants–waste management and overview current science, 100, 1791-1794
(2011)
[13] korba.gov.in/kwflyash.htm (2012)
[14] www.wealthywaste.com/fly-ash-utilization-in-india (2012)
[15] Cement Manufacturing Association, (1999)
[16] IgnasiQuerlt,XavierQuerol ,Angel Lopez-Solar ,Felicano Plana ,Use of coal fly ash for ceramics ;a case study for large Spanish
power station, fuel,8 , 787-791, (1997)
[17] SaikatMaitra, Cremic product from fly ash global prospective. In preceding of the national seminar on fly ash utilization, February
26-27 NLM Jamshedpur India (1999)
[18] Kumar Vimal and MathurMukesh, Clean environment through fly as utilization. Cleaner Technology, Impacts/12/2003-2004,
MOEF-CPCB, Govt. of India, 235-255, (2003)
[19] Fly Ash Mission‟, (TIFAC), Department of Science and Technology, Ministry of Science and Technology, Government of India,
Technology (1994)
[20] www.crridom.gov.in/techniques-facilities/10.pdf (2012)
[21] M.Ahmaruzzaman, A review of utilization of fly ash In Energy and Combustion. Sci.30, 327-363 (2010)
[22] Jha C. N. & Prasad J. K. Fly ash: a resource materifsinceal for innovative building material - Indian perspective substitute and paint
from coal ash” 2nd international conference on “fly ash disposal &utilization”, New Delhi, India, (2000).

More Related Content

PDF
M33061065
DOCX
All chapte rs -ashish, avneesh , sandeep
PPTX
Environmental impact of thermal power plant
PDF
Multispectral-TIR Data Analysis by Split Window Algorithm for Coal Fire Detec...
PPTX
Industrial air pollution
PDF
F012234450
PPT
Impact of thermal power plant on environment and its management
PPTX
Environmental Impacts of Electricity Production
M33061065
All chapte rs -ashish, avneesh , sandeep
Environmental impact of thermal power plant
Multispectral-TIR Data Analysis by Split Window Algorithm for Coal Fire Detec...
Industrial air pollution
F012234450
Impact of thermal power plant on environment and its management
Environmental Impacts of Electricity Production

What's hot (17)

PDF
GENERATOR OPERATED BY WATER
PDF
Paper energy analysis of a cement plant jesa 2002 final 2
PDF
Sustainable Strategies for the Exploitation of End-of-Life Permanent Magnets
PPT
F O S S I L F U E L S
PPT
DOCX
FUEL ( LPG,LNG,Coal,Natural Gas, Nuclear Fuel & Fuel Cell)
PPTX
chemistry of fuels
PDF
Coal Liquefaction
PPTX
PPTX
The chowking new delhi
PPTX
Projects on Coal and Coal by Products
PPTX
Pollution & control
PPTX
Clean energy technology
PPTX
JSC EKON. ECON oxygen gas analyzers
PPTX
Nation building
PPTX
Air purification And Modern Technologies To Purify Air
GENERATOR OPERATED BY WATER
Paper energy analysis of a cement plant jesa 2002 final 2
Sustainable Strategies for the Exploitation of End-of-Life Permanent Magnets
F O S S I L F U E L S
FUEL ( LPG,LNG,Coal,Natural Gas, Nuclear Fuel & Fuel Cell)
chemistry of fuels
Coal Liquefaction
The chowking new delhi
Projects on Coal and Coal by Products
Pollution & control
Clean energy technology
JSC EKON. ECON oxygen gas analyzers
Nation building
Air purification And Modern Technologies To Purify Air
Ad

Viewers also liked (20)

PDF
Bz32915919
PDF
Cb32924927
PDF
Ck31369376
PDF
A robust algorithm based on a failure sensitive matrix for fault diagnosis of...
PDF
J018127176.publishing paper of mamatha (1)
PDF
H1802025259
PDF
A017230107
PDF
G017633943
PDF
F017533540
PDF
C017130912
PDF
H017514655
PDF
G017154852
PDF
J1103046570
PDF
E0562326
PDF
J012537580
PDF
L012337275
PDF
F017544247
PDF
F017633538
PDF
Power-Quality-Improvement-Using-PI-and-Fuzzy-Logic-Controllers-Based-Shunt-Ac...
PDF
89 jan-roger linna - 7032576 - capillary heating control and fault detectio...
Bz32915919
Cb32924927
Ck31369376
A robust algorithm based on a failure sensitive matrix for fault diagnosis of...
J018127176.publishing paper of mamatha (1)
H1802025259
A017230107
G017633943
F017533540
C017130912
H017514655
G017154852
J1103046570
E0562326
J012537580
L012337275
F017544247
F017633538
Power-Quality-Improvement-Using-PI-and-Fuzzy-Logic-Controllers-Based-Shunt-Ac...
89 jan-roger linna - 7032576 - capillary heating control and fault detectio...
Ad

Similar to Cs3210261031 (20)

PDF
Fly ash utilization a brief review in indian context
PDF
Investigation and analysis of air pollution emitted from thermal power plants
PDF
Final report sk 12 (2)
PPTX
Thermal power plant1
DOCX
Seminar report
PDF
Cleaner techniques to reduce Emission and Energy saving in power plant
PPTX
Thermal power plant pollution and cotrol techniques
PPTX
jagruti.pptx
PPTX
Pollution Control Measures
PPTX
Waste management of non renewable energy sources
PPTX
Impact of power sector emissions on air quality
PDF
Panki power plant report
DOCX
Chhabra Thermal Power plant Report by Chandramohan lodha
PPT
ee-cement.ppt
DOCX
Env mang in power plant
PDF
P04497113
PDF
Natural Radioactivity of Feed Coal and Its by-products in Barapukuria 2×125 M...
PPT
ENVIRONMENTAL IMPACT OF EMISSION OF POWER PLANTS
PDF
C0350312018
PDF
Utilisation of Fly Ash in Cement Concrete
Fly ash utilization a brief review in indian context
Investigation and analysis of air pollution emitted from thermal power plants
Final report sk 12 (2)
Thermal power plant1
Seminar report
Cleaner techniques to reduce Emission and Energy saving in power plant
Thermal power plant pollution and cotrol techniques
jagruti.pptx
Pollution Control Measures
Waste management of non renewable energy sources
Impact of power sector emissions on air quality
Panki power plant report
Chhabra Thermal Power plant Report by Chandramohan lodha
ee-cement.ppt
Env mang in power plant
P04497113
Natural Radioactivity of Feed Coal and Its by-products in Barapukuria 2×125 M...
ENVIRONMENTAL IMPACT OF EMISSION OF POWER PLANTS
C0350312018
Utilisation of Fly Ash in Cement Concrete

More from IJMER (20)

PDF
A Study on Translucent Concrete Product and Its Properties by Using Optical F...
PDF
Developing Cost Effective Automation for Cotton Seed Delinting
PDF
Study & Testing Of Bio-Composite Material Based On Munja Fibre
PDF
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)
PDF
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...
PDF
Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...
PDF
Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...
PDF
Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...
PDF
Static Analysis of Go-Kart Chassis by Analytical and Solid Works Simulation
PDF
High Speed Effortless Bicycle
PDF
Integration of Struts & Spring & Hibernate for Enterprise Applications
PDF
Microcontroller Based Automatic Sprinkler Irrigation System
PDF
On some locally closed sets and spaces in Ideal Topological Spaces
PDF
Intrusion Detection and Forensics based on decision tree and Association rule...
PDF
Natural Language Ambiguity and its Effect on Machine Learning
PDF
Evolvea Frameworkfor SelectingPrime Software DevelopmentProcess
PDF
Material Parameter and Effect of Thermal Load on Functionally Graded Cylinders
PDF
Studies On Energy Conservation And Audit
PDF
An Implementation of I2C Slave Interface using Verilog HDL
PDF
Discrete Model of Two Predators competing for One Prey
A Study on Translucent Concrete Product and Its Properties by Using Optical F...
Developing Cost Effective Automation for Cotton Seed Delinting
Study & Testing Of Bio-Composite Material Based On Munja Fibre
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...
Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...
Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...
Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...
Static Analysis of Go-Kart Chassis by Analytical and Solid Works Simulation
High Speed Effortless Bicycle
Integration of Struts & Spring & Hibernate for Enterprise Applications
Microcontroller Based Automatic Sprinkler Irrigation System
On some locally closed sets and spaces in Ideal Topological Spaces
Intrusion Detection and Forensics based on decision tree and Association rule...
Natural Language Ambiguity and its Effect on Machine Learning
Evolvea Frameworkfor SelectingPrime Software DevelopmentProcess
Material Parameter and Effect of Thermal Load on Functionally Graded Cylinders
Studies On Energy Conservation And Audit
An Implementation of I2C Slave Interface using Verilog HDL
Discrete Model of Two Predators competing for One Prey

Cs3210261031

  • 1. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.3, Issue.2, March-April. 2013 pp-1026-1031 ISSN: 2249-6645 www.ijmer.com 1026 | Page Sahithi Avirneni, 1 Dharmateja Bandlamudi2 12 Electrical and Electronics Engineering, Koneru Lakshmaiah University, India Abstract: This research paper discusses the impacts of the coal combustion in thermal power plant, emphasized the problems associated with fly ash, collection using Electro Static Precipitator, mitigation measures for fly ash has also been highlighted such as development of bricks, use of fly ash for manufacturing of cement, development of ceramics, fertilizer, development of distemper and use of fly ash in road construction and road embankment. This article gives the direction for the beneficial use of fly ash generated during coal combustion in power plants Keywords: Coal, fly ash, thermal power plant, Electro Static Precipitator, combustion. I. Introduction Coal is the only natural resource and fossil fuel available in abundance in India. Consequently, it is used widely as a thermal energy source and also as fuel for thermal power plants producing electricity [1]. Power generation in India has increased manifold in the recent decades to meet the demand of the increasing population [2]. Generating capacity has grown many times from 1362MW in 1947 to 147,403MW (as on December 2008). India has about 90,000 MW installed capacity for electricity generation, of which more than 70% is produced by coal- based thermal power plants. The only fossil fuel available in abundance is coal, and hence its usage will keep growing for another 2–3 decades at least till nuclear power makes a significant contribution. The coal available in India is of poor quality, with very high ash content and low calorific value, and most of the coal mines are located in the eastern part of the country. Whatever good quality coal available is used by the metallurgical industry, like steel plants. The coal supplied to power plants is of the worst quality. Some of the coal mines are owned by private companies, and they do not wish to invest on quality improvement [1]. Combustion process converts coal into useful heat energy, but it is also a part of the process that produce greatest environmental and health concerns. Combustion of coal at thermal power plants emits mainly carbon dioxide (CO2), sulphur oxides (SOx), nitrogen oxides (NOx); CFCs other trace gases and air borne inorganic particulates, such as fly ash and suspended particulate matter (SPM). CO2, NOx and CFCs are greenhouse gases (GHGs) High ash content in Indian coal and inefficient combustion technologies contribute to India‟s emission of air particulate matter and other trace gases, including gases that are responsible for the greenhouse effect. And mercury which is a dangerous metal released by this coal combustion. II. Fly Ash The present coal consumption in thermal power station in India results in adding ash estimated 12.21 million tons fly ash in to the environment a year of which nearly a third goes in to air and the rest is dumped on land or Water in spite of various research results a consistent utilization is not evident, and it expected that stocks piles Of fly ash will continue to grow with the increasing number of super thermal power station in India. As reliance upon coal as a fuel source increases, this large quantities of this material will be increasingly brought into contact with the water and soil environment [3]. 2.1 Problems associated of increasing fly ash India has about 211 billion tons of coal reserves, which is known to be the largest resource of energy and presently 240MT of coal is being used annually to meet the Nation‟s electricity demand. In terms of energy, India stands at world sixth position accounting 3.5% of the world commercial energy demand in 2001, but the electricity generation yet not completely fulfilled the present requirement. Environmental pollution by the coal based thermal power plants all over the world is cited to be one of the major sources of pollution affecting the general aesthetics of environment in terms of land use, health hazards and air, soil and water in particular and thus leads to environmental dangers[4]. Fly ash water also affects the scale structure because it is a directly in contact with water. Heavy metals can also adversely affect the growth rate in major carps[5]. Coal combustion residues (CCRs) are a collective term referring to the residues produced during the combustion of coal regardless of ultimate utilization or disposal. It includes fly ash, bottom ash, boiler slag, and fluidized bed combustion ash and other solid fine particles [6]. In India, presently coal based thermal power plants are releasing 105MT of CCRs which possess major environmental problems [7]. Presently from all these thermal power plants, dry fly ash has been collected through Electrostatic Precipitator (ESP) in dry condition as well as pond ash from ash ponds in semi-wet condition. In India most of the thermal power plants do not have the facility for automatic dry ash collection system. Commonly both fly ash and bottom ash together are discharged as slurry to the ash pond/lagoon these effect on environment, economy, and social factor. Environmental Impact of Thermal Power Plant in India and Its Mitigation Measure
  • 2. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.3, Issue.2, March-April. 2013 pp-1026-1031 ISSN: 2249-6645 www.ijmer.com 1027 | Page Table-I Composition of Indian coal and fly ash in ppm NA –Not Available Table-II Chemical Composition of Fly Ash 2.2 Problems associated with radionuclide increase in atmosphere coal combustion: Coal, like most materials found in nature, contains radionuclides. The levels of natural radionuclides in a geological formation depend on its composition and geological history. In the production of electric power, coal is burned in a furnace operating at temperatures of up to 1700°C [8]. In the combustion process, volatile radionuclide‟s such as Pb210 and Po210 are partly released in the flue gases and escape to the atmosphere. A significant fraction of the radioactivity is also retained in the bottom ash or slag .The greatest part of the radioactivity in coal remains with the ash but some of the fly ash from coal-fired power plants escapes into the atmosphere [9]. Air pollution in the vicinity of a coal fired thermal power station affects soil, water, vegetation, the whole ecosystem and human health [10]."Environmental impact of coal utilization in thermal power plant" notes that "Radon is a colourless, odourless but noble gas, which is radioactive and ubiquitously present. It poses grate health hazards not only to uranium miners but also people living in normal houses and buildings and at work place like coal mines, cement industry, thermal power plants etc. Coal, a naturally occurring fossil fuel is burnt in conventional power plants to meet out about 72% of the electricity needs in our country [11]. It was lesser known hitherto until recently that the fly ash which is a by-product of burnt coal is a potential radioactive air pollutant and it modifies radiation exposure. III. Collection of Fly Ash After the combustion of the coal in the boiler, 20% of the ash is collected at the bottom of the boiler called bottom ash and 80% is carried along with flue gases called fly ash. Bottom ash is mixed with water and made into sludge form and sent through pumps into the ash ponds. The Electro Static Precipitator is used to collect the ash particles in the flue gases. The era after the introduction of the Electro Static Precipitator has partly protected the environment from harmful gases and hazardous chemicals. Generally dust is collected from the waste in two processes that is mechanically and electrically. Element s Coal Fly ash Coal Fly ash Na 1500 6700 289 1299 K 10,000 15,000 2075 18,275 La 22.2 94 47.6 238 Ce 42 212 30.2 145 Hg 0.6 9 11 48 Te NA NA 1.83 8.87 Th 5.1 6.6 5.34 25 Cr 55 210 62.8 404 Hf 1.8 7 7.1 32.6 Sc 8.9 64 22.9 106 Zn 170 3100 539 2027 Fe 11,000 51,000 20,088 1,06,665 Ta NA NA 153 5.05 Co 13.9 520 33.4 128 Eu 0.8 8.6 0.95 5.6 Sm NA NA 0.65 1.99 Am 0.4 0.2 0.136 0.69 Name Formula Percentage Silica SiO2 62 Iron oxide Fe2O3 63 Aluminium Al2O3 26 Titanium oxide TiO2 1.8 Potassium oxide K2O 1.28 Calcium oxide CaO 1.13 Magnesium oxide MgO 0.49 Phosphorus pent oxide P2O5 0.40 Sulphate SO4 0.36 Disodium oxide Na2O 0.28
  • 3. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.3, Issue.2, March-April. 2013 pp-1026-1031 ISSN: 2249-6645 www.ijmer.com 1028 | Page Mechanically is by using filters and electrically is by using Electro Static Precipitators. The ESP is efficient in precipitation of particles from sub microns to large sizes of particles and hence they are preferred to mechanical precipitators. The efficiency of modern ESP‟s is of the order 99.9%.The Electro Static Precipitators have high collecting efficiency, low sensitivity to high temperatures, low pressure drop, limited process controls and an easy and reduced maintenance make the electro static precipitators one of the most reliable and appreciated units available at the moment in the market. Electrostatic precipitators can be used for collecting virtually all kinds of dust coming from coal and oil fired power stations, blast furnaces and industrial furnaces, iron and steel processes, cement factories, municipal solid wastes incinerators , paper mills, wood factories, textile industries, food and pharmaceuticals industries. 3.1 Principle of Electro Static Precipitator The electro static precipitator utilizes electrostatic forces to separate dust particles from the gas to be cleaned. The flue gas is ionized in the electro static field and large quantities of positive and negative ions are formed. The positive ions are immediately attracted towards the negative wires by the strength of the field. The negative ions however attracts towards the positive diode. IV. Fly Ash Mitigation Measure Fly ash is fine glass powder, the particles of which are generally spherical in shape and range from 0.5 to 100 micron in size. The fine particles of fly ash reach the pulmonary region of the lungs and remain there for long periods of time; they behave like cumulative poisons. The submicron particles enter deeper into the lungs and are deposited on the alveolar walls where the metals could be transferred to the blood plasma across the cell membrane fly ash can be disposed- off in a dry or wet state. Studies show that wet disposal of this waste does not protect the environment from migration of metal into the soil. Heavy metals cannot be degraded biologically into harmless products like other organic waste. Studies also show that coal ash satisfies the criteria for landfill disposal, according to the Environmental Agency of Japan. According to the hazardous waste management and handling rule of 1989, fly ash is considered as non-hazardous. With the present practice of fly-ash disposal in ash ponds (generally in the form of slurry), the total land required for ash disposal would be about 82,200 ha by the year 2020 at an estimated 0.6 ha per MW. Fly ash can be treated as a by-product rather than waste [12]. 4.1 Fly ash bricks: The Central Fuel Research Institute, Dhanbad has developed a technology for the utilization of fly ash for the manufacture of building bricks. Fly ash bricks have a number of advantages over the conventional burnt clay bricks. Unglazed tiles for use on footpaths can also be made from it (Figure 1). Awareness among the public is required and the Government has to provide special incentives for this purpose [12]. Six mechanized fly ash brick manufacturing units at Korba are producing about 60000 bricks per day. In addition to this, two mechanized fly ash brick manufacturing units have been set up by private entrepreneurs also at Korba [13], the total production being about 30000 bricks/day. Apart from this about 23 entrepreneurs have registered in DTIC proposals for establishing ash brick units. To give impetus to ash brick manufacturing [13] Orissa Government in India has banned the use of soil for the manufacture of bricks up to 20 km. of a thermal power station. In the case of fly ash-clay fired bricks, a mixture of clay and fly ash is fired. The unburnt carbon of the fly ash serves as fuel for burning. Approximately 20-30% energy can be reduced by adding25-40% fly ash [14]. Fly ash using for making bricks 4.2 Fly ash in manufacture of cement: In the presence of moisture, fly ash reacts chemically with calcium hydroxide and CO2 present in the environment attack the free lime causing deterioration of the concrete. A cement technologist observed that the reactive elements present in fly ash convert the problematic free lime into durable concrete [15]. Fly ash can substitute up to 66% of cement in the construction of dams. Fly ash in R.C.C. is used not only for saving cement cost but also for enhancing strength and durability. Fly ash can also be used in Portland cement concrete to enhance the performance
  • 4. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.3, Issue.2, March-April. 2013 pp-1026-1031 ISSN: 2249-6645 www.ijmer.com 1029 | Page of the concrete. Portland cement is manufactured with Calcium oxide, some of which is released in a free state during hydration. Studies show that one ton of Portland cement production discharges 0.87 tonnes of carbon dioxide in the environment. Another Japanese study indicates that every year barren land approximately 1.5 times of the Indian Territory need to be afforested to compensate for the total global accumulation of carbon dioxide discharged into the atmosphere because of total global cement production. Utilization of fly ash in cement concrete minimizes the carbon dioxide emission problem to the extent of its proportion in cement. 4.3 Fly ash-based ceramics: Ceramic products with up to 50 wt% of mullite and 16 wt% of feldspars were obtained from binary mixtures of fly ash from the Teruel power station (NE Spain) and plastic clays from the Teruel coal mining district [16]. The firing behaviour of fly ash and the ceramic mixtures was investigated by determining their changes in mineralogy and basic ceramic properties such as colour, bulk density, water absorption and firing shrinkage. To determine the changes on heating suffered by both the fly ash and the ceramic bodies, firing tests were carried out at temperatures between 900 and 1200°C in short firing cycles [17]. The resulting ceramic bodies exhibit features that suggest possibilities for use in paving stoneware manufacture, for tiling and for conventional brick making (fig-2). The National Metallurgical Laboratory; Jamshedpur has developed a process to produce ceramics from fly ash having superior resistance to abrasion [12]. a) Mosaic tile b) Interlocking paver 4.4 Fly ash as fertilizer: Fly ash provides the uptake of vital nutrients/minerals (Ca, Mg, Fe, Zn, Mo, S and Se) by crops and vegetation, and can be considered as a potential growth improver [18]. Because it can be a soil modifier and enhance its moisture retaining capacity and fertility the improvement in yield has been recorded with fly ash doses varying from 20 tone / hectare to 100 tone / hectare (Figure 3). On an average 20-30% yield increase has been observed. Out of 150 million hectare of land under cultivation, 10 million hectares of land can safely be taken up for application of fly ash per year. The fly ash treated fields would give additional yield of 5 million tone food grains per year valued at Rs.3000 per year. a) Cabbage at Dobhar, fly ash amended soils b) Reclamation of saline soils using fly ash (75% saving in gypsum)
  • 5. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.3, Issue.2, March-April. 2013 pp-1026-1031 ISSN: 2249-6645 www.ijmer.com 1030 | Page 4.4 Fly ash based polymer products: Fly ashes are also being used as wood substitutes. They have been developed by using fly ash as the matrix and jute cloth as the reinforcement. The Jute cloth is laminated by passing through a polymer fly ash matrix and then cured. The number of Laminates is increased to get the desired thickness. The product can be used in many applications like door shutters, partition panels, flooring tiles, wall panelling and ceiling. The developed material is stronger more durable, resistant to corrosion and cost effective as compared to wood. This technology has been developed by the Regional Research Laboratory, Bhopal in collaboration with Building Materials and Technology Promotion Council (B.M.T.P.C) and TIFAC [19]. One commercial plant has been set up based on this technology near Chennai, India. The Government of India has withdrawn an 8% excise duty imposed earlier on fly ash products. 4.5 Fly ash in road construction: The use of fly ash in large quantities making the road base and surfacing can result in low value–high volume utilization technology demonstration projects at New Delhi, Dadri (U.P.) and Raichur (Karnataka) have been successfully completed for use of fly ash in road / flyover embankments (figure-4). Guidelines have been prepared and approved by Indian Roads Congress (IRC) as national standard. More than 10 multiplier effects have taken place across the country. In the recent past CRRI offered advise/ consultancy services in the following road/embankment projects in which fly ash was utilized: 1. Construction of plant roads at Budge-Budge thermal power plant using fly ash based pavement specifications (Collaboration with CESC Ltd, Kolkata), 2. Construction of one km long rural road near Raichur in Karnataka with fly ash based flexible/semi-rigid pavement composition (Collaboration with Karnataka PWD and Raichur thermal power station -executed as Fly Ash Mission demonstration project) 3. Construction of plant road and two rural roads using fly ash (collaboration with National Capital Power Station, NTPC, Dadri, U.P) [20]. Figure 4 Nizamuddin Bridge approach road embankment at New Delhi (in flood zone of river Yamuna) 4.6 Roads and Embankments: Another area that holds potential for utilization of large volumes of fly ash is road and flyover embankments. Fly ash embankments at Okhla, Hanuman Setu, Second Nizamuddin bridge in Delhi and roads at Raichur, Calcutta, Dadri etc. have established that on an average Rs. 50 to 75 per MT of earth work cost can be saved by using fly ash (in lieu of soil) in such works, primarily due to reduction in excavation & transportation costs[18]. In the recent past CRRI offered advise/ consultancy services in the following road/embankment projects in which fly ash was utilized: 1. Fly ash embankment construction for Okhla flyover at Delhi adopting „Reinforced Embankment Technique‟ (Collaboration with Delhi PWD – executed as Fly Ash Mission demonstration project), 2. Fly ash embankment construction for Hanuman Setu flyover at Delhi adopting „Reinforced Embankment Technique‟ (Collaboration with Delhi PWD and Badarpur Thermal Power Station, Delhi). 3. Construction of reinforced approach embankment using fly ash at SaritaVihar flyover in Delhi (Collaboration with Delhi Development Authority and Badarpur Thermal Power Station, Delhi). 4. Construction of embankment for Noida-Greater Noida Expressway project (Collaboration with IRCON International and Badarpur Thermal Power Station, Delhi)[19] V. Environmental Impact of Fly Ash Usage Utilization of fly ash will not only minimize the disposal problem but will also help in utilizing precious land in a better way. Construction of road embankments using fly ash, involves encapsulation of fly ash in earthen-core or with RCC facing panels. Since there is no seepage of rain water into the fly ash core, leaching of heavy metals is also prevented. When fly ash is used in concrete, it chemically reacts with cement and reduces any leaching effect. Even when it is used in stabilization work, a similar chemical reaction takes place which binds fly ash particles. Hence chances of pollution due to use of fly ash in road works are negligible [21].
  • 6. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.3, Issue.2, March-April. 2013 pp-1026-1031 ISSN: 2249-6645 www.ijmer.com 1031 | Page VI. Energy Saving and Environmental Benifits Most of the developing countries face energy scarcity and huge housing and other infrastructure shortage. Ideally in these countries materials for habitat and other construction activities should be energy efficient (having low energy demand). The following table shows some examples of energy savings achieved through the use of Fly Ash in the manufacture of conventional building materials [22]. VII. Conclusion Coal is used widely as a thermal energy source in thermal power plant for production of electricity but available coal in India is of poor quality, with very high ash content and low calorific value. Utilization of huge amount of coal in thermal power plant has created several adverse effects on environment leading to global climate change and fly ash management problem. Coal based thermal power plants all over the world is cited to be one of the major sources of pollution affecting the general aesthetics of environment in terms of land use, health hazards and air, soil and water in particular and thus leads to environmental dangers. So, the disposable management of fly ash from thermal power plant is necessary to protect our environment. It is advisable to explore all possible application for fly ash utilization. Several efforts are needed to utilize fly ash for making bricks, in manufacture of cement, ceramics etc. Various governmental and nongovernmental bodies working in the field of utilization of fly ash for construction of road/road embankment The utilization of fly ash gives good result in almost every aspects including good strength, economically feasible and environmental friendly. References [1] Mishra U.C., Environmental impact of coal industry and thermal power plants in India, J Environ Radio act, 72(1-2), 35-40 (2004) [2] Jamil S., Abhilash P.C., Singh A., Singh N. and BhelHari M., Fly ash trapping and metal accumulation capacity of plant, implication of for green belt around thermal power plant, J. Land Esc. And Urban Plan, 92, 136-147 (2009) [3] Fulekar M.H. and Dave J.M., Release and behavior of Cr, Mn, Ni and Pb in a fly‐ash/soil/water environment: column experiment, IntJ. Of Environmental Studies, 4, 281-296 (1991) [4] Ashoka D., Saxena M. and Asholekar S.R., Coal Combustion Residue-Environmental Implication and Recycling Potential, Resource Conservation and Recycling, 3, 1342-1355 (2005) [5] Shrivastava Shikha and Dwivedi Sushma, Effect of fly Ash Pollution on Fish Scales, Re. J. of Che. Sci, 1(9), 24-28 (2011) [6] Keefer R.F., Coal ashes-industrial wastes or beneficial by-products. In: Keefer R.F., Sajwan K., editors, Trace Element in Coal and Coal Combustion Residues. Advances in Trace Substances Research, Florida: Lewis Publishers, CRC Press, 3–9 (1993) [7] Kumar Vimal and Mathur Mukesh, Clean environment through fly as utilization Cleaner (2003) [8] Critical Review in Environmental Control, CRC Press, 3, (1989) [9] Pvrecek, Lbendik, Pb210 and Po210 in fossil fuel at the sostanj thermal power plant (Slovenia), Czechoslovak j of phy, 53 a, 51-a (2003) [10] F˙IL˙IZ G ¨ UR and G ¨ UNSEL˙I YAPRAK, Natural radionuclide emission from coal-fired power plants in the southwestern of Turkey and the population exposure to external radiation in their vicinity, J. of Environ. Sci. and Health Part a, 45, 1900–1908 (2010) [11] Kant K., Chakarvarti S.K Environmental impact of coal utilization in thermal power plant, J. of Punjab Acad. of For. Med. &Toxi, 3, 15-18 (2003) [12] Senapati Manas Ranjan, Fly ash from thermal power plants–waste management and overview current science, 100, 1791-1794 (2011) [13] korba.gov.in/kwflyash.htm (2012) [14] www.wealthywaste.com/fly-ash-utilization-in-india (2012) [15] Cement Manufacturing Association, (1999) [16] IgnasiQuerlt,XavierQuerol ,Angel Lopez-Solar ,Felicano Plana ,Use of coal fly ash for ceramics ;a case study for large Spanish power station, fuel,8 , 787-791, (1997) [17] SaikatMaitra, Cremic product from fly ash global prospective. In preceding of the national seminar on fly ash utilization, February 26-27 NLM Jamshedpur India (1999) [18] Kumar Vimal and MathurMukesh, Clean environment through fly as utilization. Cleaner Technology, Impacts/12/2003-2004, MOEF-CPCB, Govt. of India, 235-255, (2003) [19] Fly Ash Mission‟, (TIFAC), Department of Science and Technology, Ministry of Science and Technology, Government of India, Technology (1994) [20] www.crridom.gov.in/techniques-facilities/10.pdf (2012) [21] M.Ahmaruzzaman, A review of utilization of fly ash In Energy and Combustion. Sci.30, 327-363 (2010) [22] Jha C. N. & Prasad J. K. Fly ash: a resource materifsinceal for innovative building material - Indian perspective substitute and paint from coal ash” 2nd international conference on “fly ash disposal &utilization”, New Delhi, India, (2000).